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Abstract: Spatial prediction of precipitation with high resolution is a challenging task in regions with
strong climate variability and scarce monitoring. For this purpose, the quasi-continuous supply of
information from satellite imagery is commonly used to complement in situ data. However, satellite
images of precipitation are available at coarse resolutions, and require adequate methods for spatial
downscaling and calibration. The objective of this paper is to introduce and evaluate a 2-step spatial
downscaling approach for monthly precipitation applied to TRMM 3B43 (from 0.25◦ ≈ 27 km to 5
km resolution), resulting in 5 downscaled products for the period 01-2001/12-2011. The methodology
was evaluated in 3 contrasting climatic regions of Ecuador. In step 1, bilinear resampling was applied
over TRMM, and used as a reference product. The second step introduces further variability, and
consists of four alternative gauge-satellite merging methods: (1) regression with in situ stations,
(2) regression kriging with in situ stations, (3) regression with in situ stations and auxiliary variables,
and (4) regression kriging with in situ stations and auxiliary variables. The first 2 methods only use
the resampled TRMM data set as an independent variable. The last 2 methods enrich these models
with auxiliary environmental factors, incorporating atmospheric and land variables. The results
showed that no product outperforms the others in every region. In general, the methods with residual
kriging correction outperformed the regression models. Regression kriging with situ data provided
the best representation in the Coast, while regression kriging with in situ and auxiliary data generated
the best results in the Andes. In the Amazon, no product outperformed the resampled TRMM
images, probably due to the low density of in situ stations. These results are relevant to enhance
satellite precipitation, depending on the availability of in situ data, auxiliary satellite variables and
the particularities of the climatic regions.

Keywords: precipitation; TRMM 3B43 V7; spatial downscaling; gauge-satellite merging; auxiliary
satellite variables

1. Introduction

Understanding and quantifying the spatiotemporal patterns of precipitation is a subject of great
interest in most hydrological and environmental process studies [1]. For this purpose, it is vital to
possess accurate precipitation data at appropriate spatiotemporal scales. Precipitation estimates are
currently obtained from 2 main sources: rain gauges (in situ data) and satellite imagery (remote
sensing data). Obtaining reliable data at high spatial resolutions remains challenging, particularly in
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regions with strong precipitation variability and sparse monitoring [2]. Mountainous environments
are particularly inconvenient for the spatial interpolation of precipitation [3]. Significant gradients are
often present and are the result of orographic and climatic effects, making it difficult to capture spatial
variability [4]. In addition, classical spatial interpolation methods are usually inadequate in areas with
an insufficiently dense monitoring network. This is a common issue in areas with complex topography
and in developing countries [5].

Considering such difficulties, this study is conducted across the continental area of Ecuador.
Despite the fact that the Intertropical Convergence Zone (ITCZ) affects its climate, there are three main
climatic regions in Ecuador. The Pacific coastal plains present one rainy season from December to
April. The climate in this region is strongly influenced by the Pacific Ocean Sea Surface Temperature,
especially from the region Niño 1+2. The main source of interannual variability is El Niño Southern
Oscillation (ENSO), producing above/below normal precipitation during El Niño/La Niña periods.
At intraannual scales, the South Eastern Pacific Anticyclone inhibits precipitation during October and
November. The Andean Mountains display two rainy seasons, February-May and October-November,
which is mainly driven by the ITCZ. ENSO influence in the Andes is limited due to high elevations
of the cordillera, for instance [6], argues that ENSO influence at an annual scale in Ecuador affects
regions below 1200 m a.s.l. In the Amazon rainforest, a third peak is added to the bimodal signal
during July; thus, rainfall in this region is consistently present throughout the year. The effect of ENSO
in the Amazon is opposite to the coastal plains; however, during very strong El Niño periods, above
normal precipitation is expected.

Individually, both ground measurements and satellite imagery present significant drawbacks for
the accurate estimation of precipitation. The commonly used tipping bucket gauges are challenged
by random errors induced by loss of water during high intensities, evaporation, and wind [7].
Additionally, point estimations do not accurately reflect spatial variability because they are not a
true representation of the areal precipitation [2]. Thus, in situ data is considered weak when applied to
hydrological models [8]. Studies have shown that model outcomes are influenced by spatial resolution,
and using rasterized continuous precipitation outperforms the use of in situ data [9]. Because classical
interpolation techniques fail in sparsely monitored regions, spatially continuous data from satellite
images provide an important alternative.

The Tropical Rainfall Measuring Mission (TRMM) 3B43 product provides continuous temporal
and spatial coverage at a resolution of 0.25◦ (≈27 km at the Equator). However, precipitation
is measured indirectly, resulting in errors related to lack of detection, false detection and bias.
Thus, validation with ground measurements is necessary [10]. As mentioned in [2], TRMM images have
shown different accuracy, depending on the region of interest and the validation methodology. It has
also been reported that the topography of the area imposes additional uncertainty in TRMM estimates,
especially when orographic effects play a significant role in rainfall patterns [11]. [12,13] quantified
inconsistencies between TRMM and in situ measurements in Thailand and Africa, respectively. In [14],
TRMM was evaluated in the Pacific-Andean region of Ecuador and Peru. It was shown that the satellite
data reflects the main seasonal features, and that the catchments of southern Ecuador and northern
Peru are quantitatively well estimated. In [15], the TRMM 3B43 V7 product was validated across
the 3 main geographic regions of Ecuador using 14 stations. It was found that seasonality is well
estimated by TRMM in the Coast and the Amazon, especially for light precipitation rates, and that the
overall TRMM performance decreases in the Andes. Despite these validation studies, monthly TRMM
precipitation still needs to be evaluated in the entire continental area of Ecuador with a higher number
of in situ stations. In addition, satellite-merging methods at a regional scale are required to deal with
the issues described above, and downscaling procedures over TRMM products are necessary to obtain
high resolution precipitation images.

