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Abstract: LiDAR (Light Detection and Ranging) technology has been used to obtain geometrical
attributes of tree crops in small field plots, sometimes using manual steps in data processing.
The objective of this study was to develop a method for estimating canopy volume and height
based on a mobile terrestrial laser scanner suited for large commercial orange groves. A 2D LiDAR
sensor and a GNSS (Global Navigation Satellite System) receiver were mounted on a vehicle for data
acquisition. A georeferenced point cloud representing the laser beam impacts on the crop was created
and later classified into transversal sections along the row or into individual trees. The convex-hull
and the alpha-shape reconstruction algorithms were used to reproduce the shape of the tree crowns.
Maps of canopy volume and height were generated for a 25 ha orange grove. The different options
of data processing resulted in different values of canopy volume. The alpha-shape algorithm
was considered a good option to represent individual trees whereas the convex-hull was better
when representing transversal sections of the row. Nevertheless, the canopy volume and height
maps produced by those two methods were similar. The proposed system is useful for site-specific
management in orange groves.
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1. Introduction

The 3D modeling of canopies has become an important research topic in precision agriculture,
especially in tree crops—see reviews by Dworak et al. [1], Rosell-Polo and Sanz [2], Berk et al. [3] and
Gil et al. [4]. This technique seeks to provide accurate information about canopy dimensions and
foliage density, which relates to plant development and health. Among several available techniques,
ground-based LiDAR (Light Detection and Ranging) scanning has proven to be a viable option for
modeling geometrical features of tree crops [2,5–7]. By estimating the distance between its centre and
the nearest obstacle in several directions (if a 2D or 3D sensor is used), a LiDAR sensor can be used to
create 3D models of its surroundings. An advantage of terrestrial acquisition systems in the context of
agricultural and horticultural applications is that the sensors can be attached to spreaders and spraying
machines enabling variable-rate applications on a real-time basis [8,9], thereby not requiring an extra
operation to acquire data from orchards or groves; these are often referred to as “mobile terrestrial
laser scanners” (MTLS) [7,10–13].
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Research groups have developed and tested several MTLS systems and data processing methods
in different tree crops [5,14,15]. Usually, 2D LiDAR sensors are mounted on a vehicle that moves along
the alleys of the grove to vertically scan the side of the tree rows. This setting permits the laser beam to
impact the side of the rows at several points along a vertical transect, thereby providing a detailed
profile of the trees. 3D information is added with the combination of subsequent 2D transects as the
vehicle moves along the grove alleys.

This type of MTLS was applied to citrus crops in Florida, USA, in early work. The first studies
applied relatively simple data processing techniques to compute geometrical parameters of the
trees. Lee and Ehsani [14], Tumbo et al. [16] and Wei and Salyani [17] used methods based on
attributing local rectangular coordinates to the laser beam impacts. They achieved this by considering
the polar coordinates from the sensor and the vehicle movement along the side of the tree. From
this 3D information, different algorithms were applied to retrieve geometrical parameters from the
trees. Those authors applied their methods in the measurement of individual trees and compared
that new approach with current methods based on ultrasonic sensors and manual measurements.
They concluded that LiDAR scanning could provide more accurate canopy geometry information than
the previously available technologies.

However, due to the application of local coordinates to the laser data, the vehicle had to maintain
a steady linear track parallel to the tree row in order to maintain a reference position of the sensor.
Those systems also did not permit a practical way of matching the two scanned sides of the trees.
Thus, all geometrical computation was carried out based on the assumption that the canopies were
symmetrical and only one side of the trees was scanned.

A MTLS system was also demonstrated in several tree crops in Catalonia, Spain, by
Rosell-Polo et al. [15]. They used a similar acquisition system to the one developed in Florida, but
with innovative data processing and manipulation. After the computation of local coordinates from
the raw LiDAR sensor data, they constructed point clouds, which could be treated and manipulated
using computer aided design (CAD) software. Point clouds from the two sides of the tree row could
be manually matched through the CAD software using reference objects placed close to the target trees
during the scanning of each side. The geometrical attributes of the canopy were also obtained using the
CAD tools and modeling. This type of data processing was also reported in several other studies [2].

A great improvement in data acquisition and processing was achieved when high accuracy GNSS
(Global Navigation Satellite System) positioning systems were incorporated in MTLS methods [18].
The use of GNSS positioning solved most of the problems derived from the use of local coordinates for
the collected data. The synchronous acquisition of LiDAR sensor and GNSS data permits each laser
impact to be georeferenced and plotted in a common geographical coordinate system. This system
allows independent scanning (e.g., the scanning of the two sides of the tree row) to be accurately put
together. Also, the vehicle does not need to keep a previously established path in order to maintain a
reference position of the laser sensor.

After creating the point cloud, the 3D modeling of the canopies and the actual computation
of geometrical parameters of the trees must be carried out. Among others, the canopy volume is
one of the most important and studied parameters that can be derived from 3D modeling. In order
to compute the canopy volume, two main approaches are possible: either a discretization-based
method in which small regular geometries are created inside the point cloud structure (occupancy
grid approach) [6,7]; or a surface reconstruction method using triangulation of the outer points of the
point cloud to represent the surface of the object. Auat Cheein et al. [19] applied both the segmented
convex-hull and the occupancy grid approaches in a point cloud from four pear trees and over a virtual
template object. Both approaches proved to be effective on characterizing the tree canopies.

