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Abstract: Different drought indices often provide different diagnoses of drought severity, making
it difficult to determine the best way to evaluate these different drought monitoring results.
Additionally, the ability of a newly proposed drought index, the Process-based Accumulated Drought
Index (PADI) has not yet been tested in United States. In this study, we quantified the severity
of 2012 drought which affected the agricultural output for much of the Midwestern US. We used
several popular drought indices, including the Standardized Precipitation Index and Standardized
Precipitation Evapotranspiration Index with multiple time scales, Palmer Drought Severity Index,
Palmer Z-index, VegDRI, and PADI by comparing the spatial distribution, temporal evolution, and
crop impacts produced by each of these indices with the United States Drought Monitor. Results
suggested this drought incubated around June 2011 and ended in May 2013. While different drought
indices depicted drought severity variously. SPI outperformed SPEI and has decent correlation
with yield loss especially at a 6 months scale and in the middle growth season, while VegDRI
and PADI demonstrated the highest correlation especially in late growth season, indicating they
are complementary and should be used together. These results are valuable for comparing and
understanding the different performances of drought indices in the Midwestern US.
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1. Introduction

Drought is a major hazard that affects many different sectors around the world, especially
agricultural production [1]. The 2012 US drought is one example of an extreme, widespread drought
disaster which led to serious crop losses throughout one of the largest agricultural regions in the
country [2]. In recent decades, studies have focused on a range of drought related topics, including
basic concepts [3], monitoring [4], impacts [5], vulnerability [6], and mitigation [7]. In terms of
monitoring, both univariate and multivariate drought indices have been proposed to assess the
severity of meteorological, hydrological, and agricultural droughts separately and as a whole [8].
Severity is a major component during a drought event, which indicates a cumulative deficiency of a
specified drought parameter below a critical level [9]. Drought severity should not be confused with
other major components (i.e., intensity), therefore, it is worth highlighting the difference between these
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features [9,10]: (1) drought onset is the start of the water shortage period; (2) drought end represents
the time when the water shortage becomes sufficiently small such that the drought conditions no
longer persist; (3) drought duration is the period between the onset and end of a drought; (4) drought
intensity is the average value of a specific drought parameter during which it is below some critical
levels (this is measured by dividing the drought severity by the duration). The severity and intensity
are easy to confuse and should be used with caution [9,11].

As stated earlier, both univariate and multivariate indices have been used to define and
monitor drought. Examples of univariate drought indices include the Standardized Precipitation
Index (SPI) [12], Standardized Soil Moisture Index (SSI) [13], Vegetation Condition Index (VCI) [14],
and Standard Relative Humidity Index (SRHI) [15]. Examples of multivariate indices include the
Standardized Precipitation-Evapotranspiration Index (SPEI) [16], Palmer Drought Severity Index
(PDSI) [17], Palmer Z-index [18], VegDRI [19], and Process-based Accumulated Drought Index
(PADI) [20]. A brief review of these indices can be found in AghaKouchak et al. [8]. Recently,
a crop-specific SPEI was developed by Moorhead et al. by replacing reference evapotranspiration (ET)
with potential crop ET to better represent actual water demand [21]. Additionally, the Soil Water Deficit
Index (SWDI) was also developed by Martínez-Fernández et al. to represent soil water deficit during
agricultural droughts and estimate field capacity and wilting point [22]. Finally, a nonparametric
framework for standardized drought indices was also developed [23]. While these indices are routinely
applied for drought assessment, a question remains regarding their abilities to capture the impacts
caused by drought [24,25].

SPI is by far the most common index used for both drought monitoring and drought assessment
in climatological studies [26]. Furthermore, Vicente-Serrano et al. found the SPI and SPEI were
better at representing drought impacts on hydrological, agricultural, and ecological variables than
other common drought indices [24]. However, as precipitation is only one variable in agricultural
drought, it is postulated in this study that SPI alone is insufficient in its ability to capture agricultural
drought impacts. This hypothesis was tested in our study. There are also anecdotal discussions
within the drought community that highlighted the fact that drought, as revealed by some indices,
is not accurately portrayed in terms of the corresponding yield loss [27,28]. This lack of correlation
between drought indices and crop yield is thought to be a factor of the drought timing, local mitigation
strategies adapted by farmers, and seed varieties [6].

Assessing the relationship between indices and impacts is critical. Without any way to assess
crop loss, there is little value in monitoring agricultural drought conditions. Moreover, this study
is urgent for drought assessment and for guiding ongoing and future drought mitigation strategies.
Potopová et al. found SPEI had a relatively strong association with yield loss during critical growth
stages of the crops (i.e., April to June in the study region) [29]. More recently, Bachmair et al. found
that the drought indices best linked to impacts were SPI and SPEI with long accumulation periods
(12–24 months) in the UK, and with short to intermediate accumulation periods (2–4 months) in
Germany [25]. Additionally, the index-impact response varied spatially. For example, the Palmer
Z-index was found to be the most appropriate index for Canadian prairies [30], SPEI has been shown
to be advantageous for drought monitoring in Northern China [31], and the Scaled Drought Condition
Index (SDCI) performed better than existing indices in the arid region of Arizona and New Mexico [32].
Therefore, the determination of the most suitable drought index requires site-specific research [33].

Since diverse drought indices are used in US [34], it is important to conduct local comparative
performance analyses before selecting the optimal drought index. This study focuses on the 2012
agricultural drought in the Midwestern US as a case study, using six drought indices: SPI, SPEI,
PDSI, Palmer Z-index, VegDRI, and PADI, and the United States Drought Monitor (USDM). We were
particularly interested in the ability of PADI to compete with more traditional indices (i.e., SPI and
PDSI), as PADI is a recent development in the drought index community [20]. The initial results in
China demonstrated its advantages over SPI and PDSI [20]; however, PADI has not been tested in the
US, and it has not been fully compared with other multivariate drought indices. Therefore, in this
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study, we first answer the question: How does a crop phenology dependent drought index, such as
PADI, compare to precipitation-based SPI in capturing the 2012 Midwestern US drought? We then
use the assessment to answer the broader question: What is the ability of different drought indices to
capture agricultural drought severity and impact?

