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Abstract: Retrievals of sea ice drift from synthetic aperture radar (SAR) images at high spatial
resolution are valuable for understanding kinematic behavior and deformation processes of the
ice at different spatial scales. Ice deformation causes temporal changes in patterns observed in
sequences of SAR images; which makes it difficult to retrieve ice displacement with algorithms based
on correlation and feature identification techniques. Here, we propose two extensions to a pattern
matching algorithm, with the objective to improve the reliability of the retrieved sea ice drift field at
spatial resolutions of a few hundred meters. Firstly, we extended a reliability assessment proposed
in an earlier study, which is based on analyzing texture and correlation parameters of SAR image
pairs, with the aim to reject unreliable pattern matches. The second step is specifically adapted to the
presence of deformation features to avoid the erasing of discontinuities in the drift field. We suggest
an adapted detection scheme that identifies linear deformation features (LDFs) in the drift vector field,
and detects and replaces outliers after considering the presence of such LDFs in their neighborhood.
We validate the improvement of our pattern matching algorithm by comparing the automatically
retrieved drift to manually derived reference data for three SAR scenes acquired over different sea ice
covered regions.

Keywords: sea ice drift; sea ice deformation; pattern matching; reliability assessment; outlier
detection; SAR images

1. Introduction

The drift of sea ice can be observed from space by synthetic aperture radar (SAR), and quantified
using drift detection algorithms. The requirements that the applied algorithm has to meet regarding
resolution, reliability, and computing time varies with the type of application. If the drift information
has to be provided in near real-time, the algorithm has to be fast, which means that only simple
retrieval methods can be used. Such methods result in maps of ice drift with a comparatively coarse
spatial resolution. Here, we focus on the retrieval of high-resolution sea ice drift information to
document especially the small-scale kinematic behavior of sea ice and its deformation. The drift
detection algorithm used in our work is based on pattern recognition to determine the displacement
of recognizable sea ice structures in sequential SAR images [1]. We note that the application of the
algorithm results in displacements of structures that can be identified in the ice cover. The drift is
approximated from the straight line between the positions of a given structure derived from images 1
and 2, divided by the temporal difference between the acquisitions of both images. The true motion
in this time interval is unknown. Our algorithm provides reliable drift and deformation information
at a spatial resolution of 15 times the pixel size of the used SAR image. In our study, we used SAR
images with pixel sizes between 50 and 150 m, which means that the spatial resolutions of the drift
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fields range between 750 m and 2.3 km. Typical spatial resolutions reported in other studies of sea ice
drift derived from SAR imagery varied between 5 and 10 km [2,3].

An inhomogeneous drift of sea ice causes deformation processes such as a local opening in the ice
cover or ice compression. The results of such processes are visible as, e.g., open water leads, ridges or
rafting zones. Sea ice deformation changes the local ice thickness and triggers the production of new
ice in open water leads. Thus, deformation is an important component of sea ice dynamics that affects
the interaction between atmosphere, ocean, and ice. To detect patterns of sea ice deformation, which
often appears localized as narrow structures in a sea ice cover [4,5], it is important to obtain spatially
dense information about the ice drift, especially close to the zones of deformation. Here, a problem
arises because patterns in the ice that are used for tracking ice displacements from SAR image pairs
may change when deformation takes place between the acquisitions of the two SAR images. Resulting
incorrect pattern matches of the drift detection algorithm may lead to incorrect drift vectors, which
affects the magnitude of the sea ice deformation parameters calculated from the drift field. Therefore,
the identification of incorrect drift vectors is important, and the implementation of procedures for
detecting unreliable pattern matches and outliers as modules of an ice tracking algorithm leads to a
higher reliability of the resulting drift and deformation retrievals.