It is noticeable that, to date, most studies have performed MTLS-based 3D modeling over small
field plots or over individualized trees in order to develop and test different data processing methods.
The actual representation of an entire crop in the format of maps of geometrical features, which can be
used to investigate spatial variability of the grove and guide site-specific management, is rarely found
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in published research. Some examples of this approach were given by Del-Moral-Martínez et al. [12]
who created LAI maps from MTLS in a portion of a vineyard (0.7 ha), and by Escolà et al. [7] who
presented maps of the canopy volume of olive trees in a 1 ha commercial grove.

Brazilian orange groves have great potential for MTLS application. Brazil is the world’s largest
producer of oranges (~17,000,000 tones harvested in 2014) [20] with orange production occupying
extensive areas of the country (~680,000 ha) [20]. It is therefore a crop of great economic and social
importance, characterized by a high level of agronomical management and use of technology. It is
also highly demanding of energy and other inputs. Colaço and Molin [21] have demonstrated the
potential of precision agriculture practices for optimizing the use of resources in orange groves in Brazil.
However, they relied on laborious data acquisition of yield and soil information for preparing variable
rate recommendations of inputs as crop sensor systems were not yet readily available. LiDAR-based
systems could be used to guide variable rate application of inputs such as plant protection products and
fertilizers. Currently, spray recommendations are still based on manual and inaccurate measurements
of canopy volume, yet spraying is a crucial operation in the management of orange groves and might
occur at least once a month during the cropping season.

Research in the past few years has greatly improved the 3D modeling of tree crops based on
MTLS data. However, several aspects of this technique are yet to be solved. As mentioned, most of
the studies have not used large commercial fields in order to test the acquisition system and data
processing in more realistic environment. Thus, robust, automated and replicable methods of both
data acquisition and data processing must be designed for large fields and large data.

When dealing with large data from continuous scanning, an automated segmentation of the point
cloud into smaller batches should be carried out prior to the 3D modeling so that the geometrical
parameters can be calculated for discrete trees or for small subsequent row segments. This is typically
not an issue for studies based on a few trees. Different combinations of the type of segmentation and
the 3D modeling algorithms must be tested considering different configurations of the orange trees.

The main objective of this study was to develop a method to assess geometry information from
orange groves in the format of 3D models and 2D spatial maps based on a MTLS. The study also aimed
to demonstrate and compare several variations on the proposed method (varying the type of point
cloud segmentation and 3D modeling algorithm).

2. Materials and Methods

2.1. Description of Data Acquisition and Processing

2.1.1. The Equipment and Data Acquisition

The LiDAR sensor used in this study was a terrestrial 2D laser scanner, model LMS 200 (Sick,
Waldkirch, Germany). This sensor measures the distance between its center and the nearest obstacle
in a given direction. The distance is estimated based on the “time-of-flight” principle. The sensor
emits a laser beam which travels until it reaches the target. Then, part of the light is reflected back to
the sensor. The time between the emission and reception of the laser beam is directly related to the
distance between the sensor and the target.

As a 2D laser scanner, this sensor calculates distances in several directions within a plane. This is
achieved through the use of an internal rotating mirror, which orientates the laser beam along the
plane. For each rotation of the mirror 181 distance measurements were taken (one measurement at
each degree along a 180 angle range). There were 75 rotations of the mirror per second leading to
13,575 distance measurements per second. The distance range was 8 m with 1 mm resolution.

To collect data from a commercial orange grove, the LiDAR sensor and a GR3 RTK (Real Time
Kinematics) GNSS receiver (Topcon, Tokyo, Japan) with ±10 mm accuracy in kinematic mode, were
arranged in a customized metallic structure mounted on an all-terrain vehicle (Figure 1a). The sensor faced
the side of the tree row perpendicularly and the RTK rover unit was on top and aligned with the center of
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the sensor. With this setting, the sensor collected data on a 2D vertical transect along the tree row and as
the vehicle moved along the alleys of the grove, the third dimension of the data was added (Figure 1b).
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Figure 1. (a) LiDAR (Light Detection and Ranging) sensor and GNSS (Global Navigation Satellite
System) receiver mounted on an all-terrain vehicle; and (b) diagram of LiDAR sensor 2D scanning and
displacement along the alleys.

To acquire data from the LiDAR sensor and the RTK-GNSS receiver synchronously, a piece of
software was developed using Processing (Processing v2, 2014) [22]. All communication between
the computer and the LiDAR sensor was carried out by following a hexadecimal telegram code [23].
The communication with the RTK-GNSS receiver was carried out according to the NMEA (National
Marine Electronics Association) standard. The maximum data acquisition frequency of the GNSS
receiver was 10 Hz whereas for the LiDAR sensor was 75 Hz. The software was synchronized with the
LiDAR frequency, so during the acquisition process the GNSS was linearly interpolated among the
LiDAR data so that every scan had a distinct GNSS positioning. The final output from the acquisition
software was a text file containing information about time, GNSS location (latitude, longitude and
altitude) of the sensor and distance values for each scan.

2.1.2. Data Processing

The objective of the data processing was to transform the raw data from the acquisition software
into a shapefile ready to be imported into GIS software for production of thematic maps of the
geometrical attributes of the trees. This goal was achieved in four steps: (i) attributing RTK-GNSS
coordinates to each impact of the laser beam and generating a georeferenced 3D point cloud; (ii) filtering
points of interest; (iii) classifying points into groups, each representing one individual tree or a
transversal section of the tree row; and (iv) calculating the canopy volume and height of each group.
The processing algorithm was developed using R software [24]. R software was chosen due to its
versatility and the availability of 3D modeling tools as well as 2D spatial mapping tools. During data
acquisition, the scanning of each row was saved separately so that the processing algorithm also
treated each row individually.