2. Study Area and Data

To investigate the impacts on agriculture during the 2012 drought and avoid influences from
other land cover types (i.e., urban, grassland and wetlands), we extracted the cropland area in the
Midwestern US, shown in Figure 1. The Midwestern US represents one of the most intense agricultural
areas in the world. The 2012 Census of Agriculture identified the Midwestern US has a market value of
182 billion dollars, producing over 93% of corn and soybeans in the total US. Corn is the dominant crop
in this area and therefore was selected for the impact assessment in this study. According to the 2013
Farm and Ranch Irrigation Survey (FRIS) conducted by the National Agricultural Statistics Service
(NASS), US Department of Agriculture (USDA), irrigated farm land in Midwestern US is about 29.3%,
while 70.7% is rain-fed [35], making it more susceptible to droughts caused by a precipitation deficit.
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Figure 1. The study area of the cropland (lime green boundary) in Midwest US, which is consisted by 12
states, including North Dakota (ND), South Dakota (SD), Nebraska (NE), Kansas (KS), Minnesota (MN),
Iowa (IA), Missouri (MO), Wisconsin (WI), Illinois (IL), Michigan (MI), Indiana (IN), and Ohio (OH).

Both precipitation and root zone soil moisture data from 1979 to 2013 are available from the North
American Land Data Assimilation System-Phase 2 (NLDAS-2) maintained by the National Centers
for Environmental Prediction (NCEP). Particularly, monthly total precipitation and root zone soil
moisture were extracted from NLDAS Noah Land Surface Model L4 Monthly 0.125 × 0.125 degree
V002 [36]. These datasets have been validated [37] and applied in the USDM and National Integrated
Drought Information System (NIDIS) [38]. Root zone soil moisture was chosen due to its resistance
to temporal environmental changes compared with surface soil moisture and its significances for
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agricultural production. Using the data described above, the SPI, Precipitation Condition Index (PCI),
and Soil Moisture Condition Index (SMCI) were computed as described in the methodology section.
In addition, the Advanced Very High Resolution Radiometer (AVHRR)-Vegetation Health Product
(VHP) was obtained from the National Oceanic and Atmospheric Administration (NOAA) Center
for Satellite Applications and Research. AVHRR-VHP is a reprocessed vegetation health dataset that
includes multiple-indices (i.e., NDVI, VCI, and TCI) [39]. In this study, weekly VCI 4 km product from
2011 to 2013 was selected. Finally, data from the US Drought Monitor, VegDRI, Self-calibrated PDSI,
SPEI, and Palmer Z-index were obtained for comparison. SPI and SPEI with 1–12 month scale were
used in this study due to the relatively short growth period of corn. Details of these datasets are listed
below in Table 1. It should be noted that the datasets have different spatio-temporal resolutions and
this inconformity may affect the comparison results.

Table 1. Datasets used in this study.

No. Name Length
of Time

Spatial
Resolution

Temporal
Resolution Purpose URL

1 NLDAS-2 Noah L4
(NLDAS_NOAH0125_ M.002)) 1979–2013 0.125◦ Monthly

Precipitation for PCI
and SPI; Root zone soil

moisture for SMCI
[40]

2 AVHRR VHP 2011–2013 4 km Weekly VCI [41]

3 Corn growth 2012 / / Corn growth process [42]

4
Multi-Resolution Land

Characteristics
Consortium (MRLC)

2011 30 m / Land cover [43]

5 US Drought Monitor 2011–2013 / Weekly Comparison [44]

6 VegDRI 2011–2013 1 km Weekly Comparison [45]

7 Self-calibrated PDSI
(sc_PDSI_pm) 2011–2013 2.5◦ Monthly Comparison [46]

8 SPEI 2011–2013 0.5◦ Monthly Comparison [47]

9 Palmer Z-index 2011–2013 0.125◦ Monthly Comparison [48]

Corn phenology information in the Midwestern US was retrieved from the USDA NASS for
2012. Three different corn growth stages are defined with their different water-stress sensitivity
coefficients [49] in Table 2 and Appendix A. Based on that, it was found reproduction stage (i.e., July)
is particularly vulnerable.

Table 2. Corn phenology stages with corresponding water-stress sensitivity coefficients.

Period Name Definition Sensitivity Coefficients

1 Vegetative Planting through Silk (before silk) 0.25
2 Reproduction Silk through Milk 0.50
3 Ripening Milk through Maturity (after silk) 0.25

In addition, a decadal average (2002–2012) of the planting acreage and production weight of corn
were also obtained from NASS at a county-scale. Using the decadal average, the yield anomaly index
(YAI) [50] of every county was calculated for 2012. YAI is designed to identify deviation of yield for a
particular year from its long term trend. Based on yearly corn yield data from NASS at county-scale,
the YAI for a particular year is calculated using the following formula:

YAI = (Y − µ)/σ (1)
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where Y is the crop yield in the particular year, µ is the long term average yield, and σ is the
standard deviation.

Additionally, the SPEI, self-calibrated PDSI, Palmer Z-index, VegDRI, and USDM datasets were
obtained from the Global SPEI database [51], National Center for Atmospheric Research (NCAR) [52],
West Wide Drought Tracker, United States Geological Survey (USGS), and National Drought Mitigation
Center, respectively.

3. Methodology

3.1. Drought Evolution Process Analysis

Agricultural drought depends on the spatial and temporal variability of precipitation, soil
moisture, and the availability of soil moisture to cover losses from evapotranspiration. As discussed in
Zhang et al. [20], the determination of agricultural drought can be obtained by Evolution Process-based
Multisensory Collaboration (EPMC) analysis.

In EPMC, there are four defined evolution phases in an agricultural drought, including:
(a) Latency, (b) Onset, (c) Development, and (d) Recovery. Each phase corresponds to one critical
change in the life cycle of an agricultural drought discussed below.

The latency phase describes the initial period of a precipitation deficit compared with the
long-term mean. This is the start of a meteorological drought, but not the start for an agricultural
drought. Due to irrigation and water storage in the soil, the root zone soil moisture will not decline
dramatically during this phase. That is to say, the vegetation has not yet been influenced by the
drought, though precipitation is below average.

The onset phase represents the period when the root zone soil moisture drops below the long-term
mean. This phase indicates the start of water-stress in soil. It is known that not only different types
of vegetation, but also vegetation at different growth stages, have different water-stress responses.
For example, water-stress in early growth time will usually benefit deeper root development; on the
contrary, water-stress in flowering time will result in serious production loss. We will take advantage
of this information in calculating drought severity.

