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Abstract: Shallow water depth measurements using multispectral images are crucial for marine
surveying and mapping. At present, relevant studies either depend on the use of other auxiliary
data (such as field water depths or water column data) or contain too many unknown variables, thus
making these studies suitable only for images that contain enough visible wavebands. To solve this
problem, a Quasi-Analytical Algorithm (QAA) approach is proposed in this paper for estimating
the water depths around Weizhou Island by developing a QAA to estimate the diffuse attenuation
coefficients and simplifying the parameterization of the bathymetric model. The approach contains an
initialization sub-approach and a novel global adjustment sub-approach. It is not only independent
of other auxiliary data but also greatly reduces the number of unknowns. Experimental results
finally demonstrated that the Root Mean Square Errors (RMSEs) were 1.01 m and 0.77 m for the ZY-3
image and the WorldView-3 (WV-3) image, respectively, so the approach is competitive to other QAA
bathymetric methods. Besides, the global adjustment sub-approach was also seen to be superior
to common smoothing filters: if the Signal-to-Noise Ratio (SNR) is as low as 42, i.e., ZY-3, it can
smooth the water depths and improve the accuracies, otherwise can avoid the over-smoothing of
water depths.
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1. Introduction

Shallow seawater depth measurements are considered to be very important, as they are
directly relevant to the applications of environmental management, exploration, and research [1-4].
For example, the natural development of coral reefs can strongly influence the physical structure of
their environment. Information associated with water depth is fundamental for characterizing and
discriminating between different kinds of coral reef habitats, such as patch reefs, spur-and-groove
systems around reef fronts, and sea grass beds [1]. The knowledge of the water depth can also facilitate
estimations of the bottom albedo, which can improve the habitat mapping [5]. Therefore, shallow water
depth measurements have consistently represented an important component of marine surveying
and mapping.

The bathymetry of the seafloors has usually been determined using conventional
echosounders [6-9]. However, as the echosounders are usually fixed in ships [7,10], such echosounder
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methods are believed to be expensive and time-consuming, especially for shallow waters [3,11].
One reason is that the scan width of the echosounders will become narrow as the water becomes
shallow. Another reason is that some remote and dangerous areas are not suitable for echosounder
methods, as massive hidden reefs can make such areas unreachable to ships.

Hence, we focus on developing an approach to improve the performances of the multispectral
satellite image-based bathymetric methods, since it is currently easy to collect multispectral satellite
images. Besides, if multispectral satellite images are applied, then we no longer need to ship to the
locations where the water depths will be measured. To test the approach, we chose the coral fringing
reefs of the Weizhou Island in the Beibu Gulf, northern South China Sea, as our study area.

Specifically, Weizhou Island is located at 21°00'-21°05'N, 109°00'-109°10’E, approximately
36 miles from Beihai, Guangxi, as shown in Figure 1. Its coverage area of Weizhou Island is
approximately 25 km?. According to Wang et al. [12], the annual average Sea Surface Temperature
(SST) and salinity values around Weizhou Island are about 24.55 °C and 31.9%q, respectively, thus it is
ideal for coral growth even though the seawater transparency varies only from 3.0 m to 10.0 m [12].
Coral reefs have developed around Weizhou Island since the mid-Holocene, and these reefs cover an
area of approximately 6-8 km? [13,14]. These coral reefs have long been the focus of studies analyzing
the responses of coral to global warming and human disturbances, because they are located in a
relatively high-latitude area and are heavily influenced by anthropogenic activities [12,14-16].
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Figure 1. The position of Weizhou Island and one of the corresponding satellite image (ZY-3).

Within this study area, we expect to improve remote sensing data-based solutions for multispectral
images to attain relatively accurate and reliable water depth estimations that may be applied to remote,
large, or dangerous areas in the future. In addition, another practical motivation of this paper is to
provide bathymetric results that will enhance future research of the effects of ambient environmental
conditions on the coral reef of Weizhou Island itself.
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2. Related Works

In this paper, we mainly focus on band combination methods and semi-analytic methods to make
the proposed approach as effective, practical, and convenient as possible. Some related works are
summarized as follows.

Based on the law that light is attenuated exponentially with depth in the water column, as follows:

L; = Lg; + k;rp; exp(—Kifz) (€))

Lyzenga et al. [17,18] argued that the ratio of bottom reflectance between two bands is constant
over a given scene for all bottom types; they demonstrated that errors caused by the presence
of different bottom types could be corrected with two bands. Accordingly, the two band and
n-band combination algorithms were then proposed for the water property-independent and
bottom-reflectance-independent water depth extractions. Similarly, Clark et al. [19] introduced a
linear multiband method for shallow water depth extraction, which was tested using bands 1 and 2
of Landsat TM imagery acquired in the vicinity of Isla de Vieques. To further develop an empirical
solution for the presence of variable bottom types, Stumpf et al. [1] improved the linear multiband
combination methods with a ratio of reflectances with only two tunable parameters.

Although band combination methods have been in use since the early 1970s, until now, they
are still found to be useful and applicable because of their simple forms and efficient characteristics.
Doxani et al. [20] evaluated the effectiveness of several band combination bathymetry algorithms via
using a high spatial and spectral resolutions of WorldView-2 (WV-2) image. Yuzugullu and Aksoy [21]
compared the linear regression model with a non-linear regression model to predict the depths in
Lake Eymir based on WV-2 multispectral satellite images; their results showed that the non-linear
regression model predicted these depths slightly better than the linear model. Papadopoulou et al. [3]
used Lyzenga’s band combination methods [17,18] and high-resolution IKONOS-2 image to create
digital bathymetric maps of the coastal area of Nea Michaniona, Thessaloniki, in northern Greece.
Mohamed et al. [22] improved the linear multiband method by using a fitting algorithm called
Ensemble Learning (EL) and obtained better performance and accuracy than those obtained by
conventional PCA and generalized linear models. Many other related studies [2,23-25] were also
found to focus on the improvements, comparisons, and applications of these algorithms.

Even though band combination methods are simple enough to have been widely applied by many
previous studies, they are obviously highly dependent on field data, which are used for the derivation
of the model coefficients. As a result, semi-analytic models were further developed and applied to
overcome the disadvantages of the band combination methods by considering such factors as the
Inherent Optical Properties (IOPs) of water, bottom types, and in-water light transfer.