A useful complement of precipitation estimates is the use of auxiliary or secondary variables,
which are usually available at finer resolutions than precipitation products. Several works explore the
relationship between rainfall and potential auxiliary variables. Precipitation has been shown to have a
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direct relationship with elevation, mainly due to orographic effects [16,17]. In [18], high correlation
was found between the Normalized Vegetation Index (NDVI) and precipitation at a global scale.
In a zone with a strong precipitation gradient, [19] revealed that the correlation between NDVI
and precipitation has spatiotemporal variability. Furthermore, several works study the dynamics
of atmospheric variables and their relationship with precipitation. In [20], Advanced Very High
Resolution Radiometer (NOAA-AVHRR) images were used to analyze cloud top height, liquid water
path and cloud frequency in Ecuador. The study revealed a strong correlation between cloudiness
and rainy seasons. The same variables from the NOAA data set, as well as reanalysis data, were used
in [21] to study the spatiotemporal patterns of rainfall in the Paute river basin of the Andes in Ecuador.
Models based on the auxiliary variables and principal component analysis were applied to reveal the
spatial extensions of different precipitation regimes.

The relationship between auxiliary variables and rainfall has been exploited for the continuous
mapping of precipitation through geographic information system (GIS) techniques. For instance,
a geostatistical method with the inclusion of topographic variables was applied in [22]. In [23],
a regression model including a cloudiness factor, solar radiation, and topographic features was used.

Additionally, auxiliary variables have been applied to downscale satellite-born products,
particulary TRMM, from 0.25◦ to 1 km. In [9], NDVI was used for downscaling TRMM in the
Iberian Peninsula at an annual time scale by defining the relationship with precipitation at an
optimum spatial scale. In [24], the method was improved in the Qaidam Basin of China by including
a Digital Elevation Model (DEM) in multiple regression models at different spatial resolutions.
NDVI and DEM were used in North China in [25], where geographically weighted regressions
(GWR) outperformed multiple linear regressions. The same independent variables were applied
in [26] for annual precipitation in mainland China, where the Random Forest regression furnished
promising results for large areas, outperforming the multiple linear regression and exponential models.
This machine learning approach was further developed in [27,28] for the Tibetan Plateau. The
former applied post-calibration using ground measurements, while the latter incorporated land
surface temperature. These studies provide fruitful insights for downscaling procedures using
auxiliary variables. Nevertheless, most works have approached TRMM downscaling at an annual
time scale and have generally used elevation and vegetation indices, without exploring potential
atmospheric auxiliary variables. In addition, TRMM 3B43 V7 has not been downscaled across the
study area covered in this work.

Complementary calibration of TRMM products with in situ data (gauge-satellite merging) is
often applied to improve precipitation maps. In [2], regression analysis and geographical differential
analysis were carried out. Regression analysis was also performed in [29]. In [30], TRMM bias was
corrected over the mountainous regions of Peru. Geostatistical techniques were analyzed in [31] to
map annual rainfall in Colombia, where kriging with external drift produced the best results. Within
the study area covered in this work, [1] used TRMM images, NDVI and DEM to map precipitation
at a resolution of 1 km and a weekly time scale for the Tungurahua province in Ecuador. The
results revealed that the performance of the method is related to the density of the station network.
Furthermore, NDVI was used as an auxiliary variable in [32], where a very large area of almost
4 countries (Colombia, Ecuador, Brazil and Peru) was covered, where TRMM was merged with 273
in situ stations. However, climatological maps were generated, making it still necessary to treat time
series at finer temporal scales over the study area.

In the aforementioned works, fruitful results have been obtained for validation, calibration,
or downscaling of TRMM products. However, it is still necessary to evaluate the performance of
monthly precipitation maps across extensive climatic regions with sparse in situ monitoring and
explore potential enhancements in terms of both spatial resolution and calibration. Thus, the objective
of this paper is to explore a 2-step downscaling approach of monthly TRMM in the continental area
of Ecuador. Rather than relying on standard downscaling techniques, in this approach, the first step
provides resolution enhancement of the TRMM 3B43 V7 data set by a simple method, namely bilinear
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resampling. This step generates a smooth interpolated surface and adds no additional information
to TRMM 3B43 V7. Then, using the resampled TRMM images as input variables, the second step
introduces further spatial variation by means of gauge-satellite merging techniques and the inclusion
of fine-scale auxiliary atmospheric and land variables. The final monthly estimations are obtained at a
5 km resolution during the period 2001–2011. The proposed methodology was evaluated specifically
on each climatological region of Ecuador, which offers a privileged natural laboratory due to the strong
climate variability across relatively short distances.

2. Study Area and Data

2.1. Study Area

This research covers the continental territory of Ecuador (South America, 250,000 km2), which
consists of 3 main geographic regions: the coastal plains (Coast), the Andes (along with the interandean
valleys) and the Amazon rainforest. The climate of Ecuador is influenced by a variety of factors.
From east to west, a strong precipitation gradient crosses the three geographic regions. This is mainly
the result of orographic effects induced by the Andean Cordillera, which runs from north to south and
acts as a climate barrier [33]. Additionally, several climatic effects are present, which vary from region
to region. As a result, precipitation has a strong spatiotemporal variability. As detailed in [21], in the
coastal plains, west of the cordillera, precipitation is influenced by the region Nino 1+2 and by the
Intertropical Convergence Zone (ITCZ), which result in a rainy season from December to April. In the
interandean valleys, a bimodal regime is present, with a dry period from June to September. In the
Amazon, east of the Andes, the ITCZ and moist air from the Amazon basin modulate a year-round
rainfall pattern, although a bimodal regime is also present, with two rainy periods during March-April
and October-November.

Despite the complex climate, Ecuador is a sparsely monitored region, particularly in the Amazon
rainforest. In order to account for the different climate zones and the difference in network densities in
each zone, the validation results were interpreted independently in the 3 climatic regions, where a
1000 m a.s.l. contour line was used for delimitation.