For the present study, we extended the pattern matching algorithm that was introduced
by Thomas et al. [6] and modified by Hollands and Dierking [1]. It is a cascaded multi-scale
multi-resolution algorithm that combines a phase correlation (PC) and a normalized cross-correlation
(NCC) technique to identify matching structures in sequential SAR images. The combination of PC
and NCC is useful; the advantage of the latter is its higher robustness against image noise (speckle),
whereas the PC is computationally efficient and more robust with respect to non-linear ice drift, such
as ice floe rotation [7]. Pattern matching is performed such that the grid of the drift vector field is
changed from coarse to dense spacing (“cascades”). At the same time, a resolution pyramid is built,
starting with a resampled SAR image of relatively coarse pixel size and ending at the pixel size of
the original image. Details of this processing are described in Thomas et al. [6] and Hollands and
Dierking [1]. The size of the correlation window for pattern matching is determined by the balance
between a robust correlation and the achievable spatial resolution of the drift field. As a result of this
procedure, we obtain sea ice drift patterns on different spatial scales. Thereby, the need for initial drift
information is avoided, and the stability of the algorithm is increased. The negative impact of artificial
drift outliers is reduced by using a running box median filter. According to Thomas et al. [6], this
method of outlier removal provides a simple and effective means of data regularization. However, it
should be noted that the use of an averaging filter involves a loss of small-scale information due to
smoothing of real discontinuities, and due to the loss of statistical independence between adjacent drift
vectors. To avoid this disadvantage, an adaptive method for the detection of outliers that explicitly
takes the existence of discontinuities into account, and a reliability assessment of the individual pattern
matches, are both needed.

Hollands et al. [8] found that in algorithms based on pattern matching, the correlation coefficient
alone is not sufficient to judge the reliability of a drift vector. Therefore, they introduced an index
for reliability assessment, denoted as “confidence factor” (CFA), which combines different metrics
that quantify particular image properties. Four parameters characterizing the image texture and
two parameters related to the normalized cross-correlation are calculated: mean intensity gradient
(MIG), mean gradient slope (MGS), variance-to-squared-mean-ratio (VMR), intensity threshold (IT),
correlation coefficient (NCCC), and confidence interval of the correlation coefficient (NCCI). For
these parameters, Hollands et al. [8] determined thresholds above which a pattern match and the
corresponding drift vector are regarded unreliable. As the algorithm proceeds through the cascaded
resolution pyramids, the CFA is increased by one every time a texture or correlation parameter exceeds
the threshold. A high CFA hence indicates areas in which the retrieved drift vectors are less reliable.

Lavergne et al. [9] presented a concept to find outliers in a drift vector field by including the direct
neighborhood of each drift vector. An outlier is detected when the deviation to the average of the
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adjacent vectors is above a predefined threshold. In this case, pattern matching using a maximum
cross-correlation is repeated with adapted constraints for the corresponding search area.

In this paper, we focus on methods to determine unreliable pattern matches, and to detect and
replace outliers in the sea ice drift retrieval, considering the presence of discontinuities in the drift
vector field. To this end, we combine, modify, and extend the concepts of Hollands et al. [8] and
Lavergne et al. [9], and add them to the drift detection algorithm implemented by Hollands and
Dierking [1]. To avoid the replacement of a drift discontinuity by a smoothed velocity transition, we
develop an adapted data regularization scheme that identifies linear deformation features (LDFs) in
the drift field. To verify the improvement attributed to the implemented extensions, we calculate
benchmarks derived from the differences between automatically derived drift vectors and manually
determined reference data. Finally, we discuss the influence of sea ice deformation zones in a sea ice
cover on the accuracy of drift detection algorithms.

2. Materials and Methods

2.1. Reliability Assessment

Hollands et al. [8] introduced the concept of the confidence factor (CFA) to assess the reliability of
the retrieved drift vectors. The CFA is a combination of different parameters that reflect the structural
characteristics of each image, which are determined by intensity texture, speckle, and single extreme
high-intensity spots due to specular reflections from the ice surface. In addition, it includes the
correlation between the two images from which ice displacements are calculated, and its confidence
interval. We divide the CFA into two categories, i.e., image texture (texture_CFA) and correlation
parameters (correlation_CFA). The total CFA is the sum of both. The texture_CFA consists of four
parameters for characterizing the ice structure that were already applied by Hollands et al. [8] (Table 1).
It is determined in each step of the drift algorithm (i.e., in each cascade and the particular step in
the resolution pyramid) from the spatial variations of the backscattering intensities inside predefined
areas (correlation windows) in images 1 and 2. Thereby homogeneous (texture free) areas such as ice
shelves or zones of open water are identified and marked, for which pattern matching is not feasible.
To evaluate the reliability based on the correlation (correlation_CFA), we modified the procedure
described in Hollands et al. [8]. Here, both the PC and the NCC between the correlation windows in
images 1 and 2 are quantified by the coefficient of the NCC-coefficient (denoted as NCCC) and the
relative peak magnitude of the PC (denoted as RPM), which is given by:

RPM =
PCpeak

PC
, (1)

Here, PC is the mean of the correlation matrix (which contains the results for the different spatial
lags between the two correlation windows).