The development phase is the period during which the drought has fully developed. In this phase,
the impacts on the vegetation caused by the drought can be detected. Here, the vegetation response to
drought refers to long-term stable response by leaves, instead of daily response by stoma closure.

The recovery phase describes the period of water-recharge in soil. In this phase, enough rainfall
helps to bring the root zone soil moisture back to normal, so the agricultural drought condition is
eliminated. Though the precipitation and soil moisture return back to normal, the vegetation condition
usually does not return.

Given this evolution process, it is more reasonable to take the preceding drought conditions into
consideration when assessing drought impacts than to use the conventional method in which the
conditions are refreshed periodically. To quantify these phases using a remote sensing-based approach,
three indices were selected: the Precipitation Condition Index (PCI), Soil Moisture Condition Index
(SMCI), and Vegetation Condition Index (VCI). PCI, SMCI, and VCI measure the deficit (or stress)
of precipitation, root zone soil moisture, and vegetation in the background of more than 30 years.
They use the following formula.

Indexi = (Variablei −Variablemin)/(Variablemax −Variablemin) (2)

where Indexi is the PCI (or SMCI or VCI) value in month i, while Variablei is the precipitation/soil
moisture/vegetation in month i. Variablemax and Variablemin are the pixel values of precipitation/soil
moisture/vegetation in month i, and its maximum and minimum value during more than thirty
years, respectively.

Before calculating the indices, outliers determined by a Grubbs test were excluded. PCI/SMCI
values range from zero to one, corresponding to changes in precipitation/soil moisture conditions
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from extremely dry to water logging. For example, during periods of low precipitation, the PCI is
close or equal to zero, while during flood conditions, the PCI is close to one [53]. The selection of
the threshold for determining the anomaly is a key aspect of the EPMC analysis. We tested several
different threshold values for PCI, SMCI, and VCI, and concluded that a value of 0.5 was adequate to
represent an anomalous precipitation/soil moisture/vegetation event. This threshold also matched
well with our previous study [20]. It is worth noting that the threshold used in the EPMC analysis
may differ from place to place [9]. Overall, based on the EPMC method, the evolution process of an
agricultural drought can be determined, and therefore, the time length of each phase can be obtained.

3.2. Drought Indices for Comparison

A total of six drought indices were compared and evaluated based on how they portrayed
the spatio-temporal characteristics and severity of the 2012 Midwestern US drought. These indices
included the SPI, SPEI, PDSI, Palmer Z-index, VegDRI, and PADI. These indices are benchmarked
against the crop yield loss.

SPI was designed to be a relatively simple, robust index, which is based on precipitation alone [12].
Positive SPI values indicate greater than median precipitation, while negative values indicate less
than median precipitation or drought conditions. Mathematically, the SPEI is similar to the SPI, but it
includes the role of temperature, air humidity, wind speed, and solar radiation [16]. The SPEI takes
into account both precipitation and potential evapotranspiration with the simplicity of calculation and
the multitemporal nature of the SPI. SPEI bears the advantage of being a multi-scalar drought index
and is attractive for drought monitoring and applications related to future climate change [26].

PDSI is a classical measure of drought due to moisture condition across regions and time [17], and
has been widely used around the world [54]. In this study, a self-calibrated PDSI with Penman-Monteith
potential evaporation was adopted [52]. The Palmer Z-index is similar to the PDSI, and reflects the
departure of the meteorological conditions of a particular month from the average moisture climatology
for that month, regardless of what has occurred in prior or subsequent months [18]. The VegDRI
integrates satellite-based observations of vegetation conditions, climate data, and other biophysical
information [19], and has shown considerable capability in US [28].

PADI represents the latest multivariate drought index and its application is guided by the EPMC
framework, described above. PADI is used to assess the drought severity by integrating drought
evolution processes from the EPMC analysis with crop phenology information (see Appendix B).
A distinct feature of PADI is the accumulative severity, which quantifies since drought onset, instead
of the monthly refreshed severity calculated in SPI or VegDRI.

4. Results and Discussion

4.1. Drought Evolution Process

The evolution of 2012 Midwestern US drought as determined by the EPMC is shown in Figure 2.
In particular, the temporal evolutions of PCI (blue line), SMCI (brown line), and VCI (green line) in the
study area from 2011 to 2013 were obtained. Corn growth period with three stages in 2012, thresholds,
and four drought evolution phases with the inflection time points are marked. These three crop
growth stages are marked as light green, green, and bottle green strips, respectively. These four phases
are marked as faint yellow, orange, pomegranate, and light blue strips, respectively. An inflection
time point presents the change of drought phases defined in EPMC. A period of time between two
inflection points is the duration of one phase. It is shown in the figure that from 2011 to 2013, the
drought emerged, evolved, and recovered several times. For the 2012 drought, the latency phase
actually occurred around June 2011, as the PCI dropped from 0.53 to 0.44, crossing the threshold of
0.5 (discussed in the methodology section). This is the pre-phase of an agricultural drought with
below-normal precipitation. Then the drought officially started around September 2011 when the SMCI
decreased to 0.42 in response to the precipitation deficit. This is the start of the agricultural drought



Remote Sens. 2017, 9, 767 7 of 22

when root zone soil moisture shows deficit compared with normal value. It should be noted that VCI
values were higher than normal when PCI and SMCI were lower than 0.5 during the end of 2011 and
the start of 2012. There are several potential explanations for this unusual phenomenon; however,
more experiments are needed. The drought persisted until July 2012, after which the development
phase began with vegetation in the Midwest showing significant drought impacts. In other words, the
length of onset phase in this drought was about 10 months. This time period is affected by multiple
environmental variables, such as the timing of soil moisture deficit, follow-up rainfall amount, air
temperature, wind speed, storage of underground water, and type of ground vegetation. Further
investigation into the inherent reason that caused this long onset period is planned for future studies.
It should also be noted that the SMCI reached over 0.5 in November and December 2011, while the PCI
was still below 0.5. This indicates that the water deficit condition in this study area was still obvious
and ongoing at that time. This means that the recovery phase did not occur, and the onset phase
was still ongoing in the late months of 2011. The recovery phase of the 2012 Midwestern US drought
occurred around May 2013 when PCI and SMCI returned to 0.67 and 0.62, respectively. Overall, the
total life time of 2012 drought was 20 months.
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Figure 2. The temporal evolutions of PCI (blue line), SMCI (brown line), and VCI (green line) in
the study area from 2011 to 2013 using the EPMC method. Corn growth period with three stages
in 2012, thresholds, and four drought evolution phases with the inflection time points are marked.
Vegetative development stage is marked as light green strip. Reproduction stage is marked as green
strip. Ripening stage is marked as bottle green strip. Latency phase is marked as faint yellow strip.
Onset phase is marked as orange strip. Development phase is marked as pomegranate strip. Recovery
phase is marked as light blue strip. An inflection time point presents the change of drought phases
defined in EPMC. A period of time between two inflection points is the duration of one phase.