2.2. In Situ Data and Satellite Imagery

A monthly data set of rainfall stations from the Ecuadorian National Institute of Meteorology
and Hydrology (INAMHI) was used, covering a time period from January 2001 to December 2011.
To avoid discarding valuable stations, a maximum of 12% of monthly gaps was considered per station,
which results in a selection of 117 stations for the study. Figure 1 shows a digital elevation map of the
delimited study area and the distribution of monitoring stations, where the sparseness of the network
is evident.

The satellite-based data used in this study comes from three sources: the Tropical Rainfall
Measuring Mission (TRMM), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the
NOAA/OAR/ESRL Physical Sciences Division (PSD). For the images whose native resolution is
originally in equal-degree grids, resampling to equal-area grids at a resolution of 5 km was applied to
match the desired output resolution.

TRMM, which is a joint space mission between NASA and the Japan Aerospace Exploration
Agency (JAXA), provides precipitation images at finer spatial resolutions than other satellite-based
rainfall estimates. Among its products, the TRMM 3B43 V7 collection is used in this study, which
consists of 0.25◦ (≈27 km at the Equator) resolution monthly images for the region between
50◦S and 50◦N. This data is produced by the TRMM Multi-satellite Precipitation Analysis (TMPA),
combining precipitation estimates from various sensors with rain gauge measurements to correct bias.
For details on this data, the reader is referred to [34]. In this study, the original TRMM images are
resampled to 5 km using bilinear resampling. The resulting data set is used directly as the first mapping
alternative, and as an independent variable in the other methods.
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Figure 1. Digital Elevation Map (DEM) of the delimited study area and rain gauge stations network.

The MODIS sensor, aboard the TERRA and AQUA satellites, covers the entire Earth’s surface
every 1 to 2 days. Data is acquired in 36 spectral bands, providing atmospheric, land, and ocean
images, and can be obtained in Level-2 (swath) and Level-3 (global gridded statistic) products. These
are available in Hierarchical Data Format (HDF) files containing several data sets. From the MODIS
TERRA Collection 006, the following products are used:

• The Level-2 MOD06 from the atmosphere products, which contains several cloud properties at
1 km and 5 km resolutions. For details on MODIS cloud products, the reader is referred to [35].
Swath products cover the study area at different times throughout the day, thus, monthly average
images are generated at 5 km resolution for cloud top temperature and cloud fraction (hereafter
CTT and CF, respectively).

• The Level-3 MOD13C2 from the land products, which provides global monthly NDVI values
at 0.05◦ (≈5.6 km) resolution in a Climate Modeling Grid (CMG). For details on this product,
see [36]. 5 km monthly NDVI images are obtained via bilinear resampling for the study area
(hereafter simply referred to as NDVI).

The CPC Soil Moisture collection provided by the NOAA/OAR/ESRL PSD contains monthly
averaged soil moisture images, which consist of global model-calculated water height equivalents at
a spatial resolution of 0.5◦ (≈55 km). Bilinear resampling is applied to obtain monthly soil moisture
images for Ecuador at a 5 km resolution (hereafter SM). Ideally, soil moisture data with a finer scale
should be considered; however, no other collection is available to the knowledge of the authors for the
region and time period of study. Additionally, bilinear resampling of this data and its incorporation
into the models improves the cross-validated results.
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3. Two-Step Downscaling Approach

The outcome of this work is a data set of 5 km monthly precipitation maps for an 11 year period
between 2001 and 2011 due to data availability. Five products at a 5 km spatial resolution result from
the 2-step downscaling approach:

Step 1

• PT5: resampled TRMM images (reference product). Due to its simplicity, bilinear interpolation
is applied.

Step 2

• PRT : a regression model with in situ data using PT5 as the independent variable.
• PRKT : a regression kriging model with in situ data and PT5 as the independent variable.
• PRTC: a multivariate regression model with in situ data using PT5 and auxiliary variables.
• PRKTC: a multivariate regression kriging model using PT5 and auxiliary variables.

The PT5 product resulting from step 1 is used as a benchmark to explore potential enhancements
of the 4 methods from step 2, which merge in situ data with the resampled TRMM images. For the
multivariate models, atmospheric and land auxiliary variables are selected for each month based on
correlation and multicollinearity. Given that step 1 only interpolates the rainfall surface, the purpose
of step 2 is to introduce spatial variation that is not accounted for by TRMM 3B43. Note that,
in step 2, although PT5 is an independent variable, it is not considered an auxiliary variable for
nomenclature purposes. The term auxiliary variables only refers to the atmospheric and land variables
used in the multivariate methods.

The processing of satellite images, which includes reformatting, subsetting, reprojecting and
resampling, was performed using both the HDF-EOS To GeoTIFF Conversion Tool (HEG) and R
programming language. The implementation of the different methods and the corresponding analyses
were entirely conducted in R programming language. In Figure 2, the work flow of the overall
procedure is presented.

AUXILIARY
VARIABLES

TRMM 
3B43

IN SITU 
DATA

+

PRT PRTC PRKT PRKTC

STEP 2

REGRESSION REGRESSION KRIGING

BILINEAR
RESAMPLING

PT5

STEP 1

IMAGE PROCESSING

IMAGE PROCESSING

Figure 2. Work flow of the overall downscaling procedure and the 5 resulting products.
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3.1. Step 1: Image Resampling

In order to generate the 5 km output resolution, four-point bilinear resampling is applied to
TRMM 3B43 (originally 0.25◦) as a first step, from where PT5 stems out and is used as a reference
product. This interpolation technique is the simplest method that provides a smooth interpolated
precipitation surface, which is calibrated in step 2 with in situ data and auxiliary variables.

In addition to constituting step 1 of the downscaling procedure, bilinear resampling is also applied
to 2 auxiliary variables: NDVI and soil moisture (originally 0.05◦ and 0.5◦, respectively).