Assuming that the water quality and bottom substratum are homogeneous, Bierwirth [26] outlined
a method that unmixed the exponential influence of depth in each pixel by employing a mathematical
constraint, which was applied in the analysis of Landsat TM data from Hamelin Pool in Shark Bay,
Western Australia. Kutser et al. [27] have proved that the bottom type and water depth of the Australian
Great Barrier Reef (GBR) can be simultaneously mapped by matching the Hyperion at-sensor radiance
data to the simulated at-sensor spectral library. Lafon et al. [28] proposed a semi-empirical bathymetric
methodology based on the Hydrolight Radiative Transfer code, which was calibrated using in situ
bottom reflectance and effective attenuation coefficient measurements and then applied to determine
the depth from SPOT images and to develop topographic maps of the tidal inlet of Arcachon.
Lee et al. [29-31] also developed a semi-analytical method for shallow water depth estimation using
an inversion-optimization approach, which can simultaneously derive the water depth and water
column properties from the hyperspectral data in coastal waters. Brando et al. [4] further enhanced
the physics-based inversion-optimization approach that was developed by Lee et al. [29-31]. They
further considered the concentrations of optically active constituents in the water column, different
types of substratum covers, and the contribution of every substratum to the remote sensing signal in
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their enhanced approach. With Lee’s semi-analytic forward model for shallow water remote sensing
reflectance, Hedley et al. [32] was able to map water depths efficiently via the introduction of an
Adaptive Look-Up Tree (ALUT). Knudby et al. [11] further applied this ALUT method to Landsat 8
data for producing the bathymetric maps for shallow waters in Canada. Recently, Hedley et al. [33]
further presented a method for mapping the water depths and the leaf area index (LAI) of seagrasses
according to the idea that variations in reflectance is caused by leaf length, leaf position, sediment
coverage on leaves, water depth, and solar zenith angle, etc. Sylvain et al. [34] also presented a novel
statistical semi-analytic method for mapping water depth and water quality using hyperspectral
remote-sensing data, which is based on local maximum likelihood (ML) estimation performed on
subimages. The authors assumed that deep water bottom is locally flat so that the spatial correlation
between neighboring pixels can be considered sufficiently during the water depth estimation. This
method is able to provide multi-resolution maps, where the resolution depends on local water depth.

Semi-analytic methods are usually regarded to be independent of field water depth measurements
and having a wider scope of applications than band combination methods. However, many
semi-analytic methods were originally developed for high resolution hyperspectral images, e.g.,
when Dekker et al. [35] reviewed and compared the performances of an empirical and five different
analytic/semi-analytic methods, airborne hyperspectral data (Ocean PHILLS and CASI-2) was applied
in the experiments. Thus, it is still currently difficult to declare that semi-analytic methods are able to
completely solve all bathymetric problems, including those associated with the remote sensing images
themselves, especially for the multispectral satellite images that are currently being collected.

For example, according to a radiative transfer model that can connects the water-leaving
reflectance of the optically deep waters 7, the bottom reflectance r, the diffuse attenuation coefficient
of the water column Kj, and the water depth H to the water-leaving reflectance r, as follows [36,37]:

rw(A) = reo(A){1 — exp[=2K3(A)H]} 41 (A) exp(—2K;(A) H), @

Hu et al. [37] developed a semi-analytic method to derive the coastal water depths of the South
China Sea islands using Landsat TM and ETM+ images. In this method, the diffuse attenuation
coefficient k;(A) of the water column is estimated from the adjacent optically deep waters by using the
empirical model of MODIS or Landsat data for Case I water, as shown in Figure 2.

r(A) =1.(4) {1 —exp[—.’.Kd(/'.)H]}-L r(A)exp(-2K, (A)H) 1, (L) = Br.(4)
A

o
<

A

Water-leaving reflectance from the Empirical model for the estimation of
adjacent optical deep waters the diffuse attenuation coefficent

Ty isthe normalized reflectance spectral shape.

Figure 2. The bathymetric model used by Hu et al. [37]: B is bottom albedo and rx(A) is reflectance
spectral shape normalized at the reference wavelength.

On the one hand, when this approach is applied to other types of satellite images, another
empirical model need to be built for the estimation of the diffuse attenuation coefficient by using the
optically deep water pixels selected from the surrounding areas. Otherwise, when other auxiliary
datasets, e.g., MODIS, are needed for the estimation of the diffuse attenuation coefficient, we must
ensure that the gap between the acquisition time of the multispectral satellite image and that of the
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auxiliary data is small enough. On the other hand, this model ignores the influence of the subsurface
solar zenith angle 6;, the subsurface view angle 6, the variations of the bottom reflectances, as well as
the differences between the diffuse attenuation coefficients for downwelling and upwelling light.

A more accurate and typical radiative transfer model was developed by Lee et al. [29]. The
expression constructs the relationships between the subsurface remote-sensing reflectance for optically
deep waters p, the bottom irradiance reflectance p;, the water depth H, and the subsurface
remote-sensing reflectance p as follows:

c b
pzpoo{l—exp[—( L + D )KdH]}—i-f_?exp[—( L + P VKzH |, )

cosfs  cosOy, cosfs  cosBy

where D, and D), are the optical path-elongation factors for scattered photons from the water column
and the bottom, respectively, K; is the diffuse attenuation coefficient. Some important semi-analytic
bathymetric methods have been developed mainly based on the optimization of this model [30,38].

For example, the semi-analytic bathymetric model developed by Eugenio et al. [38] can be
summarized as shown in Figure 3. Specifically, the optimum values of a,(440), a4 (440), by, (400), Y,
and H are determined by minimizing the differences between the observed subsurface remote-sensing
reflectance and the estimated reflectance, where a,(440) is the attenuation coefficient for phytoplankton
at 440 nm, a¢(440) is the attenuation coefficient for gelbstoff at 440 nm, by,,(400) is the backscattering
coefficient for particles at 400 nm, Y is the spectral shape that depends on the particulate shape and
size, B is the bottom albedo at 550 nm, and H is the water depth. This approach requires researchers
to first initialize the H parameter by applying the ratio algorithm, and then, to solve the nonlinear
Model (3) using the Levenberg-Marquardt method.

1 L}Kdﬂ

o T—J[lcxp(lln: + >
‘ “1 i cost, cos@,

e
K H |r+—ex
cosd  cos 6'__) “ _|J p'_ ¢

T

-/-”"7 SR

_— —
P / \ T

— / ——

- 1_ D =1.041+5.4u(A) ] _
2. (A) = gou( i) + g (4) i — Al =B (A
D7 =1.03,1+2.4u(d)

‘-\-_'“——__
_‘_____ﬁqq_h’__% *
hea s B
1 K (A)=a(4) +b,(4) e a(n.):K oD
i [

a(4) =a,(4)+a,(A)+a,(A)

~|bs(/i}- Lo wy+b)

4—| B ()= 2b, (A)+ E()b, (A) |

A

|
a,(4) = {a,(A) + a,(A)1n[a,(440)] }a,(440)

£(4) =1 [01 nsb*’w}mqejﬁu(e)
A)=1+ AU A e
be(/h-} ’ .