In comparison to Hollands et al. [8], our design of the correlation_CFA results in a stronger
influence of the correlation measures on the total CFA. The purpose of the correlation_CFA is not
only to detect highly unreliable pattern matches on the basis of the correlation parameters, but also
to establish a rank order of reliable drift candidates. To determine the threshold ranges for the
correlation_CFA (shown in Table 1), we minimized retrieval errors derived in comparison to reference
data (see Section 2.3) by varying the ranges of the NCCC and RPM. Additionally, we adjusted values
such that both subcategories of the CFA contribute an almost equivalent amount to the total CFA. The
correlation_CFA is in most cases obtained from the NCC. Only if the PC provides a reliable correlation
(CFA_PC < 4), while the NCC does not (CFA_NCC = 4), the former is used to determine the drift vector
and the correlation_CFA. This case occurs in particular in ice regions with non-linear drift patterns
(e.g., rotation of ice floes). As shown in Figure 1, the CFA serves to flag areas/matches revealing a low
reliability based on the combination of texture properties and correlation parameters.
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Table 1. Thresholds and ranges for determination of the confidence factor.

Confidence Factor Abbreviations Threshold/Range Value

Texture_CFA (see [8]) CFA_T 0–4

Variance-to-squared-mean-ratio VMR <0.5 +1
Mean intensity gradient MIT <1.7 +1
Mean gradient slope MGS <0.35 +1
Intensity threshold IT >−3 dB +1

Correlation_CFA (obtained from NCC or PC) CFA_NCC or CFA_PC 0–4

NCC (coefficient and confidence interval) NCCC

<0.1 =4
0.1–0.2 =3
0.2–0.4 =2
0.4–0.8 =1

>0.8 =0
NCCI >0.2 =4

PC (Relative peak magnitude) RPM

<1.58 =4
1.58–2.51 =3
2.51–3.98 =2
3.98–6.31 =1

>6.31 =0

Confidence factor CFA 0–8Remote Sens. 2017, 9, 718  5 of 15 
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(b) CW1,2—Correlation window pair for performing the PC (phase correlation), NCC (normalized 
cross correlation), and the various CFA parameters, CFA—confidence factor, T—texture. See 
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Figure 1. Flow diagram of the correlation procedure (a) and the outlier detection/handling;
(b) CW1,2—Correlation window pair for performing the PC (phase correlation), NCC (normalized
cross correlation), and the various CFA parameters, CFA—confidence factor, T—texture.
See Sections 2.1 and 2.2 for further explanation.
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In many cases, the results of the PC and NCC reveal more than one reliable correlation peak. If a
drift vector based on the highest correlation peak appears as an outlier in comparison to its adjacent
vectors an alternative drift candidate of the preceding correlation procedure iteratively replaces it
(Figure 1b, box 1 under “Replacement”). In the first step, only drift vectors with the same CFA are
potential candidates to replace the outlier. If these vectors still appear as outliers, alternative matches
with a lower CFA are accepted. If no candidate fits into its neighborhood, or no other correlation peak
is reliable (CFA_NCC = 4 and CFA_PC = 4), the median of adjacent vectors is used for replacement.
Whether all or only certain vectors from the neighborhood are used for calculating the median is
decided based on the result of the procedure for detecting discontinuities described in Section 2.2.
We found that more than 50% of the outliers are replaced by an alternative drift candidate retrieved
from the correlation data, and in the other cases, the outliers had to be replaced by the median
determined from the adjacent drift vectors, as explained below. This item will be further addressed in
the discussion below.

2.2. Detection of LDFs and Outliers

The detection of drift vectors that deviate significantly in magnitude and/or direction from their
neighborhood (in this text denoted as “outliers”) represents a very important part of our modified drift
retrieval algorithm. One has to consider that in areas of active deformation processes, discontinuities
occur in the ice drift field that require special procedures for the detection and replacement of
outliers. The aim of our new method is to adapt the application of averaging filters to the presence of
discontinuities, and thus preserve drift variations caused by real sea ice deformation. To achieve this,
the algorithm considers the presence of sea ice deformation features (denoted as linear deformation
features, LDF, in the following), which appear as localized linear or quasi-linear structures [10] when
detecting drift discontinuities in running windows over 3 × 3 grid cells. If an LDF is detected, the
algorithm divides each window into two segments: vectors that reveal relative small deviations to
the central vector (denoted as “connected” vectors, Uc), and vectors with larger deviations that are
separated from the central vector by the LDF (denoted as “separated” vectors, US). The subsequent
detection of an outlier is then carried out by calculating statistics (Section 2.2.3) only on the connected
vectors, to preserve the drift discontinuities.