3.2. Step 2: Gauge-Satellite Merging

3.2.1. Underlying Model Assumptions

For step 2, precipitation P is assumed as the response of a function of k independent variables
vj (which, in this context, include PT5 and the auxiliary variables). Given that P ∈ [0, ∞), and
following [21], an exponential model is adopted. Assuming additive decomposition and neglecting
interaction effects,

ln(P) = f (v1, v2, ..., vk) =
k

∑
j=1

f j(vj) + ε,

where ε is a random error term. The simplest function that can be assumed is a linear model of the form
ln(P) = α0 + ∑k

j=1 αjvj + ε, where αj are constant coefficients. However, preliminary results showed
that a model of this form results in significant overestimation of certain observations, generating
large residuals. Therefore, the following model is adopted:

ln(P) = α0 +
k

∑
j=1

αj ln(vj) + ε, (1)

which can also be expressed as

P = eα0 eε
k

∏
j=1

v
αj
j . (2)

3.2.2. Regressions

The parameters of Equation (1) are obtained by linear regression analysis, resulting in an
intrinsically-linear non-linear model (i.e., linear in the parameters and non-linear in the variables).
Individual regressions are performed for each month using n observation points (in this case,
117 stations). Further assumptions must be made, namely, that the secondary variables are independent
and that the errors are normally and independently distributed with mean 0 and constant variance.
Considering, for the month m, k independent variables and n observations (vmij, Pmi), with (i, j) ∈ Z,
(1 ≤ i ≤ n, 1 ≤ j ≤ k), Equation (1) relates the observations as

ln(Pmi) = αm0 +
k

∑
j=1

αmj ln(vmij) + εmi. (3)

In matrix form, α̂m is an estimator of the real coefficient vector αm and is found by applying
least squares:

α̂m = (Vm
′Vm)−1Vm

′Pm,

where Vm is the matrix of the natural logarithm of the n observations of k independent variables and
Pm is the vector of the natural logarithm of the n measured precipitation values. The precipitation
estimates for the regression models P̂R

m at any location (x, y) are then given by

P̂R
m(x, y) = exp

(
α̂m0 +

k

∑
j=1

α̂mj
(

ln(vmj(x, y)
))

. (4)
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The model given by Equation (4) is applied in step 2 in 2 methods: using PT5 as the only predictor
(PRT) and using PT5 and a selection of auxiliary variables from CTT, CF, NDVI and SM as multiple
predictors (PRTC). Topographical effects are not considered because no correlation was found in
preliminary analyses with precipitation, which is probably due to adopted time scale and the extent of
the study area, as well as the contrasting climate in the 3 regions. In addition, latitude and longitude
are not considered because they are correlated with the adopted auxiliary variables.

3.2.3. Regression Kriging

The regression kriging models are divided into a deterministic and a stochastic component,
given by the regression model and the error term, respectively. The regression models detailed in the
previous section are applied to estimate the first two terms of the underlying model in Equation (1),
which correspond to the deterministic part. By applying regression kriging, the random error term
is also taken into account (for details on this method, see [37]). The residuals are interpolated using
ordinary kriging, where the error value εm at an unsampled location (x, y) is given by

εm(x, y) =
n

∑
i=1

λmi(x, y)εmi, (5)

where λmi(x, y) are the kriging coefficients at the unsampled location and εmi = Pmi − P̂R
mi are the

residuals at the measured locations. Joining the deterministic part given by Equation (4) and the
stochastic component given by Equation (5), the precipitation estimates for the regression kriging
model P̂RK

m at any location (x, y) are

P̂RK
m (x, y) = exp

(
α̂m0 +

k

∑
j=1

α̂mj ln
(
vmj(x, y)

)
+

n

∑
i=1

λmi(x, y)εmi

)
= P̂R

m(x, y) + εm(x, y)

(6)

This model is also applied in step 2 using PT5 as the only predictor (PRKT) and for the multivariate
case with PT5 and the selection of auxiliary as multiple predictors (PRKTC).

3.2.4. Auxiliary Variable Selection

The predictors vj used in the previous section consist of PT5 and a selection of auxiliary
variables from CTT, CF, NDVI and SM. Two selection criteria are applied for each month. First,
the auxiliary variables that meet a threshold correlation coefficient with the observed precipitation
values are pre-selected. In case two or more variables meet the first criterion, variable redundancy is
avoided by removing variables that result in multicollinearity. For this purpose, the variance inflation
factor (VIF) is calculated for each variable as

VIFj =
1

1− R2
j

where R2
j is the multiple R2 for the regression of predictor j on the other auxiliary variables.

In this work, by trial and error, threshold values are set to 0.3 and 5 for the correlation coefficient and
VIF, respectively.

3.3. Validation

In order to cross-validate the results, the methods from step 2 were developed in a leave-one-out
scheme. The maps resulting from PT5, which purely contain TRMM information, are used as a reference
to explore the potential enhancements of step 2. Statistics are computed comparing the time series
of the 5 downscaled products with the in situ measured time series in each station. R2 values are
considered to test how each model captures seasonality. Also, the root-mean-square error (RMSE) and
percent bias (PBIAS) are used for validation, which are given for each station by
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PBIASi = 100 ∑N
m=1(P̂mi − Pmi)

∑N
m=1 Pmi

, RMSEi =

√√√√ 1
N

N

∑
m=1

(P̂mi − Pmi)2,

where P̂mi is the precipitation estimate and Pmi is the measured value for the mth month and the
ith station, and N is the total number of months. The criteria for enhancements are decreasing RMSE,
obtaining positive and lower PBIAS, and increasing R2 when compared to the reference map PT5.
The reason to pursue a positive PBIAS is based on a conservative approach in terms of cost-risk.
An overestimation of precipitation (i.e., false-positive flooding) would be less harmful to population
and production than an underestimation (i.e., false-negative flooding). Because of their robustness,
median and interquartile range (IQR) values of the statistics are chosen as measures of central tendency
and dispersion, respectively.