= (400
b, (A)=b,,(400)| == |
a,(4) = a,(440)exp[-0.014(4 - 440)] LA

A

-

%
I/’ ' i b, (2) = 28,(A) + b, (2)

'nknowns |:|Equati0ns

Figure 3. The semi-analytic bathymetric model used by Eugenio et al. [38]: a and by, are the attenuation
coefficients and the backscattering coefficient, respectively; ay, ap, and 4y are the attenuation
coefficients for water, phytoplankton, and gelbstoff, respectively; b, and bbp are the backscattering
coefficients for water and particles, respectively; u is the backscattering diffuse attenuation ratio; € is an
empirical parameter to account the effect of changing angle on the effective scattering; and py; is the
550-nm-normalized sand-albedo shape.
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Because the ratio algorithm is used for the initialization, this approach can barely function
without the incorporation of field water depth data. In addition, many multispectral satellite images
can provide only 3—4 visible wavebands, except for a few types of multispectral satellites (such as
WV-2/3 can provide 6 visible wavebands). Hence, the model can become ill-posed because it contains
six unknowns for each image pixel, which is usually more than the number of the visible wavebands.

To meet the requirements of most current multispectral satellite images, this paper develops a
bathymetric approach on the basis of Model (3). In contrast to the band combination methods and
the previously proposed semi-analytic methods, this study mainly highlights the following aspects:
(a) making the approach independent of other auxiliary data, such as field water depth measurements
and the production of MODIS diffuse attenuation coefficients; (b) reducing the number of unknowns so
that the approach can satisfy most current multispectral satellite images; and (c) refining the estimated
global water depths to smooth the final water depths and improve the accuracies. The specific details
of this approach are discussed in the following sections.

3. Materials and Methods

3.1. Overview of the Approach

In this study, a Quasi-Analytical Algorithm (QAA) is firstly applied to some adjacent optically
deep waters to estimate the diffuse attenuation coefficient K;(A) and the optical path-elongation
factors DS and DY. As a result, the number of unknowns in the semi-analytic Model (3) is reduced
from six (ay(440), ag(440), by, (400), Y, B, and H) to two (B and H). Then, the shallow water depths
can be further estimated by using an optimization without the diffuse attenuation coefficients being
empirically estimated at first. This choice can also make the method completely independent of field
water depth measurement data. Thereafter, we further attempt to propose a global adjustment method
to refine the base of the estimated water depths depending on the following two conditions: (a) most
of the water depths observed between a pixel and its adjacent pixels should be similar to each other;
and (b) if the resolution of the image is high (being better than 5.8 m for the experiments), most of
the water depths of the pixels that are close to the transient coastline should be approximately zero.
In previous studies, these global adjustments have rarely been taken into consideration. Figure 4
shows the framework of the approach in detail.

Multispectral Satellite Image Bathymetric Model and Its Solution

lngut X A .71 Estimation ‘OUtP“t
[ “through QAA
Data Preprocessing E. I Input:
= n -
Radiometric = Semi-Analytical Water o
i i S tput
Calibration Sunglint Correction 4 Depths Estimation Ll L Coall)‘ze t\l’:’:ter
7 % through OPtimization P
Subsurface Remote =z
. Input
Atmospheric Sensing Reflectance g v i
Correction Estimation a Global Adjustment of the Water Depths |
>
= i
<
Output 2 Tide Corrections or Corrections for Comparisons of the
5‘ Experiments
T

Output

Subsurface Remote Sensing
Reflectance Image
Refined Water Depths

Figure 4. The flowchart of the implementation of the proposed bathymetric method.

Input:

3.2. Materials and Preprocessing

3.2.1. Experimental Data

Our experimental data consists of ZY-3 and World View-3 (WV-3) multispectral satellite images
with 4 and 8 bands, respectively, as shown in Figure 5.
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Kilometer

(a) (b)

Figure 5. The experimental multispectral images: (a) the ZY-3 multispectral image; and (b) the WV-3
multispectral image. Based on the division represented by the straight line, the western region of the
WV-3 image may be seriously influenced by clouds; therefore, we only study the eastern region of the
WV-3 image in our experiments.

The ZY-3 satellite was launched on 9 January 2012 and represents the first civil high-resolution
optical transmission surveying and mapping satellite of China. It is equipped with four optical
cameras, including a nadir panchromatic Time Delay and Integration (TDI) CCD camera with a ground
resolution of 2.1 m, two back/forward sight panchromatic TDI CCD cameras with a ground resolution
of 3.6 m, and a nadir multispectral camera with a ground resolution of 5.8 m. The ZY-3 images are
geo-referenced in the World Geodetic System (WGS-84). The geo-positioning accuracy is higher than
14.0 m without ground control after undergoing the on-orbit geometric calibration [39]. In addition, the
images have a signal-to-noise ratio (SNR) of approximately 42 [40,41]. The ZY-3 multispectral image
chosen as one of the remote sensing data sources for these experiments was acquired on 24 August
2015, at a corresponding tide height of 3.660 m. The satellite azimuth angle and zenith angle are 17.0°
and 6.6°, respectively. The sensor band information of the multispectral sensor is presented in Table 1.

Table 1. Band information of the ZY-3 multispectral satellite image.

Radiometric Calibration Coefficients

Bands Wavelength (nm) W-m 2srtm1)
Gain Offset
Blue 450-520 0.233 0
Green 520-590 0.2162 0
Red 630-690 0.1789 0
Near-Infrared 770-890 0.1949 0

The WV-3 satellite was launched by DigitalGlobe Inc., Longmont, CO, USA on 13 August 2014.
The WV-3 satellite sensor is a high-resolution commercial satellite sensor operating at an altitude
of 617 km. It provides panchromatic, multispectral, short-wave infrared, and CAVIS images with
resolutions of 0.31 m, 1.24 m, 3.7 m, and 30 m, respectively. The WV-3 multispectral image used in our
experiments was acquired on 1 October 2015, at a corresponding tide height of 2.305 m. The satellite
azimuth and zenith values are 218.3° and 21.1°, respectively. The geo-positioning accuracy is predicted
to be higher than 3.5 m CE90 without ground control [42]. The WV-3 multispectral images consist of
8 different wave bands (the Coastal, Blue, Green, Yellow, Red, RedEdge, Near-IR1, and Near-IR2 wave
bands). The wavelength and the radiometric calibration coefficient information can be all found the
IMD file of the WV-3 data.
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Moreover, when we performed ecological investigations of the coral reefs around Weizhou Island
in October 2015, we measured the water depths at 45 points around the survey stations, as shown in
Figure 6. The water depths were measured using an SM-5A hand-held portable depth sounder with an
accuracy of 0.1 m, and the horizontal positions were mapped using a Magellan eXplorist 610 hand-held
GPS navigation instrument with an accuracy of 3 m. Therefore, the measured water depths can
be matched to the satellite data by using the measured horizontal positions and the geo-referenced
information of the images.

Figure 6. The position distribution of the measured water depths: the red triangles are the stations
where the water depths were measured, these measured water depths are used as water depth check
points for the accuracy assessment.