1. Generating a georeferenced 3D point cloud

The first step consisted of transforming the raw data, which were polar coordinates (angles and
distances) of the laser impacts into rectangular (Cartesian) coordinates (x, y, z) in which the x and y
were UTM (Universal Transverse Mercator—Datum WGS84) coordinates derived from the RTK-GNSS
receiver and z was the height of the point above the ground. Similar processing was proposed and
described by Del-Moral-Martínez et al. [18].
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To obtain UTM coordinates for each laser impact, the actual position of the sensor (obtained from
the RTK-GNSS receiver) was shifted in the x and y axes based on the respective dx and dy deviations
for each point (Equations (1) and (2)).

xp = xs + dx (1)

yp = ys + dy (2)

where
xp and yp are UTM coordinates of the laser impact (point) (m);
xs and ys are UTM coordinates of the sensor (m); and
dx and dy are deviations in x and y axes between the sensor and the point (m).

dx = sinα·dxy (3)

dy = cosα·dxy (4)

dxy = sinβ·d (5)

zp = zs − (cosβ·d) (6)

where
dxy, the distance between the sensor and the laser impact in the x, y plane (m);
α, angle of the direction of the measurement in relation to the north (degrees);
β, angle from LiDAR scanning (0 to 180◦);
d, the distance value from the LiDAR scanning (m);
zp, coordinate z (height) of the point (m); and
zs, coordinate z (height) of the sensor (m).
The deviations dx and dy were calculated based on the distance between the sensor and the laser

impact in the x, y plane (dxy) and the angle α (Figure 2a; Equations (3) and (4)). α corresponded to the
direction of the measurement in relation to north, counted clockwise. This angle is the subtraction of
90◦ from the vehicle direction (θ) in relation to north (the LiDAR sensor was arranged perpendicularly
to the vehicle longitude, facing the left side). The direction of the vehicle (θ) at a given moment is
defined by the median values of direction from 30 consecutive points along the vehicle track, which
is equivalent to a time interval of 0.5 s approximately. Finally, dxy was calculated based on the
original polar coordinates of the laser impacts (distance d and angle β) (Figure 2b) (Equation (5)).
The z coordinate (point height) is also derived from the polar coordinates as exposed in Equation (6).
The sensor height (zs) was 1.4 m, being the reference to the point height (zp) calculation.
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2 Filtering points of interest

After the transformation from polar to rectangular coordinates, the data then comprises a matrix
of three columns (x, y and z) and n lines, where n is the number of laser impacts. Those data can be
visualized in the form of a 3D point cloud using the CloudCompare software [25]. Figure 3 shows
an example of an original point cloud from a LiDAR scanning of one crop row. A dotted line can be
seen along the two sides of the tree row, which reflects the laser beam hitting the GNSS antenna. Also,
whenever there is a gap between the plants the laser reached the neighbor tree row. Because the aim
of the data processing was to assess canopy geometry from each tree row separately, any point that
did not represent the canopy of the trees from one single row was removed from the original point
cloud. For that, the next step of the processing was to apply filters to select only the points of interest
(Figure 3b).
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Points that were relatively far away from the target tree row were excluded by setting a maximum
distance (d) for the LiDAR readings. A minimum distance value was also set to exclude obstacles
that were too close to the sensor (the GNSS antenna, for example). The points which represented the
soil were excluded by establishing a minimum threshold for the height (z coordinate) of each point.
The output data after filtering was a point cloud representing only the crowns of the trees for a single
tree row (Figure 3b).

3 Classifying points into groups

Because each file contained the 3D point cloud from one entire tree row, the point cloud had to be
segmented into smaller batches prior to the computation of geometrical parameters. Two approaches
were developed for this: the first divided the original point cloud from a tree row into smaller groups,
each representing an individual tree; the second divided the point cloud into regular transversal
sections along the row. This step allows the geometry information to be calculated for each discrete
tree or for each small segment of the row.

The reason for these two different approaches is that they are applicable to two different crop
scenarios. Analyzing trees individually is an appropriate approach for young crops or crops which are
planted in a sparse tree spacing. Analyzing sections of the tree is applicable when the grove reaches a
mature stage and the plants are large enough to fill up the gaps between them forming a continuous
hedge along the row.

In order to automatically classify points among individual trees, a clustering method was applied.
The cluster analysis is the grouping of similar individuals into distinct classes called clusters. In the
case of this study, the mentioned “individuals” were the laser beam impacts and the “clusters” were
the trees. Among the several clustering algorithms available, the chosen algorithm was k-means, which
is available in R software through the “stats” package. This algorithm requires the desired number of
groups to be provided prior to the classification or an initial estimation of the centers of each cluster.
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This estimation was based on the spacing between the trees and the length and direction of the row.
The algorithm used this information as an initial guess of the cluster centers. The points were then
classified (Figure 4b) according to its x and y coordinates.