2.2.1. Spatial Distribution of Discontinuities and Identification of LDFs

As mentioned above, distinct discontinuities in the drift vector field are determined in a window
covering 3 × 3 grid cells (Figure 2). The absolute velocity gradient between the central drift vector
Uij and its adjacent vectors Uk in all eight discrete directions is calculated and stored in an 8-element
velocity gradient vector G:

Gk(i, j) =

√
(uij − uk(i, j)) + (vij − vk(i, j))

∆sk(i, j)
, f or k = 1 . . . 8 and i = 1 . . . I j = 1 . . . J (2)

where k is linked to the positions of the adjacent drift vectors:

k→ {i− 1, j− 1; i− 1, j; i− 1, j + 1; i, j− 1; i, j + 1; i + 1, j− 1; i + 1, j; i+, j + 1}

and I and J are the dimensions of the retrieved drift vector field, u and v are the components of
the drift vector U, and ∆s is the distance between the positions of two drift vectors. With ∆x and
∆y being the grid spacing of the vector field in x- and y-direction, we obtain, e.g., ∆si−1,j = ∆x
and ∆si−1,j−1 = (∆x2 + ∆y2)1/2. To differentiate between a continuous gradient and a discontinuity,
a threshold is defined, which is determined in each cascade and resolution step as follows:
Except for the outermost margin of a gridded drift field of size (I, J) we determine the gradients
Gk(i,j), i = 1 . . . I − 1, j = 1 . . . J − 1, k = 1 . . . 4 in 3× 3 windows for all grid cells in the image. For each
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window position, only the three grid cells above the center point and the grid cell to its left are
considered to avoid double counts. Note that Gk(i,j) is calculated from the differences between center
and adjacent grid cells, hence overlap zones between single windows reveal different gradients for
each window position except for one cell, if the overlap ≥4 cells. The probability density function
(PDF) is evaluated from the gradients over the entire drift field. An exponential function is then fitted
to the PDF. In the next step, the value is calculated at which the cumulative distribution function (CDF)
of the exponential fit is 0.9545. This point determines the twofold standard deviation of all velocity
gradient values. As demonstrated in Figure 3, gradients above this threshold are considered as a
discontinuity. The motivation and implications of this detection method are clarified in the discussion
below. The identified discontinuities are stored in the binary decision vector Dk for each position i,j:

Dk(i, j) =

{
1, Gk(i, j) > 2σ

0, Gk(i, j) ≤ 2σ
(3)
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Figure 3. Probability density function (PDF) of the absolute velocity gradient Gijk and the exponential
fit. Absolute gradients higher than two standard deviations (2σ) are considered as discontinuities.

In the next step, the position i,j is categorized considering the spatial distribution of the identified
discontinuities: isolated feature (1), no discontinuities (2), joint discontinuities (3), and randomly
distributed discontinuities (4). The typical characteristics of these types are shown in Figure 4. Note
that the eight grid cells around the center of the window represent gradients (categorized by their
magnitude, according to Equation (3)). To determine the prevalent category, we defined unique
characteristic of Dk and the “ring differences” ∆Dk (Equations (3) and (4)) for each category (Figure 4,
row 4).

∆Dk(i, j) = Dk(i, j)− Dk+1(i, j) (4)
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2.2.2. Segmentation by LDFs

Category 1 (isolated feature) indicates an outlier at position i,j and no further detection step is
required. Category 2 (no discontinuities) is trivial. Category 3 (joint discontinuities) represents an LDF;
thus the 3 × 3 window is divided into the two segments: “separated” and “connected” drift vectors
(see Figures 2 and 4). Category 4 (randomly distributed discontinuities) is not assignable to an LDF;
consequently, all vectors are considered as connected.

2.2.3. Adapted Outlier Detection

To detect outliers in category 2, 3 and 4, the median absolute deviation (MAD) is applied on the
segment of connected drift vectors Ucl in each window of 3 × 3 grid cells at the position i,j:

MAD(i, j) = b×MEDIAN(|Ucl(i, j)−MEDIAN(Ucl(i, j))|) (5)

M(i, j) = |U(i, j)−MEDIAN(Ucl(i, j))| (6)

where b (=1.4826) is a constant linked to the assumption that data are normally distributed. The index
l = 1 . . . L refers to the L-connected drift vectors Ucl. The MAD is a robust statistic in the presence of
outliers, and not sensitive to the sample size [11,12]. An outlier in the center of the 3 × 3 window is
detected if M > 2·MAD, and replaced as described in Figure 1b and Section 2.1. If M ≤ 2·MAD, the
central drift vector matches into its neighborhood and remains unchanged.