In this study, these water depths were used to determine the accuracy of the proposed bathymetric
approach after the influence of the tidal levels was eliminated. More specifically, all the measured
water depths are subtracted by the corresponding tide heights before the accuracy assessment, as
well as the water depths estimated from the experimental images. However, when the water depths
estimated from the two experimental images are compared with each other, we selected the tide level of
the ZY-3 image as a reference, and then corrected water depths estimated from the WV-3 image to this
reference. As the tide height corresponding to the ZY-3 image is greater than the one corresponding
to the WV-3 image, negative water depths can be then avoided in the comparisons by choosing such
a reference.

3.2.2. Data Preprocessing

To implement the bathymetric approach, four main preprocessing steps of the multispectral
imagery must be performed prior to obtaining the water depth estimation; these steps include the
radiometric calibration, the atmospheric correction, the sunglint correction, and the subsurface remote
sensing reflectance estimation.
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Radiometric Calibration

The radiometric calibration is performed to transform the Digital Numbers (DN) into the
Top-Of-Atmosphere (TOA) radiance L.
For the WV-3 image, this calibration is performed with the following equation:

ACF

L= GamDN‘EBW

+ Of fset, 4)
where ACF and EBW are the abscalfactor and the effective bandwidth from the IMD file of the WV-3
data, respectively, and Gain and Of fset are both provided by data from the DigitalGlobe website [43].

For the ZY-3 image, the calibration is easy to implement by using the radiometric calibration
coefficients shown in Table 1 as follows:

L = Gain-DN + Of fset. )
Atmospheric Correction

The atmospheric correction aims to transform the TOA radiance into the top-of-canopy reflectance
proc- Similar to the study of Eugenio et al. [38], the atmospheric correction can also be performed
by using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer
code [44-46]. Specifically, the proc can be estimated by using the following equations:

{ o ©)

_
PTOC = Txy

where x,, x, and x. are the atmospheric correction coefficients calculated by the 6S code.

However, the aerosol optical thickness is also needed to run the 6S code, in addition to the spectral
response functions of the sensor bands, the view zenith and azimuth angles, the sun zenith and
azimuth angles, the date and time of the image acquisition, and the latitude and longitude of the center
of the image scene.

In accordance with Tian et al. [47] and Zheng et al. [48], we first select the minimum TOA radiance
of the adjacent optically deep waters to be the dark-object in this study. Then, we change the aerosol
optical thickness from 0.0 to 2.0 in intervals of 0.001 and run the 65 code for each of the aerosol optical
thicknesses. Consequently, the radiance of the dark-object is transformed into different values of proc
corresponding to different aerosol optical thicknesses by using Equation (6), which allows us to select
the aerosol optical thicknesses that cause the proc of the near-infrared bands (Near-IR1 and Near-IR2
for WV-3 and Near-Infrared for ZY-3) to become as close as possible to zero (which is the optimal
aerosol optical thickness).

Thereafter, the optimal aerosol optical thickness is then input into the 65 code to obtain the
atmospheric correction coefficients. Therefore, the proc image can finally be calculated by using
Equation (6). The atmospheric correction approach is briefly presented in Figure 7.

Sunglint Correction and Subsurface Remote Sensing Reflectance Estimation

Because we actually use the remote sensing reflectance R,; rather than the TOC reflectance proc
in further processing, proc must be further transformed into the remote sensing reflectance. As the 65
code can also directly provide the values of solar irradiance Ej;, and atmospheric diffuse irradiance
Egif, we can approximate the remote sensing reflectance Rys using the following equation [49-53]:

PTOC Ysky Edif
Rys = - ) 7
" 7t(Egir + Eaif) @
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where g, is the reflectivity of the gas-water interface that can be calculated using the Fresnel reflection
formula as follows [49-51]:

1 [sin(6; —6,)]% , [tan(6; —6,)]
Toky = 2{ [sin(@l- + 90)] * |:tan<0i + Gv)} }I ®

where 0; and 6, are the view zenith angle and the corresponding refraction angle, respectively.

Dark-Object from
Optically Deep Waters

r— TOA Radiance Image Search—>

Input Output

Input

Atmospheric Corrected

Coefficients Input
I
Input Output
v
Atmospheric Optimal Optical
Correction Thickness

TOC Reflectance Image

Output—p;
upe (Atmopherically Corrected Reflectance Image)

Figure 7. The atmospheric correction approach.

On the other hand, sunglint is usually caused by the specular reflection of solar radiation on
the slopes of the waves of surface winds. Thus, it is difficult to avoid and may seriously influence
the bathymetry results, especially for images with high spatial resolution. Fortunately, a sunglint
correction algorithm has already been developed by Hochberg et al. [54], and it was improved and
used to correct the sunglint of high-spatial-resolution images for the estimation of water depth and
diffuse attenuation coefficients by Eugenio et al. [38,55]. Thus, to perform the sunglint correction in this
study, we simply applied Eugenio’s method to the remote sensing reflectance image. For convenience,
we defined the sunglint-corrected remote sensing reflectance corresponding to the remote sensing
reflectance R;s as R},.

The bathymetric Model (3) provides only the subsurface remote-sensing reflectance p, rather than
the above-surface remote sensing reflectance R},. Therefore, we further defined the subsurface remote
sensing reflectance obtained from R}, according to the relationship between the above-surface and
subsurface remote sensing reflectances provided by Lee et al. [29,30], as follows:

/
RTS

P = 0518 + 1.562R), " ©)

3.3. Bathymetric Model and Its Solution

3.3.1. Reduce the Number of Unknowns

Many current multispectral satellite images can provide only 3—4 visible wavebands; for example,
the ZY-3 imagery in this study provides only three visible wavebands (the blue, green, and red
bands). As a result, we must reduce as many unknown variables of the bathymetric model as possible.
Otherwise, the bathymetric model may become ill-conditioned, and the approach will end in failure.
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According to the work of Prieur and Sathyendranath [56] and Lee et al. [29], the phytoplankton
pigment absorption coefficient at 440 nm, ay(440), can be further parameterized using the chlorophyll-a
concentration C as follows:

a4(440) = 0.06C*%. (10)

As illustrated in Figure 3, when Model (3) is used, the backscattering coefficients by, (1) of the
particles can be parameterized, using by, (400) and Y, as follows:
400\ ¥
byy(A) = by, (400) (/\) . (11)
To reduce the number of unknown variables, by, (1) is further updated using the chlorophyll-a
concentration C (as shown in Appendixs A and B) as follows:

550\ ¥
bpp(A) = by (550) (A> , (12)
where Y = 0.67875, and
by (550) = 0.0111C%2. (13)

To summarize, the model described in Figure 3 can now be updated using Equations (10), (12),
and (13), and a constant of Y = 0.67875. As a result, the number of unknown variables is reduced to
only four: H, B, C, and a4(440).