Previous studies from Hoerling et al. [55] and Otkin et al. [28] suggested the 2012 Great Plain
drought belonged to a “flash drought”, as it developed rapidly in May 2012 and had reached peak
intensity by that August. The total duration of this drought event is only 4 months. This result can be
seen in Figure 2, where there was a dramatic decrease of vegetation condition and precipitation in May
2012. However, using the EPMC method, we found that this change was simply an intensification of
long-term drought that had been developing since September 2011. In other words, the Midwestern US
actually had been under water deficit long before May 2012, which was not found in previous studies.
The key to this result was the use of multiple drought indices in the EPMC framework, through which
the drought evolution process becomes traceable. Similar results were also obtained by replacing
PCI and SMCI with SPI-1 and SSI-1, as shown in Supplementary Materials Figure S1. Therefore, our
study demonstrated that this multi-index integrated analysis method was a useful way to uncover the
creeping manifestation of agriculture drought.
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Based on the above divisions of this drought event, the length of each drought phase can be
calculated in days [20]. The corn growth phase in 2012 (30 April to 7 September, as shown in Figure 2)
was impacted by 77 days of drought onset and 54 days of drought development. On the contrary,
corn only had 6 days and 37 days of drought onset in 2011 and 2013, respectively. Therefore, only
considering the drought duration, the 2012 drought can be considered highly notable. The sensitivity of
corn to drought stress is higher in silking stage, but lower in grain filling (blister to dent) and vegetative
development (pre-silking), as discussed by Niyogi and Mishra [56]. As shown in the Figure 2, the
drought development phase started in the reproduction stages, indicating the potential for significant
impacts on the corn yield, as shown in the statistical data [2]. This highlights how short periods of
intense water stress can result in large crop yield reductions [28]. The above analysis illustrated the
multi-index based analysis method for the evolution and interactions of hydrometeorological variables
in forming an agricultural drought [57], as compared to a single indicator.

4.2. Drought Severity Assessment by USDM and Drought Indices

The abilities of different indices and the USDM to describe the spatio-temporal characteristics
of agricultural drought are delineated and compared, as shown in Figures 3 and 4, Table 3, and
Supplementary Materials Figure S2. Besides that, percentage of drought categories of 2012 Midwest
drought from the perspective of different drought indices and USDM was provided in Figure 5. Based
on this figure, we analyzed spatio-temporal evolutions of drought severity with its area proportion.
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scale of 1 month to 12 month.

Due to the formulation and computational model used, several similarities and differences
emerged: (i) southern and central regions, especially NE, KS, IA, and IL, were impacted the most
during the 2012 Midwestern US drought. The minimum PDSI value in NE was down to −7.00, while
the VegDRI value in IL was down to 5 in August 2012; (ii) USDM, VegDRI, and SPI-9 showed drought
to emerge in MN and IA, while Palmer Z-index suggested that MN was quite moist. Specifically, the
SPI-9 and Palmer Z-index values during May 2012 in MN were −0.21 and 2.86 respectively; (iii) most
indices suggested drought relief in IL and IN from August to September (the PDSI increased from
−3.60 to −2.67 and the Palmer Z-index increased from −0.38 to 1.54), however, only VegDRI and PADI
still indicated extreme drought condition (PADI increased from 0.27 to 0.38). This demonstrates the
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unique feature of PADI, which is designed for accumulative drought impact assessment, instead of
periodic refresh; (iv) PDSI and PADI agreed well with USDM in terms of the percentage of evolution.
Spearman’s rank correlation between PADI and USDM in percentage of different drought categories
was 0.87 **, 0.27, 0.71 **, 0.80 **, and 0.83 **, respectively (two stars superscript indicated p < 0.01). There
is lack of consensus among the indices regarding the spatio-temporal distribution of the 2012 drought.
Results indicate that every index could represent its own aspect of drought severity per its definition.
The crop phenology integrated drought severity assessment from PADI appeared to improve the
impact assessment. As shown in Figure 5, as the drought evolved, so did the drought severity, due to
the cumulative consideration in PADI model. For example, mild drought was 100% area in May, while
11.66% of them became moderate drought in 11 June. Then 29.57% area of moderate drought became
severe drought in middle July. Note that PADI is not a drought “snapshot” but an accumulative index,
similar to the idea of growing degree days which considers temperature (heat) accumulation.
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Table 3. Comparison between Different Drought Assessment Methods in Describing Drought
Spatial-Temporal Distribution and Evolution.

Approach Start Middle End Overall

USDM Central severe drought
(MN and IA)

South extreme drought
(KS, IL, and IN)

Southwest Exceptional
drought (KS and NE)

Southern regions were
more than the North;
Widespread drought
from July

PDSI ND and MN, NE and KS,
IN in moderate drought ND, NE and KS Extreme drought in ND,

NE, KS, MN, IA
Widespread drought
from June

Palmer Z-index
KS, IA, IL and IN in
extreme drought;
MN in moist

Almost all in
extreme drought

IL, IN, and OH in moist;
KS and MO in mid-range;
others in extreme drought

Most severe drought
result, especially in July

VegDRI ND, MN, IA, and IL in
moderate drought

Drought lessened but
then enhanced,
especially in NE,
IL and IN

South in severe drought,
especially in IL and MO

Move from north to
south; Revived after June

PADI All in abnormally dry
Moderate and severe
drought, except ND,
MN and OH

Extreme and exceptional
drought, except ND

Southern regions were
more than the North

SPI

Emerged in KS, IL and
IN by SPI-1, -3 and -6;
emerged in NE, MN, and
IA by SPI-9 and -12