2.3. Validation

To validate the applied methods, we generated a reference data set by visually tracking stable
sea ice structures that can be identified in the sequential SAR images. For further investigations, we
selected the structures such that they occur in different distances from the drift field discontinuities
(see Section 3). The absolute and the relative difference between a reference and the corresponding
automatically retrieved drift vector are denoted as retrieval errors Eabs and Erel, respectively:

Eabs =
√
(ua − ure f ) + (va − vre f ) (7)

Erel =

√
(ua − ure f ) + (va − vre f )√(

ure f

)
+
(

vre f

) × 100 (8)

We calculated five benchmark values representing the algorithm accuracy: B1 is the mean over all
individual errors, B2 the root mean square of Ex, and B3 the mean angular error:

B1x =
∑ Ex

N
(9)

B2x =

√
∑ E2

x
N

(10)

B3 =
∑ ∆ϕ

N
=

∑
∣∣∣tan−1

(
ua
va

)
− tan−1

( ure f
vre f

)∣∣∣
N

(11)

where x can be either abs or rel, and n is the number of reference vectors. B4 and B5 are the number
of the relative errors Erel greater than 10% (B4) and 50% (B5). A relative error of 10% represents a
reasonable metric used in many practical applications [13], and a relative error higher than 50% is
considered a complete failure of the algorithm.

We verified the improvement of the retrieved sea ice drift by implementing multiple
versions (A1–A5) of our drift detection algorithm (see Table 2). The first version (A1) is the original
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cascaded multi-scale multi-resolution pattern matching algorithm without a reliability assessment
(CFA) and any data regularization. The second version (A2) represents the algorithm discussed in
Hollands and Dierking [1], with no intrinsic use of the reliability assessment or explicit outlier detection,
but with application of a running box median filter. In the third version (A3), the algorithm is extended
by the intrinsic use of the reliability assessment to decide whether conditions for a successful pattern
matching are met. The fourth version (A4) builds on A3, and performs the presented outlier detection
using the MAD on each window of 3 × 3 grid cells without preceding window segmentation. The
final version (A5) includes the latter.

Table 2. The applied methods of the five algorithm versions

Methods
Algorithm Version

A1 A2 A3 A4 A5

Median filter X X
Intrinsic use of the reliability assessment X X X

Outlier detection using MAD X X
Preceding window segmentation by a identified LDF X

2.4. Calculation of Sea Ice Deformation Parameters

To determine whether a dependency of the algorithm accuracy to sea ice deformation exists,
we derived the deformation parameters directly from the retrieved sea ice drift field. The parameters
are usually calculated from the invariants of the strain rate tensor comprising the partial derivatives of
the drift field [14]:

εshear =

[(
∂u
∂x
− ∂v

∂y

)2
+

(
∂u
∂y

+
∂v
∂x

)2
]1/2

(12)

εdiv =
∂u
∂x

+
∂v
∂y

(13)

εtotal =
√

ε2
div + ε2

shear (14)

Following Lindsay and Stern [15], we computed the partial derivatives by an approximation of
the line integral around the boundary of each grid cell (e.g., ∂u/∂x):

∂u
∂x

=
1
A

∮
u dy ∼=

1
2A

n

∑
i=1

(ui+1 + ui)(yi+1 + yi) (15)

where A is the area of the grid cell calculated using Gauss’s area formula, and the other partial
derivatives are determined analogously.

2.5. Test Sites, SAR and Reference Data

Each test site comprised two sequential SAR images, which are geocoded and calibrated using
the commercial software SAR-Scape. The SAR image pairs were acquired over two regions in the
Weddell Sea (Ronne Polynya and central southern Weddell Sea), and north of Fram Strait in the Arctic.
The coordinates of the overlapping areas between the image pairs are listed in Table 3. The selected test
sites represented different ice conditions. Also, the sensor configurations (frequency, spatial resolution,
imaging modes) and the time gaps between the acquisitions of the two SAR images are different. The
reference data used for validating our results comprise about 100 manually derived drift vectors per
test site.
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Table 3. Test sites and SAR data description.