4. Results

4.1. Correlation With Auxiliary Variables

As described in the previous section, in order to ensure the inclusion of pertinent independent
variables in the multivariate methods, correlation with the observed data is verified for each
auxiliary variable. Given the strong spatiotemporal variability of precipitation in the study area,
variables were selected independently for each month. In Figure 3, the correlation values for each
auxiliary variable and in situ precipitation are summarized, where the temporal variability of each
relationship can be observed.

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

−1.0

−0.5

0.0

0.5

1.0

CTT

Months

R ●

●

●

●

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

−1.0

−0.5

0.0

0.5

1.0

CF

Months

R

●

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

−1.0

−0.5

0.0

0.5

1.0

NDVI

Months

R ●

●●

●
● ●

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

−1.0

−0.5

0.0

0.5

1.0

SM

Months

R

Figure 3. Correlation summary between each auxiliary variable and the observed precipitation data
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4.2. Spatiotemporal Precipitation Variability

The monthly maps resulting from the different methods present spatiotemporal variations.
An example of this is displayed in Figures 4 and 5, corresponding to a rainy month (April 2011)
and a dry month (August 2011), respectively (note that different color scales are used for both months
due to the high difference in precipitation values). The 5 downscaled products are shown for both
months, as well as the original TRMM 3B43 V7 images (hereafter PT0.25◦ ). It can be observed that
the overall spatial variability of PT0.25◦ is captured by the downscaled products. In the downscaled
maps, the rainy season in the 3 regions is reflected when comparing the maps from April with August;
particularly, the unimodal regime of the Coast is clearly displayed. However, among the products,
different patterns can be observed.

A considerably homogeneous spatial distribution of precipitation is shown for both months in
PT5, PRT and, to a lesser degree, in PRKT . This is an expected result, given that bilinear interpolation
was used to downscale the original TRMM images. It can be observed that more spatial variability
was captured by PRTC and PRKTC due to the inclusion of auxiliary variables, which, with the followed
validation, can be considered an important enhancement. For instance, the Andes presents a more
heterogeneous spatial distribution, which is a well-known characteristic of mountainous regions.
The accuracy of these spatial predictions is presented in the following section.

PT0.25° PT5 PRT

PRKT PRTC PRKTC

0 100 200 300 400 500 600 700 800 900

Figure 4. Monthly precipitation [mm] of April 2011 for the five products and the original TRMM data.
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PT0.25° PT5 PRT

PRKT PRTC PRKTC

0 50 100 150 200 250 300 350

Figure 5. Monthly precipitation [mm] August 2011 for the five products and the original TRMM data.

Both monthly maps of PT5 indicate that in the Amazon region, rainfall is consistent throughout
the year. However, in PRT and PRKT , August rainfall was significantly decreased across the region.
This effect was considerably reduced in PRTC and PRKTC, which indicates that auxiliary variables may
help to reduce the negative effect that the lack of in situ stations plays in the methods from step 2.
Unfortunately, the lack of monitoring also implies uncertainty in this result.

In April, compared to PT5, the 2-step products exhibit distinctive zones with higher precipitation
in the Amazon and in the Coast, especially when regression kriging was applied. Given that, in
the following section, it is shown that PT5 underestimates precipitation in the Coast, these results
suggest that regression kriging tends to adjust TRMM estimates in rainy months. On the other hand,
the August maps indicate that both methods that apply residual kriging correction were influenced by
outlier stations. This is evidenced by 2 particular regions with high precipitation in the Andes in the
August maps of PRKT and PRKTC, where in situ stations with high precipitation records are located.

4.3. Validation Over In Situ Data

4.3.1. Summary Statistics

A summary of RMSE, PBIAS and R2 values between in situ time series and the time series of the
5 products obtained in the corresponding stations are presented in this section. The statistical values
are presented in Table 1, where the statistics of PT0.25◦ have also been included. Other than a finer
grid, no information is added to the original TRMM images by means of bilinear resampling. Thus, as
expected, no significant differences are observed between PT0.25◦ and PT5 in terms of error. Therefore,
hereafter, comparisons are only made among the dowsncaled products.
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Table 1. Median and interquartile range (IQR) values of the statistics for the original TRMM images
and the five dowsncaled products in the three regions for the 132 months between 2001 and 2011.

RMSE PBIAS R2

Median IQR Median IQR Median IQR

Coast

PT0.25◦ 66.03 29.76 −14.6 35.9 0.85 0.19
PT5 61.99 32.45 −10.60 40.20 0.85 0.19

CV-PRT 61.31 46.20 −14.80 32.20 0.82 0.12
CV-PRKT 58.75 24.53 7.70 34.00 0.84 0.16
CV-PRTC 64.33 45.65 −8.70 40.00 0.83 0.16

CV-PRKTC 59.18 26.33 9.80 37.00 0.85 0.17

Andes

PT0.25◦ 58.66 25.38 22.75 84.15 0.57 0.34
PT5 56.96 22.45 22.35 89.70 0.56 0.35

CV-PRT 51.75 35.93 −10.00 57.90 0.63 0.31
CV-PRKT 46.58 26.37 9.85 58.23 0.58 0.23
CV-PRTC 49.04 35.02 −10.35 48.60 0.64 0.27

CV-PRKTC 44.92 25.26 5.20 44.53 0.61 0.23

Amazon

PT0.25◦ 70.53 41.05 2.10 17.20 0.40 0.37
PT5 80.85 50.61 −3.25 23.18 0.41 0.38

CV-PRT 125.27 87.19 −30.40 17.00 0.26 0.10
CV-PRKT 117.94 63.06 −1.55 28.70 0.27 0.14
CV-PRTC 113.23 70.97 −5.00 23.28 0.30 0.14

CV-PRKTC 96.93 61.67 5.55 31.80 0.33 0.16

Coast Region

In Figure 6a, the cross-validation results for the stations in the Coast are presented. In 3 out of 4
products, a reduction in median RMSE was observed with respect to PT5. The largest reduction was
obtained with PRKT (5%), followed by PRKTC (4%) and PRT (1%). Therefore, slight improvements were
observed by both methods that apply residual kriging correction, outperforming the regression models.
Furthermore, in the products resulting from these two methods, PT5 RMSE dispersion, particularly in
higher values, was reduced. The IQR decreased by 24% in PRKT and by 19% in PRKTC (refer to Table 1
when values are specified).