The second approach for grouping the points was based on segmenting the row perpendicularly
to its longitude, creating transversal sections with fixed width and length. The boundary lines of each
transect were automatically drawn using the R package “sp” which allows delineation of lines and
polygons using geographical information. The first step was to compute a linear regression with the
x and y coordinates of the filtered point cloud, which represented the longitudinal axis of the tree
row. A deviation was applied from this central line to both sides of the row forming two parallel
lines containing the tree row. Finally, the row was segmented lengthwise based on a given distance
(Figure 4c) and the points within each section were assigned a section identification number.
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4 Calculating canopy volume and height

The actual volume of a tree canopy is strictly the volume of wood, leaves and other parts such
as fruits and flowers. However, because of the limited density of points available by the scanning,
the estimation of such a volume is not possible. Therefore, the canopy volume was given as the
volume of a solid object that encloses the tree—this is also the concept used for canopy volume
estimation in traditional field methods, as it will be further exposed. In order to compute canopy
volume, a 3D object was modeled over each classified point cloud (cluster or section). Two 3D
modeling algorithms available in the software R were tested in this study: the convex-hull (package
“grDevices”), and the alpha-shape (package “alphashape3d”). Both algorithms were designed to
produce the smallest object able to enclose a set of 3D point cloud. The first one produces a convex
object and the second permits an object with concavities. The level of concavity is defined by the
index α (higher α produces less concavity)—more information about the algorithms is available in
Pateiro-López and Rodríguez-Casal [26] and Edelsbrunner and Mucke [27]. The canopy volume was
automatically retrieved by the algorithm.
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The second tree geometrical parameter, canopy height, was simply obtained by assessing the
point of maximum height (z) within each group (cluster or transversal section). The final output of
the processing steps was a GIS shapefile containing the polygons for each cluster or section and the
canopy volume and height information.

2.2. Demonstrating and Evaluating the Proposed Method

2.2.1. Validation of the Point Cloud Accuracy—Laboratory Testing

A validation focused on verifying the accuracy of the canopy volume estimation would be
possible if the system was able to estimate the strict volume of above-ground parts of the canopy
(wood, leaves, etc.). Measuring the actual tree volume to be taken as a reference would be laborious but
not impossible—e.g., it could be achieved by using artificial trees [28] or by harvesting and immersing
the tree parts into liquid [29]. However, for the present study, this cannot be used as reference for
validation simply because a different type of volume is being estimated by the LiDAR system—the
volume of a solid object enclosing the tree. In this case, even if several measurements of the tree
boundaries were taken, it would be unlikely to provide an absolute value of volume or at least
one of significant higher accuracy that could be used as a reference to the system being tested. For
those reasons, the adopted validation process focused on verifying the accuracy of the point cloud as
reference points of the canopy boundaries and therefore evaluate whether further canopy geometry
calculations were based on reliable samples of the canopy boundary.

In order to test the overall accuracy of the point cloud produced by the system, objects with
regular geometry (square, triangle, circle, cylinder, cone and body of cone) were selected as targets to
be scanned. A platform carrying the sensor and the RTK-GNSS receiver was designed to run over a
rail at constant speed powered by means of an electric motor. Such a testing set up was developed
to minimize the effect of vibration and rotations of the sensor (rotations on its longitudinal, lateral
and perpendicular, longitudinal and lateral axis—roll, pitch and yaw, respectively) during the data
acquisition. A second scanning over the objects was carried out with the actual all-terrain vehicle
mounting the same equipment as in the real reading in the groves. During the tests, the vehicle moved
over a leveled lawn.

The accuracy of the point cloud was assessed by comparing the dimensions of the objects (side,
height and diameter) in the point cloud with the actual dimensions of the objects. The dimensions
from the point clouds were obtained using the CloudCompare software. The actual dimensions were
obtained using a measurement tape.

2.2.2. Data Acquisition in a Commercial Orange Grove

In order to demonstrate the proposed methods for data acquisition and processing in a realistic
environment, a 25 ha orange grove located in the state of São Paulo, Brazil, was scanned. The variety
of the trees was “Valencia” grafted to “Swingle” rootstock. Trees were planted in 2009 and were six
years old at the time of this study. The spacing was 2.6 m between trees and 6.8 m between rows.
At the time of the readings, the tree canopies were already touching each other along the row, partially
closing the gaps between them. The ground along the alleys were usually well leveled and there was a
12 m range of elevation over the entire area.

The developed data acquisition system and processing method were applied with the RTK-GNSS
base unit mounted at the highest corner of the field. Before starting the acquisition, the RTK-GNSS base
was allowed to fix its position for 30 min. The vehicle moved along the alleys at 3.3 m s−1, scanning
one side of the tree row at a time. The data were saved separately for each tree row.

2.2.3. Evaluating Point Cloud Classification and 3D Modeling Options

As shown during the data processing description, several alternatives were used during the
processing of a point cloud in order to model a 3D object over the points. To compare these possibilities,
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different methods were applied over a set of point clouds from 25 individual orange trees randomly
selected from the scanned grove. The 3D objects were modeled over each plant individually and over
transversal sections of 0.86 m, 0.52 m, 0.37 m and 0.26 m wide, which were equivalent of dividing the
trees into 3, 5, 7 or 10 transversal parts, respectively. The convex-hull and the alpha-shape algorithms
were applied. Variations over the alpha-shape were also tested by setting the index α to 0.25, 0.50 or
0.75. This values were considered to cover different shapes worth investigating and were arbitrarily
chosen after testing a range of indexes from close to zero up to large numbers tending to infinite.