Region Ronne Polynya Weddell Sea Arctic Ocean

Extent of the overlap (N/S) 74◦S/77◦S 73.4◦S/75◦S 85◦N/80.5◦N
Extent of the overlap (W/E) 64◦W/49◦W 39◦W/33.5◦W 17◦E/48.5◦E
Overlapping area 60,000 km2 14,000 km2 100,000 km2

Satellite Envisat ASAR TerraSAR-X Sentinel-1
Reprojection Polar Stereographic Polar Stereographic Polar Stereographic
Band & mode C, Wide Swath X, ScanSAR C, Extra Wide Swath
Used resolution 150 m 50 m 80 m
Date 22/23 February 2008 14/15 February 2014 1/2 January 2015
Season Summer Summer Winter
Acquisition time gap (∆t) 23:30 h 6:13 h 24:41 h
Drift grid spacing (∆S) 2250 m 750 m 1200 m

3. Results

3.1. Drift Retrievals and Algorithm Accuracy

The drift detection algorithm used in our work provides high-resolution sea ice drift retrievals
with spacing between drift vectors between 750–2250 m (see Table 3). Table 4 lists parameter of sea ice
kinematic that quantify differences in sea ice kinematics between the three test sites. The kinematic
parameters are directly derived from the drift vectors obtained with the algorithm version A5
(Section 2.4) As an example, Figure 6 shows retrieved drift vectors in comparison to the reference
vectors, and the automatically determined total deformation for the SAR scene acquired in the Weddell
Sea. The comparison of the retrieved drift (A3 and A5) and the reference drift (Figure 6c,d) reveals the
improvement of the accuracy of the former in areas of larger deformation rates when the algorithm
version A5 is applied.

Table 4. Parameter of sea ice kinematic.

Region Ronne Polynya Weddell Sea Arctic Ocean

Mean absolute drift
∣∣U∣∣ [ms−1] 0.094 0.036 0.231

Mean total deformation rate εtotal [s−1] 4.007 × 10−6 10.616 × 10−6 1.981 × 10−6

Mean divergence rate εdiv [s−1] −0.191 × 10−6 −0.113 × 10−6 −0.351 × 10−6

Mean shear rate εshear [s−1] 3.287 × 10−6 9.003 × 10−6 1.725 × 10−6

To display the change in algorithm accuracy for all three test sites and all five algorithm versions,
we provide the results for the benchmarks introduced in Section 2.3 in Table 5. The values demonstrate
the highest consistency between reference and automatically retrieved sea ice drift vectors when the
extended algorithm A5 was applied. Except for one case, all benchmarks indicate higher algorithm
accuracy for each extension of the algorithm from versions A1 to A5. The exception occurs in the scene
acquired over the Arctic Ocean, for which the mean angular error B3 increases between retrievals
obtained from version A2 and A3. A closer examination revealed that the total error was dominated by
the individual error of a single drift vector. Here, the reliability assessment replaced a “short” vector
indicating a low drift velocity with a vector with a wrong orientation. This example demonstrates that
the reliability check may deteriorate the final result in rare cases.

The high values of benchmark B4 obtained for the Weddell Sea are due to the short time gap
between acquisitions of images 1 and 2, which results in smaller absolute displacements of sea ice
structures. However, the number indicating a complete failure of the algorithm (B5) is much lower
and decreased considerably through the different implementation steps.
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using A3 (c) and A5 (d) (grey background: total deformation greater than 0.2 per time interval Δt). 

Figure 6. TerraSAR-X scene acquired in the Weddell Sea. (a) Manually derived reference drift and
(b) automatically retrieved drift using algorithm A5. The upper right image (b) includes the total
deformation. The lower images show the difference between reference vectors and the drift retrieved
using A3 (c) and A5 (d) (grey background: total deformation greater than 0.2 per time interval ∆t).

Table 5. Results of the algorithm accuracy benchmarks (B1–B5) for the algorithm versions (A1–A5).

Test Site
Algorithm Accuracy Benchmarks

B1abs B1rel B2abs B2rel B3 B4 B5

[pixel] [m] [%] [pixel m] [%] [◦]

Ronne Polynya Envisat
ASAR 22/23 February 2008

A1 3.89 584 4.8 24.10 3616 27.9 2.40 4 1
A2 2.21 331 4.1 5.08 763 15.1 1.31 4 1
A3 1.84 276 3.8 4.15 622 14.4 1.17 3 1
A4 1.19 179 1.8 1.54 232 2.5 0.65 1 0
A5 1.16 174 1.7 1.48 222 2.4 0.60 1 0