Worse drought and
extreme drought in the
south by SPI-1 to -6;
small area of extreme
drought in SPI-9 and -12

Drought relief in by SPI-1
and -3, especially in IL, IN
and IA; Widespread severe
and exceptional drought in
other regions

More severe drought in
SPI-3; More inter-month
change in SPI-1; Similar
spatial pattern by SPI-3
and -6, SPI-9 and -12 in
most time

SPEI

Extreme drought in KS
then in WI, IL, and IN by
SPEI-1; Drought
emerged in IL and IN by
SPEI-3 and -6; Moderate
drought in the central
(MN, IL, and IA)

Worse drought by all
SPEIs; More extreme
drought in the central
south (MN, NE, IA,
and IL)

Drought relief in IL, IN
and OH by SPEI-1;
Extreme drought in the
central regions (SD, NE,
MN, and IA)

More severe drought in
SPEI-3; Similar spatial
pattern in SPEIs in
most time

A comparison of the time series of PADI with the time series of VCI and SMCI can be found in
Figure 6. The results from PADI are also useful in the harvest season, as a summary for the drought
impacts on crop in question. Though the accumulated water deficit is also measured by PDSI, it does
not correspond to the impact on agricultural production, which will be discussed in the next section.
PADI overcomes this deficiency by directly integrating crop phenology and durations, which is further
discussed below. However, in the early growth stages of the crop, the PADI may not fully capture
drought severity and demonstrated its full capacity as shown in the above results. This limitation will
also be discussed in Section 4.4. Therefore, it was suggested we should not use PADI alone. It should
also be noted that the different sources of data used for computing the drought indices had different
spatio-temporal resolutions, which could have affected the comparison between them.
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4.3. Drought Severity Assessment from Yield Loss

With regard to agricultural drought, it is important to assess drought severity based on yield
loss. A statistical estimate of crop yield loss caused by the 2012 US drought was demonstrated in
Mallya et al. [2], but it has a limited value when gauging ongoing drought severity. In order to aid this
process of linking crop loss to severity, we analyzed the performance of the different drought indices in
indicating the final yield loss at county-scale. First, correlations between the yield anomaly index (YAI)
and nine drought indices (PADI, PCI, SMCI, VCI, PDSI, VegDRI, Palmer Z-index, SPIs, and SPEIs) for
September 2012 are given in Figure 7. Each point in Figure 7 represents one county in the study region.
Another correlation analysis, shown in Supplementary Materials Figure S3, was also conducted taking
only drought conditions into account. This analysis specifically tested the capability of these drought
indices to indicate drought impacts. Using the Kolmogorov–Smirnov test at 5% significance level,
it was found that the YAI was not normally distributed; therefore, the Spearman rank correlation
coefficient (ρ) was used with corresponding p and n values. It should be noted that these datasets do
have different periods; however the basic relationship will not be altered.
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Figure 7. Scatter plot between yield (YAI) and drought indices for all counties in the study area,
including (a) PADI, (b) PCI, (c) SMCI, (d) VCI, (e) PDSI, (f) VegDRI, (g) Palmer Z-index, (h) SPI-1,
(i) SPI-3, (j) SPI-6, (k) SPI-9, (l) SPI-12, (m) SPEI-1, (n) SPEI-3, (o) SPEI-6, (p) SPEI-9, and (q) SPEI-12.
The regression line and Spearman’s rank correlation coefficient value (ρ) are also included.

It is shown that PADI had the highest correlation with YAI, with correlation value (ρ) of −0.74.
In addition to PADI, VegDRI also performed well in identifying drought severity in terms of yield
(ρ was 0.61, and 0.32 when only drought condition was considered). Out of the three univariate
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indices integrated in EPMC, PCI had good correlation with YAI (ρ was −0.58, and −0.54 when only
drought condition was considered), which was consistent with the finding of Zhang et al. [20]. SMCI
and VCI on the other hand had weak correlations, consistent with the findings of Otkin et al. [28].
Given that PADI is calculated by integrating SMCI and VCI, this correlation result demonstrated
the added value of PADI in modeling drought severity by fusing multiple sources of information.
The Palmer Z-index and PDSI had poor feasibility as an indicator for yield loss caused by drought.
As meteorological drought indicators, SPI and SPEI also had weak correlations with YAI. Interestingly,
the SPI showed better performance than SPEI. The highest correlation of 0.34 occurred in SPI-6 and
-9 indices. The best SPEI index was the SPEI-1, with the highest correlation value of 0.48. This result
indicated meteorological drought with 1–9 month scales had more significant impacts on corn yield
loss in Midwestern US 2012. When only drought conditions were taken into consideration, similar
patterns were observed: SPI-6 and -9 had the highest correlation values of 0.29 and 0.28, and SPEI-6
and -9 highest correlation values were 0.23 and 0.24.

As discussed in the Introduction, the crop-specific SPEI can improve the accuracy when calculating
water balance for a specific crop land. Therefore, more studies will be needed in the future to test
this crop-specific SPEI in quantifying drought severity compared with traditional SPEI. To assess the
robustness of PADI in different sub-regions, its correlation with YAI was investigated for different states
in the US Midwest as shown in Figure 8. It was found that PADI showed quite stable performance
across the Midwest. Mean correlation value was −0.70, ranging from −0.38 (Missouri) to −0.87
(Michigan). Therefore, within the different drought indices considered, PADI was a good indicator for
quantifying drought severity from yield loss. In terms of impact assessment, studies suggested that soil
moisture can be one but not the only aspect in assessing agricultural drought severity. This is reflected
in the correlation between YAI and SMCI which was only −0.34. Again, PADI as an integrative index,
demonstrated the value added by combining soil moisture with drought duration and crop phenology.
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Figure 8. Scattering plot between YAI and the final PADI value in September, 2012 in twelve states
of Midwest, including (a) Illinois, (b) Indiana, (c) Iowa, (d) Kansas, (e) Michigan, (f) Minnesota, (g)
Missouri, (h) Nebraska, (i) North Dakota, (j) Ohio, (k) South Dakota, and (l) Wisconsin. Linear
regression line and Spearman’s rank correlation value were given as well.