The volume of each individual tree was also computed by two additional methods based
on regular geometries as are usually applied in manual methods of canopy volume estimations.
In the first manual method, referred to here as “cylinder-fit”, the canopy volume is considered as
two-thirds the volume of the smallest cylinder able to enclose the tree. This method was reported by
Mendel [30] and Schinor et al. [31] but is not extensively adopted by growers. The second method,
referred to here as “cube-fit”, is the current method adopted in most of the Brazilian groves, which
is based on the tree-row-volume concept [32,33] calculated on a per-tree basis. The volume of the
tree is simply given by the volume of a cube, which encloses the canopy. The dimensions of the
canopy for the manual-inspired methods were measured from the point cloud of each tree using the
CloudCompare software. Manual measurements were not taken due to several uncertainties related
to this practice, such as the visual identification of the canopy boundaries and limitations of using
standard measurement tools in a complex object such as tree canopy. In addition, this step was not
meant to validate the volume estimates, but to compare the different forms of calculating volume and
understand their possible differences. The proposed methods were also applied over a point cloud
from a tree row segment of 10 trees for 3D visualization of the modeling and general observations.

2.2.4. Mapping of Canopy Volume and Height of a Commercial Orange Grove

To produce a map of canopy volume from the scanned grove, the point cloud was processed in
two different ways. The first method was based on computing the canopy volume for each individual
tree (cluster) and applying the alpha-shape algorithm with the index α set to 0.75. The second
approach was based on dividing the rows into sections of 0.26 m width (equivalent to dividing each
tree into 10 transversal parts) and applying the convex-hull algorithm. These settings were chosen
after evaluating the results from the previous analysis, which tested several options for modeling the
tree canopies.

Because the trees were partially touching each other, some error in the cluster classification
was expected. The accuracy of this classification was assessed by visually recognizing 678 trees
from the point cloud and comparing them with the outcome of the cluster classification using the
CloudCompare software.

The canopy volume and height maps were produced by importing the shapefiles from the
data processing output into the QGIS software [34]. A map of points, each representing one tree or
a transversal section of the row, was created by generating a centroid point within each polygon.
Points within 10 m of the field boundary were excluded as well as those within a 15 m buffer
around the terraces in the field. Those parts of the field were more suited to the rotation of the
vehicle along its longitudinal and perpendicular axis. Because the acquisition system was neither
equipped with a stabilization system nor an inertial measurement unit for further correction of sensor
position deviations, the point cloud in those areas were considered more susceptible to errors and so
were discarded.

Prior to map interpolation, the values from the row sections were converted into values equivalent
to individual trees, otherwise the map based on sections would not be comparable with the map based
on individual plants. Therefore, sections were merged in groups of 10 along the row forming segments
of 2.6 m of length, which was equivalent to the tree spacing. The canopy volume of each segment
was given by summing the volume of the 10 sections inside it and the height value was given by the
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maximum height of the 10 sections. Those parameters were attributed to a central point within each
2.6 m segment.

Finally, volume and height data at each point across the grove (representing row segments or
clusters) were interpolated in a pixel grid of 5 m to produce the final canopy volume and height maps.
The interpolation method was ordinary local kriging and it was carried out with the use of the Vesper
1.62 software [35].

In order to compare the resulting maps of the two methods (cluster segmentation using
alpha-shape reconstruction and transversal section segmentation using convex-hull reconstruction) a
similarity analysis between maps was carried out with the use of the Map Comparison Kit software [36].
The chosen algorithm was the fuzzy numerical cell-by-cell comparison. The measure of similarity
(fuzzy similarity index) is given at each pixel based on Equation (7) in a scale from 0 to 1, being
1 identical values.

s(a, b)i = 1− |ai − bi|
max(|ai|, |bi|)

(7)

where
ai, fuzzy value in pixel i from map 1;
bi, fuzzy value in pixel i from map 2; and
s(a,b)i, fuzzy similarity index in pixel i between the two maps.
The fuzzy logic implemented in this algorithm considers a level of uncertainty in the value in

each pixel based on the neighboring pixels, which is referred as “fuzziness of location”. This means
that the neighboring pixels affect the considered value in the central pixel. This radius of influence
was set to four pixels. Other configurations for the fuzziness of location, such as the equation guiding
the influence of neighboring pixels on the central pixel (a decay type function) was kept to default.
More information about the algorithm is available in Hagen [37]. The relationship between maps of
canopy volume and canopy height was assessed by a pixel-based correlation analysis.

3. Results and Discussion

3.1. Validation of the Point Cloud Accuracy—Laboratory Testing

The accuracy of the point cloud derived from the MTLS was assessed by using regular objects as
targets for scanning. Figure 5 shows the point clouds from a range of different shaped objects scanned
by the MTLS mounted on the all-terrain vehicle. These results appeared coherent based on visual
assessment. The same objects were also scanned with the MTLS mounted on a platform running on
a rail.

The dimensions of the objects obtained by the two scanning systems are shown in Table 1.
Generally, both scanning systems provided very similar measures to the actual dimensions of the
objects, with, as expected, slightly better results when the MTLS was running on the rail. The overall
average error between the laser measurements and the actual dimensions of the objects was 1.4 cm
(1.7%) when readings were taken using the all-terrain vehicle and 0.57 cm (0.7%) when a platform
running on a rail was used, reaching a maximum difference of 5.77 cm (“b” dimension of the square
with the MTLS mounted on the vehicle).

The main sources of error in such measurements are the embodied errors in the laser sensor
(±5 mm) and in the RTK-GNSS (±10 mm) and the rotations of the sensor along its three axes (roll, pitch
and yaw). The obtained errors in the performed tests were fairly low considering these three main
sources of error. Some studies reported the importance of implementing an inertial measurement unit
(IMU) during the scanning in order to register such angular displacements and correct the position of
the laser impacts [10]. During the field operations, although the alleys of the groves were well leveled,
higher errors might have occurred occasionally due to irregularities of the terrain.