Regarding PBIAS, in 3 out of 4 products, a reduction in absolute median PBIAS was observed
when compared to PT5. However, only the regression kriging methods resulted in positive median
PBIAS. The smallest and positive PBIAS was produced by PRKT (7.7), followed by PRKTC (9.8).
With respect to PT5, the IQR values indicate that PBIAS dispersion was reduced by all 4 methods
from step 2, where PRKT produced the largest reduction (15%), followed by PRKTC (8%).
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Figure 6. Cont.
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Figure 6. Summary of statistical values: (a) Coast region; (b) Andes region; (c) Amazon region.

Previous works (e.g., [15]) have reported that, in the coastal plains, TRMM images appropriately
capture seasonality, which can be measured by R2 values. Therefore, it was expected to find no
improvement in time series correlations with respect to PT5. In all 5 cases, median R2 was higher
than 0.80, with the lowest value for PRT . In addition, relatively low IQR values result from the
5 products; thus, the results from the 2-step products were consistent with the expected seasonality
accuracy of TRMM in this region.

Andes Region

In Figure 6b, the cross-validation results for the stations in the Andes are presented. In all
4 products that incorporate step 2, an overall reduction in median RMSE was observed with respect to
PT5. The largest reduction was observed for PRKTC (21%), followed by PRKT (18%), PRTC (14%) and
PRT (9%). However, it should be noted that the IQR values show that RMSE dispersion was slightly
increased by all 2-step products with respect to PT5.

The PBIAS of PT5 indicates an important overestimation (median value of 22.35), which was
reduced by the methods from step 2. Nevertheless, negative median PBIAS was obtained by PRT
(−10.00) and PRTC (−10.35). The smallest and positive median PBIAS corresponds to PRKTC (5.20,
reducing PT5 PBIAS by 77%) followed by PRKT (9.85, reducing PT5 PBIAS by 56%). This can be
observed in Figure 6b, in which both products with residual kriging correction present small and
positive median PBIAS. Regarding the IQR, PT5 presents a value of 89.70, which was notably reduced
by the 2-step products. PRKTC presents the largest IQR reduction with respect to PT5 (by 50%).
According to these results, the largest improvement in terms of bias was observed when auxiliary
variables were included and residual kriging correction was applied. Therefore, the information



Remote Sens. 2017, 9, 758 14 of 23

provided by land and atmospheric variables played a mayor role in increasing the accuracy of PT5 in
this region.

The accuracy of the seasonality of PT5 in the Andes is significantly lower than in the Coast, which
is an expected result, given the complex topography of the region. For the 2-step products, median R2

values were higher than for PT5 (0.56). However, the improvement achieved was small, with the larger
improvement given by PRTC, with a median R2 of 0.64. In addition, IQR was most notably reduced
from 0.35 in PT5 to 0.23 in both PRKT and PRKTC.

Amazon Region

The Amazon region presents the largest RMSE of PT5 among the 3 regions (median value of 80.85
for PT5). The 2-step products increased RMSE with respect to PT5, where PRKTC produced the smallest
increase (20%). Similar to RMSE, PBIAS did not show a clear improvement. Although PRKTC was the
only product that achieved a positive median PBIAS, its absolute value (5.55) was larger than for PT5

(−3.25). PRKTC reported a negative PBIAS of −1.55, which reduced the value of the reference product.
In addition, R2 values decreased in all 4 products. These results indicate that the performance of the
resampled TRMM data set notably decreases in the Amazon, and no improvements are provided by
the methods from step 2. Nevertheless, it should be noted that these results are strongly influenced by
the low number of stations in the region.

4.3.2. Spatial Analysis

In the previous section, a summary of the validation over the stations was presented by summary
statistical values. In this section, the spatial distribution of the statistic values is described, and is
presented in Figures 7–9.
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Figure 7. RMSE of the five products over the station points.
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Figure 8. PBIAS of the five products over the station points.
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Coast Region

Figure 7 shows the RMSE values over the study region. In the Coast, all products exhibit a similar
RMSE distribution pattern. Lower values are observed in the central part of the Coast, while higher
values lie along the 1000 m a.s.l. eastern borderline, as well as the western coastal border. In the maps
from Figure 8, smaller and mainly negative PBIAS values are located in central Coast, while higher
and positive values are observed close to the western coastal border. Large negative values lie along the
1000 m a.s.l. borderline. Thus, precipitation was overestimated towards the west and underestimated
in regions close to the western slopes of the cordillera. In PRKT , it can be observed that several points
shift from negative to positive PBIAS, along with a decrease in absolute value. Finally, Figure 9, shows
that high R values are evenly distributed all over the Coast, with slightly lower values along the
eastern borderline.

Andes Region

In Figure 7, it can be observed that all products produced a similar RMSE distribution pattern
across the Andes. Larger values are present in distinctive regions in the north and in the south,
and smaller values lie along the interandean valleys, running from north to south through the central
Andes region. The maps show that, compared to PT5, RMSE is improved by the regression kriging
methods; however, the inclusion of auxiliary variables, even for the regression models, produced a
more consistent improvement throughout the region, particularly in the central Andes. The maps
from Figure 8 show larger PBIAS values towards the north, and smaller values in the center of
the interandean valleys, where a significant reduction can be observed for PRTC and PRKTC. Thus,
the products with auxiliary variables tend to reduce RMSE and PBIAS with a similar spatial pattern.
Finally, Figure 9 indicates that generally, the regression kriging methods tend to increase R2 values in
particular regions, and the products with auxiliary variables result in a more consistent correlation
improvement throughout the Andes. For the 5 products, high R2 values are present in the north and
the southwest of the region. On the other hand, lower values lie along the interandean valleys, where,
by contrast, better results were observed in terms of RMSE and PBIAS. Thus, it would be desirable to
improve the mapping methods to also increase these R2 values.