As shown in Table 4, in different states with different irrigation rates, there was a small advantage
of soil moisture integrated drought index (i.e., PADI and VegDRI) in irrigated area compared with
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drought indices without soil moisture information (i.e., SPI-1 and SPEI-1). In less irrigated area,
this advantage was greater. However, it is difficult to quantify the value added by soil moisture in
PADI and VegDRI; therefore, we conclude that adding soil moisture alone could lead to a theoretical
improvement in agricultural drought assessment, however, this single improvement not be obvious in
yield loss analysis due to the complex mechanism of agricultural drought and crop yield. There are
many variables that play roles in causing an agricultural drought, and as many as possible should be
taken into consideration when assessing the impacts of such droughts.

Table 4. Spearman’s rank correlation value between PADI, VegDRI, SPI-1, SPEI-1 and YAI in four
Midwestern states. The percentage of irrigated area in each state was also provided. Two star
superscript (**) indicates p < 0.01.

Drought Index More Irrigated Land Less Irrigated Land

MO (55.8%) NE (38.4%) SD (14.0%) ND (15.2%)

PADI −0.38 −0.70 ** −0.78 ** −0.78 **
VegDRI −0.26 −0.30 0.74 ** 0.00

SPI-1 0.41 0.04 0.16 −0.23
SPEI-1 0.36 0.32 0.17 0.16

4.4. Temporal Variation of Drought Severity Assessment

To further investigate the temporal variation of the PADI assessment, we analyzed the relationship
between PADI and yield loss over time. Figure 9 shows the correlation coefficient variations from the
beginning of the drought to the end. First, continuous improvements were found from about 0.2 to
0.7, indicating PADI could provide a more reliable drought severity assessment as an accumulative
drought index. Second, correlation improvements were significant from mid-July onward when
the intensification phase of 2012 Midwestern US drought began. In August, one month before the
end the drought, the correlation between YAI and PADI began to reach a significantly high level
(coefficient around 0.7). This suggests corn yield scenarios can be precisely constructed from the PADI
at approximately one month prior to harvest time. Therefore, an integrative phenology based index
such as PADI is a good indicator of the amount of yield loss due to drought stress especially in late
growing season.
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level of 1%.

Results from Otkin et al. [28] demonstrated that correlation first increased but then decreased
along time between conventional drought indices (SPI, Evaporative Stress Index, and soil moisture
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mean value) and corn yield loss. The strongest correlations existed only in critical crop growth stages,
such as July for corn. In this experiment, we calculated the correlation between SPI-12 and corn yield
anomaly index from May to September, as shown in Figure 10. It was found that the coefficients
exhibited a convex shape. In other words, the coefficients were higher in July (mean value was 0.54),
while lower in May and September (mean value was 0.39 and 0.44, respectively). By comparing with
PADI performance, it was found that: (1) Overall, SPI-12 performed better than PADI in May and June
(0.39 vs. 0.19; 0.49 vs. 0.25), fairly in July (0.54 vs. 0.46), worse than PADI in August and September
(0.53 vs. 0.68; 0.44 vs. 0.70). Mean coefficient value was used here for comparison; (2) The highest
mean coefficient from PADI is higher than that in SPI-12 (0.70 vs. 0.54); (3) The number of coefficient
with p < 0.01 is 98.7% in PADI results, while 46.7% in SPI-12. This difference represents the spatial
robustness of PADI compared to SPI-12 in Midwestern US. Therefore, based on the above analyses,
SPI-12 was a good indicator in the early growing season, while its performance in late growing season
and spatial robustness were two limitations when compared to PADI. This highlights the distinctive
differences between PADI and a common non-accumulative drought index. However, given the
limitations of PADI, we also suggest a more appropriate and complete evaluation results can only be
obtained by using PADI and other indices together.
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Figure 10. Box plots of correlations between YAI and SPI-12 from the beginning of drought to the end
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level of 5%.

When further analyzing the coefficient of SPI and SPEI for different temporal scales and months,
more results and details were found, as shown in Table 5: (1) Both SPI and SPEI in middle growth
season had the highest coefficients with YAI. (2) SPI basically performed better than SPEI, which is
consistent with the results in Section 4.3. (3) SPI-6 and SPEI-6 were the two best indicators to represent
yield loss among all SPIs and SPEIs. (4) Compared with PADI, SPI was basically better from May to
July, worse in August and September.

Table 5. Spearman’s rank correlation value of multi-time scale SPI and SPEI with YAI from May to
September. Two star superscript (**) indicates p < 0.01. SPI-6 and SPEI-6 were marked in bold to show
their superior abilities in representing yield loss anomaly. Sampling size of SPI and SPEI was 433 and
281, respectively.

Index May June July August September May June July August September

SPI-1 0.42 ** 0.54 ** 0.43 ** −0.21 ** −0.18 ** SPEI-1 0.19 ** 0.58 ** 0.27 ** −0.23 ** −0.48 **
SPI-3 0.48 ** 0.51 ** 0.63 ** 0.40 ** −0.22 ** SPEI-3 0.25 ** 0.41 ** 0.40 ** 0.34 ** −0.17 **
SPI-6 0.37 ** 0.53 ** 0.63 ** 0.59 ** 0.34 ** SPEI-6 0.12 0.41 ** 0.47 ** 0.40 ** 0.25 **
SPI-9 0.04 0.38 ** 0.44 ** 0.52 ** 0.34 ** SPEI-9 −0.10 0.13 0.17 ** 0.31 ** 0.26 **
SPI-12 0.30 ** 0.46 ** 0.39 ** 0.22 ** 0.07 SPEI-12 0.31 ** 0.46 ** 0.35 ** 0.08 −0.02
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The correlation analysis between VCI and yield anomaly index from May to September was also
conducted, as shown in Figure 11. Overall, the correlation coefficient showed double peaks. On peak
reached up to 0.60 on 25 June and the other reached up to 0.66 on 30 July. While the lowest correlation
coefficients around 0.30 occurred at the beginning and end of this drought. The second feature of
this correlation result was that only 26.3% of coefficient values with p < 0.05 were obtained. This fact
indicates a spatially instable relationship between VCI and YAI across the Midwestern US, which is a
contrast to that of PADI. When comparing the correlation results of VCI with PADI, the performance
of PADI is still remarkable. The correlation improvements were significant since mid-July. And in
August, one month before the end the drought, the correlation between YAI and PADI began to reach
a significantly high level (coefficient value was around 0.7). So the coefficient improvement of PADI is
more smooth and stable across the Midwestern US.
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4.5. Drought Severity Assessment by Combing Multple Drought Indices