Overall evaluation of this preliminary test indicated that the point cloud from the developed
acquisition system could realistically replicate the scanned targets. In the study by Lee and Ehsani [38]
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the average distance error of the LMS200 sensor was 0.98 cm (aiming at a distance of 80 cm) in a
static test using a wooden panel. The distance error when using orange leaves as targets was 1.17 cm.
That means that, in terms of the effect of the target’s surface, the present results from tests with
wooden objects can be reasonably generalized to orange tree canopies. Given the observed accuracy,
further point clouds from the orange crops could be taken as reliable references for calculation of
canopy geometry.

Remote Sens. 2017, 9, 763  11 of 21 

 

further point clouds from the orange crops could be taken as reliable references for calculation of 
canopy geometry.  

 
Figure 5. Point clouds from objects scanned with a mobile terrestrial laser scanner mounted on an all-
terrain vehicle: (a) cylinder; (b) body of cone; (c) square; (d) triangle; and (e) circle. 

Table 1. Object dimensions measured manually and by a mobile terrestrial laser scanner mounted on 
an all-terrain vehicle and on a platform running over a rail. 

Objects 
a b c 

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)
(cm)

Square 98.60 98.29 100.00 94.23 100.25 100.00 - - - 
Triangle 98.22 98.33 100.00 84.64 88.48 87.00 - - - 

Circle 101.17 99.96 100.00 - - - - - - 
Cylinder I 79.58 79.78 80.00 29.58 30.13 30.00 - - - 
Cylinder II 80.92 83.21 83.00 19.74 20.28 20.00 - - - 

Body of cone 62.65 63.31 64.00 44.95 45.05 45.00 31.15 30.90 31.00 
* Header abbreviations: (i) laser scanner mounted on an all-terrain vehicle; (ii) laser scanner mounted 
on a platform running on a rail; and (iii) actual dimension (by measurement tape). 

 

3.2. Data Acquisition in a Commercial Grove 

Results from the LiDAR data acquisition and processing of a 3D point cloud over a 25 ha orange 
grove can be seen in Figure 6. The grove was successfully scanned as a whole. This was a particularly 
encouraging result since previous research which employed terrestrial laser scanners to model tree 
crops used smaller field plots. 

Figure 5. Point clouds from objects scanned with a mobile terrestrial laser scanner mounted on an
all-terrain vehicle: (a) cylinder; (b) body of cone; (c) square; (d) triangle; and (e) circle.

Table 1. Object dimensions measured manually and by a mobile terrestrial laser scanner mounted on
an all-terrain vehicle and on a platform running over a rail.

Objects

a b c

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

(cm)

Square 98.60 98.29 100.00 94.23 100.25 100.00 - - -
Triangle 98.22 98.33 100.00 84.64 88.48 87.00 - - -

Circle 101.17 99.96 100.00 - - - - - -
Cylinder I 79.58 79.78 80.00 29.58 30.13 30.00 - - -
Cylinder II 80.92 83.21 83.00 19.74 20.28 20.00 - - -

Body of cone 62.65 63.31 64.00 44.95 45.05 45.00 31.15 30.90 31.00

Header abbreviations: (i) laser scanner mounted on an all-terrain vehicle; (ii) laser scanner mounted on a platform
running on a rail; and (iii) actual dimension (by measurement tape).
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Figure 6. 3D georeferenced point cloud derived from the developed mobile terrestrial laser scanning
system used in a 25 ha commercial orange grove.

The equipment setting proved to be relatively robust for large field scanning. One issue that
should be reported is the sensitivity of the LiDAR sensor to intense sunlight exposure. The sensor used
in this study was developed for indoor scanning and does not operate properly under excessive light
exposure. Several times during the data acquisition in the field, the operation was interrupted due to
malfunctioning of the sensor. Sensors developed for outdoor purposes are available on the market
and would be more appropriate for agricultural use. Otherwise, a structure to protect the sensor
against direct sunlight without blocking its field of vision towards the targets should be required.
Avoiding readings during hours of intense light exposure is also an option to deal with this issue.

It is noticeable that the achieved density of points was able to capture the shape of the rows
and of individual trees with good level of detail. With the applied data acquisition configuration
(75 Hz scanning frequency at 3.3 m s−1 speed) the distance between each scan was around 4 cm.
The total grove accounted for approximately 175 million points, which corresponds to approximately
700 points m−2 (approximately 12,100 points per plant). Airborne LiDAR scanning applied over urban
or forest areas usually produces point clouds with 0.5 to 5 points m−2. Escolà et al. [7] reported a
density of 8000 points per m−2 using a multi-echo LiDAR device on a MTLS on an olive grove but
they were using a sensor with higher angular resolution traveling at a slower forward speed.

The forward speed used for scanning is compatible with several mechanical operations in the
grove such as spraying, which means that the LiDAR-based system could be attached to the machines
in the field to collect data while performing other agricultural operations.
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3.3. Modeling of 3D Objects from the Point Cloud

The results from the proposed 3D modeling algorithms applied to a segment of 10 trees are shown
in Figure 7. One premise that can be used to evaluate the outcome from the different algorithms is
the amount of points at the canopy boundary being used to create the 3D object representing the tree.
The higher the number of points the closer the estimation gets to the actual tree volume. It is noticeable
how the convex-hull model apparently used less points to generate the 3D model resulting in larger
objects since salient branches enlarge the hull structure. As expected, the external profile of the canopy
was better represented by the alpha-shape algorithm with lower α index. However, the index α should
be appropriately set. A low index might produce disconnected structures forming holes inside the
canopy, which is not desirable for the adopted approach of canopy volume. Because this algorithm
permits the representation of concave structures, it is reasonable to consider the alpha-shape as a
suitable model for representing the tree canopy. Likewise, it is noticeable that slicing the row into
transversal sections instead of maintaining the tree as a whole also helped the representation of the
canopies with greater level of detail. The segmentation of the trees was particularly important in
the convex-hull model, because it reduced the effect of over estimation caused by outer branches on
the tree by using a greater amount of points to generate the 3D model of each plant. This issue was
more severe when the model was created over the entire plant. The importance of segmenting the
point cloud when applying the convex-hull algorithm to estimate volume was also evidenced by Auat
Cheein et al. [19].