To further reduce the number of unknowns, we note that

Peo(A) = gou(A) + g1u%(A) (14)
can be rewritten as
—g0+ /83 +4¢1000(A)
u(A) = 80 8o T =81 . (15)
281

Therefore, we can further separate the updated semi-analytic bathymetric model into two parts,
as shown in Figure 8. In other words, we can solve the bathymetric problem with the following two
steps: (a) according to Part 2 of the updated semi-analytic bathymetric model, determine the optimal
values of a¢(440) and C, so that the differences between the values of the estimated pe(A) and the
subsurface remote sensing reflectance of the optical deep waters are as small as possible, thus allowing
the diffuse attenuation coefficient K;(A) to be estimated; and (b) according to Part 1 of the updated
semi-analytic bathymetric model, determine the optimal values of H and B for every pixel, so that
the differences between the values of the estimated subsurface remote sensing reflectance p and the
observed values calculated by Equation (9) are as small as possible. We will illustrate these two steps
in the following two sections, respectively.

3.3.2. Solve the Diffuse Attenuation Coefficient

Eugenio et al. [55] adapted the QAA for WV-2 multispectral images to estimate the values of
phytoplankton attenuation 4y, gelbstoff and detritus attenuation ag, and particle backscattering by,
In this study, we present a similar approach to the adjacent optically deep waters according to Part 2 of
the updated semi-analytic bathymetric model (Figure 8). In contrast to Eugenio et al. [55], our model is
parameterized using a¢(440) and C, which can be applied to multispectral images that have no fewer
than 2 visible bands.
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Figure 8. The two parts of the updated semi-analytic model.

Specifically, to solve the parameters of 4(440) and C, we first change a,(440) from 0 m~! to
0.5 m~! using intervals of 0.001 m~!, then change C from 0.1 mg/m? to 5.0 mg/m? using intervals
of 0.1 mg/m3, and calculate the corresponding subsurface remote sensing reflectance of each pair
of a4(440) and C using Part 2 of the updated semi-analytic bathymetric model (Figure 8). Then, the
initialization of the values of a¢(440) and C are selected by making the sum of squared differences
between the calculated subsurface remote sensing reflectance and the observed reflectance to be as
close to zero as possible. Thereafter, the Levenberg—Marquardt method is used to solving for the
optimal values of a¢(440) and C. Finally, the average diffuse attenuation coefficient K;(A) is then
estimated from these optimal a¢(440) and C values, according to Part 2 of the updated semi-analytic
bathymetric model (Figure 8). The estimated K;(A) here is thus assumed to be known and is input
into Part 1 of the model to complete the following steps of the proposed approach.

The effectiveness of the frame of the QAA approach has already been proved by Eugenio et al. [55],
so we only need to further argue that the estimated diffuse attenuation coefficient here is approximately
constant in the study area for each of the two experimental images.
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To prove this, several deep-water regions were first designated manually from the two
experimental images. Then, 100 pixels were randomly selected from the designated regions. The
diffuse attenuation coefficients corresponding to these pixels were finally estimated by using our
approach. The statistical analyses of these results are shown in Tables 2 and 3, as follows.

Table 2. Statistics of the Diffuse Attenuation Coefficients (WV-3).

Bands Coastal Blue Green Yellow Red RedEdge
Mean 0.0482 0.0529 0.0714 0.2776 0.4289 1.3665
Std. Deviation 0.00248 0.00201 0.00112 0.00091 0.00150 0.00073
Skewness 0.209 0.296 0.373 0.390 0.426 0.358
Kurtosis ! 0.006 0.669 0.069 —0.025 0.432 —0.265

! The Kurtosis has already been reduced by 3.

Table 3. Statistics of the Diffuse Attenuation Coefficients (ZY-3).

Bands Blue Green Red
Mean 0.0371 0.0677 0.4143
Std. Deviation 0.00947 0.00329 0.00265
Skewness —0.111 0.481 0.784
Kurtosis ! 0.446 —0.050 0.088

! The kurtosis has already been reduced by 3.

In Tables 2 and 3, the standard deviation of the diffuse attenuation coefficient is comparatively
small, as are the values of skewness and kurtosis. This means that the diffuse attenuation coefficients
estimated from most deep-water pixels are close to their means. In other words, the diffuse
attenuation coefficients obtained from both the WV-3 image and the ZY-3 image prove to be
approximately constants.

3.3.3. Initialize the Water Depths

The bottom irradiance reflectance p;(A) is usually expressed as follows [30,37,38]:

op(A) = Bon(A) (16)

where pn(A), which is usually assumed to be known in most bathymetric approaches, B is the spectral
shape of the reflectance normalized at the reference wavelength. For example, Lee et al. [30] and
Eugenio et al. [38] used a 550-nm-normalized sand-albedo shape, and Hu et al. [37] tried to derive
pn(A) from the spectral reflectance values of sand, algae, dark sediment, and their mixtures.
To estimate water depths using Part 1 of the updated semi-analytic bathymetric model (Figure 8),
we must also specify the shape of py(A) prior to running our bathymetric approach. Equation (3)
illustrates that if the water depth is close to zero, the subsurface remote sensing p will be approximately
equal to
Pp(A)
po(A) = =~
Therefore, we manually select several typical subsurface remote sensing reflectance shapes
located close to the transient coastline as references. We assign these subsurface remote sensing

(17)

reflectance shapes values of p(()i) AMN@E=12---, 1,), where n, is the number of selected reference
shapes. Considering that the water depths of the selected shapes are not actually equal to zero, we
parameterized the bottom irradiance reflectance shapes according to Equation (17), as follows:

p;(f) (A) = Brpy (M) (18)



Remote Sens. 2017, 9, 750 14 of 25

or ) )
o (1) = ) (A). (19)

Thereafter, in principle, we can estimate pixel-by-pixel water depths according to Part 1
of our updated semi-analytic bathymetric model (Figure 8) using the Levenberg-Marquardt
algorithm. However, the initialization of the water depth must be performed prior to applying
the Levenberg-Marquardt algorithm. In this study, the initial values of H and B are estimated using
the following steps:

(a) For each value of pl(\i]) nN@Ei=12---, 1,), change H from 0 m to 40 m using intervals of 0.5 m,
change B from 0.5 to 1.5 using intervals of 0.01, and calculate the subsurface remote sensing reflectance
pg)B (A) corresponding to every pair of H and B according to Part 1 of the model, as shown in Figure 8.

(b) For each value of i, build a K-D tree [57] based on the calculated subsurface remote
sensing reflectance p%)B(/\), and define this K-D tree as KdTree'!), where K-D tree is known as a
space-partitioning data structure for organizing points in a k-dimensional space, and it was useful for
us to efficiently search the closest reflectance of the observed one from these calculated ones pg)B (A)in
the following step.