Amazon Region

The maps from Figures 7–9 show the sparse and uneven distribution of in situ stations in the
Amazon region. In PT5, the 5 stations close to the cordillera show large RMSE, moderate PBIAS and
low R2 values. The station located on the eastern border presents lower RMSE and higher R2 values,
indicating that the results of the region are highly influenced by the location of the majority of the
stations. These results are not improved by any of the methods that incorporate step 2.

5. Results Summary and Discussion

In this work, the validation results over 117 stations indicate that the performance of the resampled
TRMM 3B43 V7 data set and its potential improvements with 2-step downscaling vary among climatic
regions, and no single product outperforms the others in every region. The 2-step methodology is
somehow reminiscent of the methodology used in [38,39], although the application in these references
was different: downscaling of general circulation models’ results. The results obtained in those works
showed a significant skill in describing both climatology and anomalies.

Regarding spatiotemporal variability, the 5 products generally captured the different regimes of
the climatic regions. However, different patterns were observed. The downscaled maps show that
the inclusion of auxiliary variables in step 2 introduces spatial variation that was not captured by the
methods without auxiliary variables. This represents an important enhancement over PT5 throughout
the year, particularly in the Andes, where the complex topography imposes significant limitations for
TRMM accuracy. On the other hand, the methods that apply of residual kriging correction played
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an important role in adjusting predictions to observed values. However, it should be noted that
these methods might be significantly influenced by outlier stations. For instance, in a dry month
(e.g., August), distinctive regions of high precipitation can be observed in the neighborhood of stations
that present high precipitation throughout the year. Therefore, careful attention should be given to the
presence of outliers in the observed data when regression kriging is applied because large residuals
might spread across the neighborhood of outlier stations. These qualitative observations were analyzed
in this work by summary statistics and the spatial distribution interpretation.

In the Coast, PT5 has a wide error deviation and underestimates precipitation. This is consistent
with [32], where the climatological maps showed that western Ecuador is underestimated by TRMM.
This behavior was improved by the step 2 methods, where PRKT and PRKTC showed to be better
products than those which did not apply residual kriging correction, reducing both RMSE and PBIAS.
Additionally, they provided positive PBIAS, which may induce false-positive flooding risk events
that are less harmful than false-negative. Between both regression kriging products, PRKT yielded the
best results. Thus, residual kriging correction over PT5 performed better, and obtaining information
from auxiliary variables, as in PRKTC, which may be time-consuming, is not a worthwhile contribution
for spatial predictions in the Coast. On the other hand, the seasonal features of this region are
well-captured by PT5, as evidenced by consistently high R2 values. These results build upon the
findings of [15], where 14 stations were used for TRMM validation. Improvements over the reference
product in terms of seasonality in the Coast were not observed by any of the 4 methods that incorporate
step 2, yielding only similar performance.

The performance of PT5 in the Andes is considerably decreased, which is a well-known effect of
the complex topography of the region. An important overestimation of PT5 was found with respect
to ground measurements. This is consistent with previous findings. For instance, [40] reported that,
with respect to its predecessor (TRMM 3B43 V6), TRMM 3B43 V7 reduced negative bias, but resulted
in overestimation in the Andes. In this region, as opposed to the Coast, the effect of including auxiliary
variables is noteworthy. PRKTC outperformed the other products, showing that the use of auxiliary
variables combined with residual kriging correction plays a major role in generating downscaled
products with low RMSE and PBIAS in regions with complex topography. While the overall modest
correlation of PT5 was only slightly increased, errors were widely reduced. Regarding RMSE, along
the interandean valleys, the products with auxiliary variables generally outperformed the ones that
only use PT5. In addition, the overestimation of PT5 was significantly reduced by PRKTC (77% reduction
with respect to PT5). Note that, in terms of bias, PRKTC in the Andes performed better than the
best-performing product in the Coast (PRKT). This, however, can be attributed to the denser network
station in the Andes. Nevertheless, these results suggest that the information provided by auxiliary
variables accounts for spatial variation that is not captured by TRMM due to the difficulties imposed
by the topographical features and could be very useful for generating fine-scaled spatially continuous
precipitation fields in mountain regions.

Finally, for the Amazon region, no improvement was observed by the 2-step products with
respect to PT5. Nevertheless, it should be noted that these results are influenced by the low number of
stations in the region. The lack of in situ data and the closeness to the cordillera of 5 out of 6 stations
represent a significant drawback for the methods in step 2, resulting in poor predictions. Additionally,
the uneven distribution of the stations introduces further uncertainty in the validation procedure.
For these reasons, these results are considered inconclusive, which highlights the need to implement a
monitoring network in the Amazon.

Previous downscaling works have mostly applied downscaling to 1 km at an annual
time scale. Nevertheless, the performance of the products generated therein can be (roughly)
contrasted with the performance of the 5 km downscaled monthly products generated in this
paper. For instance, [25] reported that exploiting the local relationship between auxiliary variables
and precipitation in North China yields promising results, where GWR performed better than the
methodology proposed by [9,24]. Although complex topography and strong precipitation gradients
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are present in the North China region, there is a clear seasonal precipitation pattern [25], which is
clearly not the case of Ecuador due to the contrasting climatic regions. Nevertheless, the statistical
results of [25] are similar to the results obtained in this study for the Andes region. With respect to
TRMM, a decrease in both RMSE and bias was reported, along with no improvement in terms of R2.
Although applying local relationships between precipitation and auxiiliary variables has produced
promising results, no improvement was observed in this work by applying the methods from step 2
in the Coast and Andes regions independently (to avoid redundancy, these results were not shown).
However, future studies may consider applying GWR. Regarding machine learning procedures, [27]
reported that post-calibration of the downscaled TRMM images reduces RMSE and bias, which is
also consistent with the results obtained in this study. Finally, [28] also reported improvements over
TRMM using machine learning techniques. However, accuracy was decreased after applying residual
correction using TRMM at the original resolution as the dependent variable and spline interpolation.
In contrast, in this work, residual correction significantly improved the results using the observed data
as the dependent variable and kriging interpolation.