However, when slicing the trees to produce 3D models of continuous canopies a problem with
the alpha-shape algorithm arose. While the algorithm produced desirable concavities on the outer
part of the canopy, which helped in detailing its silhouette, it also created undesirable depressions in
the transversal slicing plane and at the bottom of the trees (Figure 8). When all the sections were put
together, the concavities in the transversal wall of the sections produced voids, which affected the final
canopy volume computation. The voids between sections were also present in the convex-hull models
but they were considered insignificant (Figure 9). They are inherent to the approach of slicing the rows
and are directly related to the scanning frequency during the data acquisition (which determines the
spacing between scans). Because of the high scanning frequency, the space between each scan was
very narrow and so were the voids between the convex-hull objects (Figure 9). Thus, the convex-hull
algorithm was considered a better option than the alpha-shape to represent transversal sections of
the row. On the other hand, the alpha-shape algorithm remained a better option when the model
was applied over the entire tree. As a guideline to choose the α index, the best α should be the one
which produces the smallest volume—or that uses that highest amount of reference points—whilst
maintaining the canopy as a solid object (without voids). Amongst the tested options, this result was
obtained when α was set to 0.75 (Figure 10), through simple visual assessment. In order to determine
the optimum α a thorough investigation is still needed, testing more α options and with more robust
evaluation techniques.

The results from the measurements of 25 individual trees extracted from the scanned grove
indicate that combining different options of 3D modeling and segmentation can result in significantly
different canopy volume estimations (Table 2). As noticed in previous observations, the convex-hull
model resulted in the highest canopy volume, followed by the alpha-shape with higher α. The canopy
volume decreased as the number of slices increased, resulting in significantly different volumes,
especially for the α-shape algorithms. The differences between algorithms were even more evident as
the number of slices increased (notice that in lower number of sections the alpha set to 0.75 or 0.5 yielded
similar results and when the number of sections increased all algorithms resulted in significantly
different outcomes). When compared with the convex-hull, the higher decrease in the alpha-shape
algorithms when increasing the number of sections per tree was probably due to the increase in voids
between sections as mentioned. A twofold-range in volume was noticed in alpha-shape algorithms
when the trees were taken as a whole or divided into 10 sections.
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Table 2. Mean canopy volume of 25 individual trees estimated by different methods and by dividing
the trees into different number of sections.

Algorithm

Number of Sections Per Tree

1 3 5 7 10

Mean Canopy Volume of 25 Individual Trees (m3)

Cube-fit 22.65 a - - - -
Cylinder-fit 11.90 c - - - -
Convex-hull 16.07 b,a 14.71 a,ab 13.97 a,ab 13.46 a,ab 12.86 a,b

α-shape (α = 0.75) 14.31 c,a 11.57 b,b 10.02 b,bc 8.66 b,cd 7.34 b,d
α-shape (α = 0.50) 12.16 c,a 9.77 b,b 8.19 b,bc 6.98 c,cd 5.72 c,d
α-shape (α = 0.25) 6.19 d,a 5.32 c,b 4.47 c,bc 4.15 d,c 3.34 d,d

Letters before and after comma mean values are different within column and line, respectively (at 5% significance).

It should be noted that the rough simplification of the canopy structure by the method based on
the cube-fit, the common practice used in Brazil, overestimated the canopy volume in relation to all
the other algorithms. The cylinder-fit, which applied a correction of two third off the whole object, got
similar results to the α-shape with alpha set to 0.5. As shown previously (Figure 10), even being able
to realistically represent the canopy, this algorithm can produce voids inside the plant, which is not
desirable for canopy volume estimation.

The average volume obtained from the alpha-shape with index of 0.75, which was previously
considered an adequate representation of individual trees, was 14.3 m3 per plant using an average
of approximately 6600 points as references for measurements, whereas the convex-hull, considered
a good option when trees were divided into sections, resulted in an average canopy volume of
12.8 m3 using approximately 3400 points in 10 sections. Canopy volumes from manual measurements
based on the cube-fit and the cylinder-fit were 22.6 m3 and 11.9 m3, respectively (Table 2), using a
significantly reduced amount of reference points. The difference in canopy volume obtained from
the different methods is evidence of the importance of the adoption of a reference method. At this
stage, it is reasonable to consider that the method of canopy volume computation based on the
MTLS and 3D modeling is clearly more capable of capturing the geometry of the canopy than the
current available manual methods based on regular geometries such as cubes or cylinders because it
employs a remarkably greater number of reference points for measurements. Thorough investigation
over the algorithms is still needed before changing to a new standardized system. Nevertheless, the
LiDAR-based methods are applicable in the field and should be considered as a possible standard for
canopy volume computation.