Weddell Sea TerraSAR-X
14/15 February 2014

A1 30.35 1518 48.0 90.54 4527 124.3 20.39 37 15
A2 13.54 677 20.2 28.03 1401 36.5 13.84 37 14
A3 8.60 430 14.9 15.71 786 32.3 7.58 29 11
A4 5.05 253 11.4 7.76 388 31.7 5.55 25 3
A5 4.13 207 7.7 5.64 282 11.5 3.08 21 0

Arctic Ocean Sentinel-1
01/02 January 2015

A1 6.97 558 2.6 25.05 2004 8.1 1.08 4 2
A2 5.64 451 2.0 23.87 1909 6.4 0.62 2 1
A3 4.20 337 1.7 12.10 966 3.9 0.74 2 0
A4 3.44 276 1.5 5.52 441 2.2 0.58 1 0
A5 3.08 246 1.3 4.04 323 2.0 0.54 1 0
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In general, the improvement attributed to the reliability assessment (A3) is—with the one
exception discussed above—significant in all drift fields for the three test sites shown in Table 5.
In combination with the adapted outlier detection (A5), the algorithm provides highly accurate drift
retrievals. The mean relative error (B1rel) of all three scenes is lower than 10%, and the number
indicating a complete failure of the algorithm (B5) decreases to 0.

We found the most distinct improvement for the Weddell Sea scene, which exhibited the highest
sea ice deformation rates (εtotal in Table 4). This observation supports the assumption that an erroneous
retrieval of a drift vector can be mainly attributed to the existence of discontinuities in the drift
field. In Figure 7, we quantify the dependence between the relative error Erel and the distance to a
severe deformation. The total deformation εtotal per acquisition time gap ∆t (Equations (12)–(14)) is
derived using the output of algorithm version A5, since it represents the most reliable sea ice drift
field. We considered a total deformation greater than 0.2 per time interval ∆t as severe, and used the
corresponding locations as reference for calculating the minimum distance to the adjacent drift vectors,
for which the relative errors obtained from versions A1 to A5 of the retrieval algorithm could be
determined relative to a reference vector. Figure 7 shows results for A1, A3, and A5. If the distance to a
severe deformation is larger than two times the grid spacing (2∆S), a sufficiently low error is achieved.
Inaccurate drift vectors (Erel > 10%) are primarily observed particularly close (distance < 2∆S) to a
severe deformation. Highly inaccurate vectors (Erel > 50%) only occur in A1 and A3.Remote Sens. 2017, 9, 718  12 of 15 
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3.2. Computational Efficiency

Table 6 shows the computing time of the applied algorithm in seconds, and the resulting number
of retrieved drift vectors for all three scenes and algorithm versions A1 and A5. It should be noted that
the algorithm was not optimized regarding the computational efficiency, and that the grid resolution
(spacing between drift vectors) is much higher compared to most other results of SAR based drift
detection algorithms discussed in the literature. The intention here is to demonstrate the computational
effort of the introduced methods by comparing algorithm versions A1 and A5. The variables that affect
the computing time are the number of performed cascade and pyramid steps, the number of retrieved
drift vectors, and the complexity of the sea ice drift patterns. The number of algorithm steps was fixed
to 12 (four cascade and three pyramid steps), and the grid spacing of the drift vector field was set
to 15 times the SAR resolution. The investigation area size varied from 14,000 km2 to 100,000 km2.
We observe the highest computing time per 100 vectors for the test site from the Weddell Sea, which
exhibited the most complex sea ice kinematics. The inclusion of the algorithm extensions proposed
here even decreased the computing time for this scene by a factor of 0.8. An explanation for this is the
drift regularization in preceding algorithm steps, which led to a more efficient correlation procedure in
subsequent steps. In the other two scenes, the computing time was increased by a factor of 1.15 (Arctic
Ocean) and 1.25 (Ronne Polynya).

Table 6. Computing time of algorithm version A1 and A5, and the number of drift vectors for the given
SAR scenes.

Test Site Number Drift Vectors

Computing Time

Total [s] per 100 Vectors [s]

A1 A5 A1 A5

Ronne Polynya 14,000 170 210 1.2 1.5
Weddell Sea 29,000 580 460 2.0 1.6
Arctic Ocean 77,000 1000 1200 1.3 1.5

4. Discussion

The achieved increase of the retrieval accuracy justifies the application of the two extensions to
the ice drift detection algorithm that we suggested in this study. The additional computing effort
is appropriate. The degree of improvement depends on the ice conditions and kinematics. These
parameters determine the presence of discontinuities in the ice drift field that indicate the formation of
a deformation structure. However, sensor configurations and acquisition time gaps also have to be
considered, as the former influence the image texture, and the latter affect the correlation.