PT0.25° IMERG0.1°

PT5 IMERG5

0 100 200 300 400 500

Figure 10. Monthly precipitation [mm] of April 2014 for the TRMM product and IMERG, both at their
native resolution and resampled to 5 km.

The methodology proposed in this work was applied to TRMM satellite precipitation from 2001
to 2011 with a spatial resolution of 0.25◦. In the considered period, both satellite auxiliary variables
and in situ observations were available. However, since TRMM was turned off in 2015, and having in
mind the availability of an up-to-date downscaled precipitation product, it becomes relevant to explore
if the proposed downscaling approach would succeed with other satellite precipitation products.
This might be the case of the recently launched GPM Core Satellite, with its IMERG product available
at a resolution of 0.1◦. Therefore, the first step of the downscaling approach was applied on TRMM
and IMERG for April and August 2014, where both products were available. Figures 10 and 11,
corresponding to the months of April 2014 and August 2014, respectively, show the images at
their native resolutions as well as the resampled resolution of 5 km (the resampled IMERG images
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are referred to as IMEGR5). It can be observed that both resampled images show similar spatial
precipitation patterns and variability. Furthermore, Figure 12 displays a 5 × 5 moving window
correlation between the resampled images. It shows high correlations all over Ecuador with a mean
correlation in April of 0.80 and in August of 0.88. This is indicative of the possibility of applying the
first step of our downscaling approach to the IMERG product. The second step needs to be tested in
further research, but the result presented here shows the plausibility of the approach proposed in this
paper when applied to the IMERG product.

PT0.25° IMERG0.1°

PT5 IMERG5

0 100 200 300 400 500

Figure 11. Monthly precipitation [mm] of August 2014 for the TRMM product and IMERG, both at
their native resolution and resampled to 5 km.

April 2014 August 2014

−1.0 −0.5 0.0 0.5 1.0

Figure 12. 5 × 5 moving window correlation between the TRMM product and IMERG resampled
to 5 km.
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6. Conclusions

Two-step downscaling approaches have been carried out for the mapping of precipitation at a 5 km
resolution in the continental territory of Ecuador. Due to the fact that this country presents the Coast,
the Andes and the Amazon regions, the methods could be validated in contrasting climatic regions,
which is of great value for evaluation purposes. The first step, consisting of bilinear resampling over
the TRMM 3B43 V7 data set, was validated. Then, potential enhancements were explored by step 2,
which consists of 4 alternative gauge-satellite merging methods: exponential regression and regression
kriging with the resampled TRMM images, and exponential regression and regression kriging with the
resampled TRMM images and auxiliary variables. With respect to TRMM 3B43 V7, the 5 km monthly
products generated in this study constitute an enhanced source of downscaled spatially continuous
precipitation data. By applying a simple resampling technique and merging satellite-born data with in
situ data, TRMM measurements downscaled and calibrated. The cross-validation analysis revealed
that the inclusion of cloud top temperature, cloud fraction, NDVI and soil moisture in a selective
procedure reduces both bias and error deviation in the Andes and in coastal regions close to the
cordillera. Additionally, time series correlation is slightly increased. On the other hand, regression
kriging produced more improvement in the Coast. In this region, the TRMM resampled images
perform very well in terms of seasonality, and the inclusion of auxiliary variables seems to introduce
noise. Only the stations close to the eastern slopes of the cordillera showed improvement in PBIAS
with the multivariate models, which confirms the influence of auxiliary variables in regions with
complex topography. In the Amazon region, no product outperformed the resampled TRMM data set.
This, however, is considered inconclusive due to the low number of in situ stations and their uneven
distribution, stressing the need for a monitoring network in the region.

Although improvements over the resampled TRMM data set were observed, there is still
uncertainty in precipitation estimates in the study area. Data from a denser motoring network should
be used to improve estimations in certain regions, such as the western slopes of the cordillera and
the northern Andes. Most importantly, the lack of data in the Amazon is a significant inconvenience;
TRMM and its potential enhancements can not be properly analyzed. Despite these limitations, future
studies could be conducted. Because of the different performance of TRMM and the improved 2-step
downscaled products in the 3 regions, a more detailed regionalization than the 3 climatic regions could
be defined for independent analysis. Also, GWR can be tested to further exploit the local relationship
between precipitation and auxiliary variables. In addition, the methodology can be approached in a
different manner. For instance, machine learning downscaling algorithms with the fine-scale auxiliary
variables can be applied as step 1, with gauge calibration as step 2.
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CTT Could top temperature monthly images for the study area at 5 km
CF Could fraction monthly images for the study area at 5 km
NDVI Normalized Vegetation Index monthly images for the study area at 5 km
SM Soil moisture monthly images for the study area at 5 km
PT0.25◦ Original TRMM 3B43 V7 images
PT5 TRMM 3B43 V7 images resampled to 5 km
IMERG0.1◦ Original IMERG precipitation images
IMERG5 IMERG precipitation images resampled to 5 km
PRT Product from a regression model with in situ data using PT5 as the independent variable
PRKT Product from a regression kriging model with in situ data using PT5 as the independent variable
PRTC Product from a regression model with in situ data using PT5 and auxiliary variables
PRKTC Product from a regression kriging model with in situ data using PT5 and auxiliary variables
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