(c) For each observed value of subsurface remote sensing reflectance p(A) (calculated by
Equation (9)), determine its closest corresponding reflectance value from Kd Tree!), define the result as

(i)

P18 _min(A), and define the corresponding square distance as D [p()\), pg)B_min(A)] .

(d) For each observed value of subsurface remote sensing reflectance p(A), determine the

minimum distance from the set of {Di ’ D;=D [p()\), pg)B_min()\)] JA=1,2,---,n, }, define the result

as D; min, and define the corresponding normalized reflectance spectral shape as py (=™ (7).

As a result, the value of pn(-™") (1) is selected as the normalized reflectance spectral shape
corresponds to the observed p(A). Furthermore, based on such normalized reflectance spectral shape,
the values of H and B corresponding to D; min are selected to initialize the Levenberg-Marquardt
algorithm. Finally, the result of the Levenberg—Marquardt algorithm is then used as the initialization
to perform the following global adjustment.

3.4. Global Adjustment of Water Depths

In contrast to most bathymetric methods, we further propose a global adjustment method to
refine the estimated water depths, for trying to smooth the water depths and improve the accuracies.

As mentioned in Section 3.1, the principle is based on the following two conditions: (a) most
water depths should be close to each other for any two adjacent pixels; and (b) if the pixel size is small,
most water depths of the pixels that are close to the transient coastline should be approximately zero.
The specific computational model is described as follows.

First, we define the water depth H and the parameter B of a given pixel i as H; and B;, respectively,
and define the corresponding normalized reflectance spectral shape (see Section 3.3.3) as py i(A). As a
result, Condition (a) can be described as follows:

Hi — H] — 0, (20)

where j represents one pixel that is adjacent to pixel i. In addition, if pixel i is located close to the
transient coastline, then Condition (b) can be described as follows:

H; — 0. (21)

Therefore, by considering Part 1 of the updated semi-analytic model (Figure 8) together with
Equations (20) and (21), we can construct the following objective function to refine the estimated
water depths:
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L(H;, Bi,i € 1) = Y (p0; — 0i) (poi — i) + Wa)_ Y, (Hi—H;)*+Wo . H} (22)
i€l icl jEN; i€Hy

where I represents the region of the image that is used to perform the bathymetric approach, N; is the
adjacent pixel set of i in region I, and Hy is the pixel set where the water depths are close to zero. In this
study, Hy consists of pixels that are located close to the transient coastline (at a distance of less than two
pixels); p,,; is the observed subsurface remote sensing reflectance vector calculated by Equation (9); and
p; is the subsurface remote sensing reflectance vector expressed by Equation (3), which is dependent
on the unknown parameters H; and B;. W and W are the weights of the corresponding items of the
objective function. Wy can usually be determined according to the observed local variations in the
water depths; if the actual variation in the water depth is large, then W, should be set to a relatively
small positive number. To avoid the over-smoothing of the water depths, we set W, to a small number
in these experiments, i.e., Wx = 0.001. Wy is used to constrain the water depths of the pixels around
the transient coastline to be as close to zero as possible; thus, in this study, Wy = 2.0.

The first item of the objective function causes the results to fit the radiative transfer Model (3) as
closely as possible. The second item is a smoothing item, which can reduce the influence of noise on the
final water depth results. When it is difficult to determine the pixels with water depths of approximately
zero, the third item of the objective function can be ignored in the global adjustment approach.

In principle, all values of the water depth H; and the parameter B; can be globally adjusted by
minimizing the proposed objective function. Specifically, we started at the values of water depth
H; and parameter B; that were estimated in Section 3.3.3 and employed the trust-region-reflective
method proposed by Coleman and Li [58,59] to optimize the objective function in this study.

Note that in case of some pixels that are close to the transient coastline but are not really zeroes in
depth, we should discard such pixels from Hy before performing the global adjustment.

4. Results

We have already applied the proposed bathymetric approach to the two experimental images
that were shown in Section 3.2.1. Accordingly, the results will be illustrated and discussed in the
following sections.

4.1. Visualization of the Water Depths

The estimated water depths before and after the global adjustment are shown in Figure 9 (ZY-3)
and Figure 10 (WV-3). To facilitate these comparisons, the water depths shown in Figure 10 have
already been corrected to refer to the tide level of the ZY-3 image.

Figure 9. The water depths estimated by the ZY-3 image: (Top) before the global adjustment; and
(Bottom) after the global adjustment.
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20 m
- 18 m
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Figure 10. The water depths estimated by the WV-3 image: (Top) before the global adjustment; and
(Bottom) after the global adjustment.

4.2. Evaluations of the Accuracies before and after the Global Adjustment

Since water depths at 45 points around the Weizhou Island have been measured during October
2015, the accuracy of the proposed bathymetric approach can be then evaluated by comparing the
estimated water depths with the measured ones. These comparisons are shown in Figure 11, and the
corresponding statistics are illustrated in Table 4.
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Figure 11. The comparisons between the estimated and measured water depths: (a) ZY-3; and (b) WV-3.

It should be note that although the gap between the time that the ZY-3 image was obtained and
the water depth measurements were acquired was approximately 40 days, the water bottom around
Weizhou Island changed little during this time due to the following three reasons: (a) no very strong
tropical storms passed through Weizhou Island during this time; (b) the island is piled up under the
water when Quaternary basalt magma gushed out, and now has a relatively stable structure [60]; and
(c) the distributions of the water depths estimated from the two images were seen to be similar to each
other, as is seen in the visualization of Section 4.1.
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Table 4. Statistics of the differences between the estimated and measured water depths 1 (Unit: m)

Satellite Before Global Adjustment After Global Adjustment
MAX MAE RMSE MAX MAE RMSE
ZY-3 2.587 0.97 1.22 2.265 0.81 1.01
WV-3 2.11 0.58 0.75 2.27 0.56 0.77

! Note: MAX represents the maximum value of the absolute errors between the estimated and measured water
depths, MAE represents the mean value of the absolute errors, and RMSE represents the root mean square error,
which is calculated using the following equation:

2
(i~ HY)

L=

RMSE = (23)

where H}" is the measured water depth and Hf is the water depth estimated using the proposed approach.

4.3. Comparisons between the Water Depths Estimated from the Two Different Images

In contrast to other works, we compared the differences between the water depths estimated
from the ZY-3 and the WV-3 images for further testing the performances of the proposed approach.
Specifically, we randomly selected 200 points from the two images and quantitatively compared the
results obtained from these two images. The results are shown in Figure 12. When the statistics are
further estimated, we find that the maximum value of the absolute errors (MAX) is 4.69 m, the mean
of the absolute errors (MAE) is 1.02 m, and the root mean square error (RMSE) is 1.24 m, where the
errors are calculated by using the differences between the water depths estimated from the ZY-3 and
the WV-3 images.
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Figure 12. The Comparisons between the water depths estimated from the ZY-3 and the WV-3 images.