To test the ability of multiple drought indices in simulating crop losses, a multi-linear regression
analysis was conducted as shown in Table 6. Several representative drought indices were selected,
including SPI-6 and SPEI-6 in July, VCI on 30 July, VegDRI and PADI in September. Total 281 counties
were selected as they have all these drought indices values. Precipitation-based and vegetation-based
drought indices were combined together, such as SPI and VCI. It was found all these combinations
achieved good regression results with p < 0.01 at 5% significant level. While the coefficient of
determination ranges from 0.23 (when using SPEI and VCI) to 0.63 (when using SPI and PADI
or SPI, VegDRI, and PADI). Overall, the combination of multiple drought indices did not significantly
improve the ability in simulating crop yield losses. Similar results were also found by [33]. So it was
suggested multiple drought indices should be used separately in this case study.

Table 6. Multi-linear regression analysis between representative drought indices and yield loss. One
star symbol (*) represents the multiplication function. Regression size of 281 was used here.

No. Indices Regression Formula R2 Significant Level p RMSE

1 SPI, VCI YAI = 0.71 * SPI + 1.34 * VCI−0.97 0.38 0.01 0.00 0.76
2 SPEI, VCI YAI = 0.52 * SPEI + 1.62 * VCI − 1.46 0.23 0.01 0.00 0.95
3 SPI, VegDRI YAI = 0.48 * SPI + 0.02 * VegDRI − 2.58 0.38 0.01 0.00 0.76
4 SPEI, VegDRI YAI = 0.18 * SPEI + 0.03 * VegDRI − 4.20 0.33 0.01 0.00 0.82
5 SPI, PADI YAI = 0.37 * SPI − 8.86 * PADI + 2.84 0.63 0.01 0.00 0.46
6 SPEI, PADI YAI = 0.28 * SPEI − 10.00 * PADI + 3.11 0.60 0.01 0.00 0.50
7 SPI, VCI, VegDRI YAI = 0.45 * SPI + 1.22 * VCI + 0.01 * VegDRI − 2.92 0.42 0.01 0.00 0.72
8 SPEI, VCI, VegDRI YAI = 0.15 * SPEI + 1.29 * VCI + 0.03 * VegDRI − 4.52 0.37 0.01 0.00 0.78
9 SPI, VegDRI, PADI YAI = 0.32 * SPI + 0.004 * VegDRI − 8.63 * PADI + 2.26 0.63 0.01 0.00 0.46

10 SPEI, VegDRI, PADI YAI = 0.18 * SPEI + 0.01 * VegDRI − 9.09 * PADI + 1.66 0.61 0.01 0.00 0.48



Remote Sens. 2017, 9, 767 17 of 22

4.6. Comprehensive Comparison

As shown in Table 7, a comprehensive comparison was conducted to demonstrate the
differences of these drought indices in gauging the severity of 2012 Midwestern US drought.
Their variables, modeling approaches, performances in drought severity, correlation with YAI, and
features were analyzed.

Table 7. Comprehensive comparison between PADI and other drought indices.

No. Index Variables Modeling Approaches Drought Severity Correlation with YAI Features

1 SPI Precipitation Standardized
precipitation deficit

Rapid changes in short
term time scales; slow

changes in long
term scales

High in middle growth
season; SPI-6 with the

highest correlation
(0.63) in July

Different performances
among different time

scale SPIs

2 VCI Vegetation NDVI anomaly
The most visible

severity of
agricultural drought

Weak correlation
during middle June to
middle July (0.4~0.5)

Impacted by
multiple variables
besides drought

4 SPEI

Precipitation
Standardized deficit of

precipitation and
reference

evapotranspiration

Rapid changes in short
term time scales; slow

changes in long
term scales

High in middle growth
season; SPEI-1 with the

highest correlation
(0.58) in June

Significant different
performances among

different time scale PEIs
Reference

evapotranspiration

5 PDSI

Temperature

Relative dryness based
on water balance model

Middle resolution
of severity

No significant
correlation with yield

loss in late
growth season

Sensitive to the
method used to

calculate potential
evapotranspiration

Precipitation

Available water
content

6 Palmer
Z-index

Temperature

Relative dryness based
on water balance model

Overestimate
severity in July

No significant
correlation with yield

loss in late
growth season

Sensitive to short
term precipitation

Precipitation

Available water
content

7 VegDRI

Temperature

Data mining algorithm
based on climate,
vegetation, and
biophysical data

High resolution
of severity

Significant correlation
with yield loss in late
growth season (0.61)

Hard to interpret its
physical meaning

Precipitation

Seasonal
greenness

Available water
content

Biophysical
condition

8 PADI

Precipitation Accumulated
severity based on

drought process and
crop phenology

Progressive severity
accumulation;

consistent with USDM

Significant correlation
with yield loss in late
growth season (−0.74)

Not suitable for
flash drought

Soil moisture

Vegetation

Phenology

5. Conclusions

Gauging the severity of drought is critical for precisely assessing drought impacts. It becomes
more challenging due to numerous drought indices we have [34]. This study investigated the severity
of the 2012 Midwestern US drought based on several popular drought indices, including precipitation
based, vegetation based, and hybrid indices. In particular, PDSI, Palmer Z-index, VegDRI, PADI, SPIs,
SPEIs, were compared along with the USDM. The drought severity was assessed from three aspects:
spatial distribution, temporal evolution, and crop impacts. This study had several new findings in
assessing 2012 US drought compared with existing studies [2,28,33,55]. It was concluded as follows.

According to EPMC analysis, the duration of the 2012 Midwestern US agricultural drought was
20 months. It began as a meteorological drought around June 2011, developed into a minor agricultural
drought around September 2011, intensified around July 2012, and was eliminated by May 2013.
This finding is different from previous studies [28,55], which suggested this drought belonged to a
“flash drought”, as it developed rapidly in May and reached peak intensity by August. And the total
duration of this drought event was only 4 months. Based on our analysis, not only this dramatic
change was detected, but also found this change was just the intensification of long lingered 2012
drought since September 2011. In other words, the Midwestern US actually had been under water
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deficit long before May 2012, which was ignored by previous studies. Only few studies like [2,33] has
revealed part of this fact. Therefore, our study demonstrated this multi-index integrated analysis was
able to fully uncover the creeping manifestation of agriculture drought.