The modified CFA allows a better reliability assessment of the individual pattern matches.
In comparison to the CFA introduced by Hollands et al. [8], we included both correlation methods
(NCC and PC). In addition, we apply partitioned thresholds that allow a more precise assessment
based on the correlation parameters (see Table 1). One issue in this context is that the thresholds for
the texture_CFA determined by Hollands et al. [8], and also used in our study, are based on C-band
SAR data. Thus, a future task is to test and—where appropriate—adapt thresholds and ranges of the
texture_CFA for different radar bands.

In addition to the original algorithm described by Hollands and Dierking [1], we use the results of
both correlation methods (PC and NCC) for the retrieval of a drift vector. To this end, we implemented
a data regularization scheme that replaces vector outliers primarily by alternative matches from the
correlation procedure (i.e., secondary peaks of the correlation functions). As demonstrated in Figure 8,
the drift retrieval includes more alternative drift vectors derived from pattern matches than vectors
calculated as median from adjacent vectors. Because no general averaging filter is applied, and the
implemented identification of LDFs preserves drift discontinuities, smoothing effects are minimized.
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These points are important in order to investigate the small-scale kinematic behavior of sea ice and its
deformation processes.
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Figure 8. The mean percentage of all detected outliers, and the used replacement method of these
outliers. εtotal—mean total deformation rate, ∆t—acquisition time gap, ∆S—grid spacing.

Compared to other published methods that identified drift outliers e.g., [9,15,16], we implemented
a method that automatically calculates thresholds for identifying outliers in the drift field. The detection
of an outlier using the MAD is based on the relative deviation of a vector compared to its neighbors
(see Equations (5) and (6)). The threshold for detecting a discontinuity is determined from the velocity
gradients retrieved from the entire vector field in the overlap area between images 1 and 2 (Figure 3).
However, since the absolute value of the threshold in terms of the velocity gradient that is obtained as
suggested depends on the variability of the drift vector field, it does not present a “global” threshold
for detecting a discontinuity. To solve this problem, more data sets need to be analyzed to implement a
method that considers the magnitude and spatial variability of the ice drift. It has also to be taken into
account that the threshold depends on spatial and temporal scales. Figure 9 shows the variation of
the automatically adapted discontinuity threshold at the different spatial scales of the three resolution
pyramids as they progress through the four cascades. Results are shown for the three test sites Table 4,
which differ in their acquisition time gaps and their ice kinematics.
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An analysis of sea ice deformation regarding spatial and temporal scales has revealed a strong
heterogeneous and intermittent character of the deformation e.g., [17–19]. Thus, deformation becomes
more and more localized at smaller scales, with severe deformation occupying a smaller fraction of the
total area [10]. Our cascaded algorithm automatically retrieves drift on an Eulerian grid at different
spatial scales. Hence, it is possible to analyze the dependence of the deformation on different spatial
scales and derive information about the mechanical behavior of the ice at those scales. The high
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accuracy of our algorithm, and especially the improvement in accuracy when deformation zones
are present, allows reliable scaling analysis of the derived sea ice deformation. As part of future
investigations, we plan to extend recently published results towards smaller spatial scales. We regard
the algorithm presented here as a useful tool for those investigations.

5. Conclusions

The present work introduced two extensions to algorithms for sea ice drift detection based on
pattern matching. One was related to the check of the reliability of the individual pattern matches, and
the other to the detection and replacement of vector outliers in the vicinity of discontinuities in the drift
field. The motivation was to improve the accuracy of the retrieved drift vector field, and to preserve
the discontinuities in the drift field, since they represent zones of sea ice deformation. We showed
that erroneous drift vectors appear more frequently close to active deformation zones. If outliers have
to be replaced, an alternative reliable drift vector obtained from the correlation matrix can be found
in more than 50% of all cases; hence the use of median values can be avoided. We demonstrated the
applicability of our algorithm on data sets from three different ice-covered ocean regions representing
different SAR acquisition parameters and ice conditions. The conducted benchmark test indicates
that the extended reliability assessment and advanced outlier detection result in higher algorithm
accuracy and higher reliability of the resulting drift vector retrievals and the derived deformation
parameters. The drift and deformation products that are the output of our algorithm are the basis
for further studies towards understanding the kinematic and mechanic behavior of sea ice and its
deformation processes over a wide range of spatial scales.
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