5. Discussion

5.1. Discussion on the Visualization of the Water Depths

We can see from Figures 9 and 10 that the water depths are slightly smoother after the global
adjustment, especially for the ZY-3 image. To more carefully compare the water depths obtained before
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and after the global adjustment, we further examined an arbitrary transect of water depths shown in
Figure 13.

Water Depths (Unit: m)

—— WV-3, Before Global Adjustment
—— WV-3, After Global Adjustment
ZY-3, Before Global Adjustment
ZY-3, After Global Adjustment
T T T

| | |
1200 1400 1600

Distances (Unit: m)

Figure 13. The water depths along a transect of the two images: the dotted boxes mark some possible
large outliers of the water depths of the ZY-3 or the WV-3 image before the global adjustment; the dotted
circle marks the place where the local variations and the differences of the water depths estimated from
the two images become large.

When comparing only the water depths obtained before and after the global adjustment for the
ZY-3 image and the WV-3 image, the water depths along the transect are smoother after performing
the global adjustment, as shown in Figure 13.

Note that the ZY-3 image has a lower SNR, and this may be the reason why the smoothing effect
of the ZY-3 image was more significant than the WV-3 image.

On the other hand, the following aspects are also illustrated in Figure 13: (a) when the water
depths are less than 5 m, the water depths estimated from the WV-3 image are slightly greater than
those estimated from the ZY-3 image, although most of these differences are less than approximately
1 m; (b) when the water depths range from 5 m to 10 m, the water depths obtained from the two
different images agree well with each other; and (c) when the water depths are more than 10 m, the
differences between the two images may reach up to 2 m (see the dotted circle in Figure 13).

When the water depths are lower than 5 m (i.e., about 2 m without tide corrections), the proposed
approach may be more susceptible to the errors of the spectral shape of the selected bottom reflectance.
This is regarded as the reason why the differences between the water depths estimated from the
two images become slighter and slighter as the water depths increase until about 10 m, as shown in
Figure 13.

As can also be seen in Figure 13, before the global adjustment, the local variations in water depth
increase with increasing water depth. This is due to the decreases in the ratio between the radiations
reflected by the water bottom and those coming from the water column. Thus, the influences of the
noise become increasingly significant, so that the local variations of water depths become large, as do
the differences between the water depths estimated from the two images as seen in the dotted circle of
Figure 13.

Besides, we note that the ZY-3 and the WV-3 images are acquired at 11:23 a.m., 24 August 2015,
with the sun zenith angle of 22.1°, and 11:37 a.m., 1 October 2015, with the sun zenith angle of 27.6°,
respectively. Hence, the WV-3 image may correspond to a weaker direct solar radiation intensity than
the ZY-3 image. This can also cause the local variations of the water depths estimated from the WV-3



Remote Sens. 2017, 9, 750 19 of 25

image being greater than the ZY-3 image at the places where the water depths are deeper than 10 m, as
shown in the dotted circle of Figure 13.

5.2. Discussion on the Accuracy Assessment of the Estimated Water Depths

Except for the visualization results, we focus more on the quantitative statistics of the differences
between the estimated and measured water depths.

As shown in Figure 11, the water depths estimated for the ZY-3 image appear to be closer to
the measured depths after undergoing the global adjustment sub-approach, but this trend is not
remarkable for the WV-3 image. This phenomenon is further confirmed by the statistics shown in
Table 4: the MAE and RMSE changed from 0.97 m and 1.22 m before the global adjustment to 0.81 m
and 1.01 m after undergoing the global adjustment for the ZY-3 image, while from 0.58 m and 0.75 m
to 0.56 m and 0.77 m for the WV-3 image.

When Figure 13 was further reviewed, we can clearly find that the proposed global adjustment
sub-approach is able to adjust some possible large outliers to the relatively reasonable values, as shown
in the dotted boxes of Figure 13. At the same time, we also find that if the variation of the adjacent
water depths is not remarkable, the global adjustment sub-approach can hardly influence the final
water depth estimation. Accordingly, we speculate that the reasons for the mentioned phenomenon
may include the following aspects:

(@) The SNR of the ZY-3 image is lower than that of the WV-3 image; therefore, the influences of
noise were more serious for ZY-3 than for WV-3.

(b) The band number of the ZY-3 image is considerably less than that of the WV-3 image; thus, the
bathymetry of the ZY-3 image is much more sensitive to noise than that of the WV-3.

(c) The smoothing item of the objective function (see Equation (22)) works well when the noises
are sensitive or the influences of the noises are serious.

These factors indicate that the global adjustment sub-approach can not only improve the accuracy
when the influences of the noises are remarkable, but can also avoid the over-smoothing of the water
depths when the results are not sensitive to the noises. This is what common smoothing filters are
difficult to realize.

On the other hand, if we focus only on the statistics after the global adjustment as shown in Table 4,
we note that the proposed approach have exceeded those of Hu et al. [37] and Eugenio et al. [38] on
RMSEs, as shown in Table 5. Although these RMSEs are calculated by using different images with
different resolutions, we are more inclined to believe that they are comparable to each other. The reason
is that we can see from Table 5 that Hu et al. [37] obtained better RMSEs (1.1 m and 1.6 m) with 30 m
resolution of Landsat ETM+ images than those of Eugenio et al. [38] (1.20 m and 1.94 m) with 2.0 m
resolution of WV-2 images, while the bathymetric model used by Hu et al. [37] (see Equation (2)) can
be seen as a simplification or an approximation of the one used by Eugenio et al. [38] (see Equation (3)).
Actually, we used a ZY-3 multispectral image with a resolution of 5.8 m and a WV-3 multispectral
image with a resolution of 1.24 m in the experiments, and obtained the RMSEs of 1.01 m and 0.77 m
respectively, which were less than those of Hu et al. [37] and Eugenio et al. [38].

Table 5. Comparisons of the RMSEs obtained using different methods.

Author/Method Location Data RMSE (Unit: m)
Pratas Atoll Landsat ETM+ 1.6
Huetal. (2014) North Danger Reefs Landsat ETM+ 11
Eugenio et al. (2015) Granadilla area of Tenerife Island WV-2 1.20
& ’ Corralejo area of Fuerteventura Island WV-2 1.94
Weizhou Island ZY-3 1.01

Our Approach Weizhou Island WV-3 0.77
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When we further compare the proposed approach with those of Hu et al. [37] and
Eugenio et al. [38], we can see that the proposed approach is not only better than other methods
on accuracies as mentioned previously, but also has the following advantages:

(a) This approach can extract water depths directly from the multispectral image itself and does
not require the use of extra MODIS data, water depth data, or water column data, except for the
evaluation of its results;

(b) This approach has fewer variables than many other current methods, which means that it can
be used to analyze most current multispectral satellite images, even some images that contain only
2-3 visible wavebands.