Regardless of the specific algorithm choice for standardization, any new system to be adopted for
the grove management would require a new set of calibrations based on empirical experimentation in
order to transform canopy volume readings into actual input rates for spraying, fertilizer application,
irrigation, etc. The level of canopy detail provided by the system, even if not entirely true to
the real canopy volume, would necessarily have to be worth in terms of the actually enhancing
input recommendations.

For the purposes of this study, these first considerations of 3D modeling methods indicate that,
among the tested options, the best algorithm for modeling the canopy of individual trees was the
alpha-shape with index α set to 0.75, because it permitted the representation of salient structures from
the canopy whilst keeping the canopy as a solid without voids inside it. The convex-hull algorithm
was a better option for modeling sections of the trees, because it produced minimum voids between
them. The weakness of this algorithm, which is overestimating the structure in outer parts of the tree,
is less relevant when the tree is divided into sections. For those reasons, these two approaches were
chosen to be further applied on this study.
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3.4. Mapping of Canopy Volume and Height in a Commercial Orange Grove

The final canopy volume and height maps were produced by two methods: (Method 1) by
classifying the point cloud into individual trees (cluster) and subsequently applying the alpha-shape
algorithm (α = 0.75); and (Method 2) by dividing the rows into 0.26 m long sections and subsequently
applying the convex-hull algorithm to model the canopies. The two data processing methods produced
polygon shapefiles where each polygon contained the information of canopy volume and height
computed by the algorithms (Figure 11). The slicing of the rows produced approximately 10 polygons
per tree (prior to interpolation every 10 subsequent section were merged together to produce the final
map). Inside each polygon, approximately 6 laser scans were found. In the representation of individual
trees, the cluster classification accuracy was 90.2% (percent of correctly classified clusters over the total
number of clusters). This was considered sufficient to produce reliable information maps, but this
accuracy may vary from different groves.
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Figure 11. Shapefiles produced after either segmenting the row into transversal sections or into
individual trees.

The two chosen methods produced similar canopy volume and height maps. The final maps
were visually similar (Figure 12) and had similar basic statistical parameters (Table 3). It should be
expected that if the trees in one grove form a continuous hedge along the row, the section approach
would be ideal, whereas if the trees are discrete, the cluster classification would be the best option.
In the evaluated grove, it seems likely that at the particular development stage of this grove, either
method was appropriate for mapping without major consequences for the form of the final maps.
One thing to be noticed is that the average canopy volume and height estimated from the maps were
quite similar between the methods (11.94 m3 and 12.13 m3 for Methods 1 and 2, respectively—Table 3),
which was not the case when 25 trees were analyzed separately (14.1 and 12.8 m3 for Methods 1
and 2, respectively—Table 2). It should also be noted that, when analyzing results from the entire
grove, a range of different targets (gaps, trees with different size, shape and density, etc.) are being
scanned which was not the case for the selected 25 trees. The different algorithms and classifications
options might perform differently depending on the target characteristics, and, for that reason, further
investigations are needed in order to better understand what aspects can affect the results.
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Table 3. Descriptive statistics of canopy volume and height maps for the two proposed methods.

Canopy Variable Method * Mean Minimum Maximum Coef. of Variation

m3

Volume
1 11.94 7.64 18.57 0.09
2 12.13 8.05 17.30 0.09

m

Height 1 2.85 2.47 3.39 0.03
2 2.87 2.44 3.43 0.04

* Method 1: classifying the point cloud into individual trees (cluster) and subsequently applying the alpha-shape
algorithm (α = 0.75). Method 2: dividing the rows into 0.26 m long sections and further applying the
convex-hull algorithm.
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The similarity between the maps, as assessed by the fuzzy similarity index, was higher for the
canopy height (fuzzy similarity index = 0.99) than for the canopy volume. This is probably because
both methods applied the same rationale to compute the height. The canopy volume maps were
computed by two different algorithms (which were more complex than taking the highest point for
height computation), so the fuzzy comparison resulted in a slightly lower index (fuzzy similarity
index = 0.96).

Some correlation between height and canopy volume was also expected. This was higher when
the two parameters were computed using the cluster analysis (r = 0.71). The grouping of sections along
the row did not necessarily match with individual plants, so the correlation of height and volume was
not as high (r = 0.61).

Generally, both methods performed similarly. They were both able to represent the spatial
variability of canopy geometry in the grove. These maps are a useful basis for site-specific management,
such as variable rate spraying and for dividing the field into management zones.

4. Conclusions

A methodology for 3D modeling and canopy geometry computation for orange groves was
developed using a mobile terrestrial laser scanning system based on a LiDAR sensor. The data
acquisition and processing systems were described and variations over the 3D modeling algorithms
were demonstrated and compared.

The method for data acquisition and processing proved to produce reliable georeferenced point
clouds of a commercial orange grove. The data acquisition set up was robust for large field scanning
and could be implemented on current agricultural operations in the groves.

The convex-hull and alpha-shape (α = 0.75) 3D modeling algorithms worked best when
implemented over transversal sections of the row and over individualized plants, respectively.
Varying the type of segmentation of the point cloud and the 3D modeling algorithms resulted
in different values of canopy volume indicating the need for a reference method to be adopted.
Nevertheless, the mapping of canopy volume and height by either cluster or section of the row resulted
in similar spatial variability.

The proposed data acquisition and processing systems were able to produce useful information
for precision agriculture management. The LiDAR-based scanning and the proposed data processing
and mapping reproduced the spatial variability in the grove in the format of thematic maps that can
be used for variable rate applications and to guide management zones delineations within the grove.
All the software used is open-source and freely available to any user.
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