Note that the proposed approach reduced the unknown variables through parameterizing the
radiative transfer model using only two unknown parameters (see Section 3.3.1) instead of six of
Eugenio et al. [38] (see Equation (3) in Section 2). This seems to increase the model errors for the
proposed approach, and may lead to the statistics of the differences between the estimated and
measured water depths becoming worse, but this is not true as shown in Tables 4 and 5. Hence, we
believe that the parameterization is reasonable without causing significant model errors in this study.

In addition, Figure 12 further demonstrates that these comparisons between the water depths
estimated from the ZY-3 and the WV-3 images are similar to the results derived from the transect
shown in Figure 13; the results of statistical analysis indicate that the value of the root mean square
error is 1.24 m (see Section 4.3).

In fact, we can also estimate the RMSE of the differences between the water depths estimated
from the ZY-3 and WV-3 images according to the results shown in Table 4 as follows:

RMSEgf = \/RMSE§Y_3 + RMSEZ,, 5 = V/1.012 + 0.772 = 1.27(m). (24)

Such value is relatively small and very close to 1.24 m. This indicates that the water depths
estimated from the ZY-3 and WV-3 images are consistent to each other, and then is able to further
enhance our confidence in the effectiveness and the accuracies of the proposed approach.

5.3. Discussion on Supplementary Notes and Future Work

We note that the global adjustment sub-approach depends slightly on the assumption that most
water depths should be similar to each other between one pixel and its adjacent pixels. This may
indicate that this method involves an implicit assumption that the detected sea floor elevations are
continuous and vary gradually. Thus, when the sea floor is not sufficiently continuous, this refinement
may become inaccurate or may even fail. Fortunately, when the weight of the smooth item (the
second item of the objective function, Equation (22)) is set as a small value (W, = 0.001), we find
that the smooth item mainly works when the noises are sensitive or their influences are serious, as
discussed in Section 5.2. In other words, when the noises of the images are significantly sensitive or
the influences of the noises are serious, the global adjustment approach works well on improving the
water depth results, otherwise the global adjustment approach is able to avoid the over-smoothing of
the water depths.

As a result, we believe that the proposed global adjustment sub-approach can be applied to
estimate the water depth of many types of sea floors. Specifically, the proposed approach has great
potential for the marine surveying and mapping of large, remote, or dangerous areas in the future,
particularly for further research on the bathymetries of typical coral reefs.

Thus, more different images and regions are needed to further test and improve this approach in
our next works. Moreover, we also plan to improve this approach by further considering the variations
in the properties of the water column between shallow and deep waters in future studies that may
introduce the global adjustment sub-approach to smooth the water-column properties.
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6. Conclusions

In this paper, a QAA method is firstly explored to estimate the diffuse attenuation coefficients,
and then the parameterization of bathymetric model is further simplified. Based on these two aspects,
we have developed a QAA approach that includes sub-approaches of initialization and a novel
global adjustment to estimate the water depths around Weizhou Island from multispectral images.
One advantage is that the approach is able to reduce the number of unknowns and is independent
of auxiliary datasets. Another advantage is that the global adjustment sub-approach can not only
smooth the final water depths and improve the accuracies, but can also avoid the over-smoothing of
water depths. Experimental results have finally illustrated that the water depths estimated from the
ZY-3 and WV-3 images are approximately consistent to each other, and yield EMSEs of 1.01 m and
0.77 m, respectively. Therefore, the proposed approach is thought to be competitive to other QAA
bathymetric methods.
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Appendix A. The Relationship between Backscattering Coefficients and Wavelengths

As illustrated in Figure 3, when Model (3) is used, the backscattering coefficients by, p (A) of particles
are parameterized, using by, (400) and Y, as follows:

Y
by (1) = by (400) (420> . (A1)

If we set A = Ag in Equation (A1), we obtain

Y
byy(Ao) = by, (400) (“ff) ; (A2)
hence, y
bp(A) = by (o) (AAO) . (A3)

Lee et al. [29] noted that most Hydrolight simulations used a phase function with a by, /b, ratio of
1.9%, but they made use of another more highly backscattering phase function (with a by, /b, ratio of
3.7%) in their simulation. Here, we followed the methodology of Lee et al. [29] and assumed that the
by / by ratio is independent of A in this study. As a result, Equation (A3) can be rewritten as follows:

Y
(0 = bho) () (A0)

where by, represents the backscattering coefficient for the particles.

It should be noted that the parameter Y is sometimes considered an unknown in some studies,
e.g., Eugenio et al. [38]. However, in other studies, Y is set as a constant. For example, when
Eugenio et al. [55] estimated the IOPs using QAA, Y was set to Y = 3. In this study, we decided to set
Y to a constant to reduce the number of unknowns in the model. Its value is derived as follows.
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If A is near Ag, then Equation (A4) can be approximated by using the first-order Taylor’s expansion,
as follows:

by(A) = by(Ag) (1 4 A ;OA°> N ~ by(Ao) (1 2 ;OA(J) = by(Ao) (1 +Y - Z)/\) (A5)

According to the discussions of Voss [61] and Loisel and Morel [62], when A ranges between
440 nm and 670 nm, then b, (A) can also be parameterized by

bp(A) = bp(490)(1.563 — 1.149 x 1073A). (A6)
If we set A = Ag in Equation (A6), we obtain
by(Ao) = bp(490)(1.563 — 1.149 x 1073A0); (A7)

thus,
1.563 — 1.149 x 10731

bp(A) = bp(Mo) 15— 749 10-37g" (A8)
When Equation (A5) is compared to Equation (A8), it can be found that if
-3
v 1.149 x 10731 (49)

T 1.563 — 1.149 x 10 37,

then the right sides of Equations (A5) and (A8) will become equal. In other words, Equation (A8) can
be seen as an approximation of Equation (A5).
If we set Ag = 550 nm, then Y = 0.67875, and according to Equation (A4),

550 0.67875
) . (A10)

bup () = by (550) (5

Appendix B. The Relationship between the Backscattering Coefficient for Particles at 550 nm and
the Chlorophyll-a Concentration

As seen in the studies of Voss [61], Lee et al. [29,30], and Morel and Maritorena [63], among others,
for a certain wavelength A, the corresponding scattering coefficient for particles by,(Ag) can usually be
parameterized using the chlorophyll-a concentration C. For example, for Aj = 550 nm,

by (550) = 0.3C%62, (A11)

As mentioned in Appendix A, we followed the method of Lee et al. [29] and assumed that the
by / by ratio is 3.7%, which is independent of the wavelength. Therefore, the backscattering coefficient
for the particles can be expressed as follows:

bpy(550) = 0.3C% x 3.7% = 0.0111C"%2. (A12)
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