Although drought spatial distribution of severity varied among different indices as pointed out
by [2], southern and central regions, especially NE, KS, IA, and IL were impacted most during the
2012 Midwestern US drought. Different drought emerging places and relief places were determined
by different indices. For example, most indices suggested drought relief in IL and IN from August
to September (PDSI increased from −3.60 to −2.67, Palmer Z-index increased from −0.38 to 1.54);
however, only VegDRI and PADI still indicated extreme drought condition (PADI increased from 0.27
to 0.38). The unique feature of PADI is also distinct, which is designed for accumulative drought
impact assessment, instead of periodic refreshment.

According to PADI, 51% of the Midwest was impacted by exceptional drought, 27% by extreme
drought, and nearly 20% by severe drought, and KS, IA, MO, WI, and IL had the most impact, which
is basically consistent with [55]. Moreover, PDSI and PADI agreed well with USDM in terms of the
percentage of evolution. Spearman’s rank correlation between PADI and USDM in percentage of
different drought categories was 0.87 **, 0.27, 0.71 **, 0.80 **, and 0.83 **, respectively. This finding
highlights the advantage of considering an accumulated drought impact index.

With regard to the ability in representing yield loss by drought stress, PADI and VegDRI had
the highest significant correlation with corn yield loss (ρ was 0.74 and 0.61, p < 0.01), better than
precipitation, soil moisture, or vegetation based index alone in September. It was also found that PADI
showed quite stable performance across the Midwest. Mean correlation value was −0.70, ranging
from −0.38 (Missouri) to −0.87 (Michigan). In addition, strong correlation between PADI and corn
yield was noted a month before harvest (ρ was around 0.7, p < 0.01) and increased substantially until
the end of the drought event. This result highlighted the value of PADI in quantifying the drought
impacts [2] using a remote sensing-based approach.

For comparison, the coefficient of SPI/SPEI with YAI was higher in July (mean value was 0.63
when using SPI-6), while lower in May and September (mean value was 0.37 and 0.34, respectively
using SPI-6). This result emphasized the importance of choosing a critical period when using
SPI/SPEI [29], and an appropriate time scale is also vital [25]. Although both SPI and SPEI in middle
growth season had the highest coefficients with YAI, SPI basically performed better than SPEI. This
finding highlights the effectivity of SPI [26], but it is different from [24,31] which suggested SPEI was
better. The correlation coefficient of VCI with YAI showed double peaks. On peak reached up to 0.60
on 25 June and the other reached up to 0.66 on 30 July. While the lowest correlation coefficients around
0.30 occurred at the beginning and end of this drought. Besides that, the number of coefficient values
with p < 0.05 was only 46.7% and 26.3% in SPI and VCI, while this number was 98.7% in PADI. PDSI
and Palmer Z-index had weak correlation with yield loss, which is consistent with [24] but different
from [30]. The above comparison between this study and previous studies did not represent which
one is right or wrong because of different drought assessment approaches. Instead, this discrepancy
highlights the importance of site-specific drought research [33] and a standardized drought database
for thorough comparison in the future. Based on this study, PADI is especially more suitable in late
period of drought event, while it should also be used together with other indices like SPI in early and
middle drought periods.

This study demonstrated the advantages and limitations of different drought indices in drought
monitoring. In particular, distinct features of hybrid drought index like PADI have been found,
compare to only precipitation-based SPI, vegetation-based VCI, and other hybrid indices. This is the
first comprehensive analysis of PADI in US, as there was only a brief discussion in China before [20].
Although this study selected the 2012 Midwestern US drought as a case study, it also can be easily
applied over other regions. And we also emphasis that we should not use single drought index alone.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/8/767/s1,
Figure S1: The temporal evolution from 2011 to 2013 of SPI-1, SSI-1, and VCI in the study area under the

www.mdpi.com/2072-4292/9/8/767/s1
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EPMC, Figure S2: Details of 2012 Midwest US drought evolution spanning from May to September 2012 from
perspectives of multi-drought indices, including USDM, PDSI, Palmer Z-index, VegDRI, PADI, 1–12 month SPI,
and SPEI, Figure S3: Scattering plot between YAI and nine drought indices (PADI, PCI, SMCI, VCI, PDSI, VegDRI,
Palmer Z-index, SPIs (SPI-1, -3, -6, -9, and -12) and SPEIs (SPEI-1, -3, -6, -9, and -12)) based on all counties in
the study area, Figure S4: Selected nine climate divisions in the study area for testing the relationship between
drought category and yield loss, Figure S5: Drought category and corresponding yield anomaly index of USDM,
PDSI, Palmer Z-index, VegDRI, PADI, SPIs, and SPEIs with YAI in the early growth season (May), Figure S6: Same
as Figure S5, except in the middle growth season (July), Figure S7: Same as Figure S6, except in the late growth
season (September).
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Appendix A

McWilliams et al. found that the largest yield reduction occurred with water-stress at silking,
and the total reduction was 50% [49]; for the stage before and after silking, the total reduction was
25% respectively, which meant silking stage was most sensitive to the stress, and then the stage before
and after silking. Therefore, water-stress coefficients of 0.25, 0.50, and 0.25 were used in this study to
represent degree of the corn response to drought condition. The similar result appears in Denmead
and Shaw, which pointed out that moisture stress prior to silking reduced grain yield by 25%, moisture
stress at silking reduced grain yield by 50% and moisture stress after silking reduced grain yield by
21% [58]. Many commons are that the most sensitive period for drought stress in corn is during the
period between silk emergence and the blister stage (one stage before Milk). Therefore, based on the
above research, we divided the corn period to three stages, and defined their sensitivity coefficients
shown in the Table 2.

The exactly starting date of period 1, 2 could be acquired from the Crop Progress data in USDA
NASS [42]. According to the USDA, an acre would be considered in or beyond a phenological stage
when 50 percent or more of the plants in that acre are in or beyond that stage. Therefore, we can know
when 50% or more of the corn develop to stage 1 (planted) and stage 2 (silking) to determine the start
dates of each of them, respectively. For the start date of stage 3, according to McWilliams et al. [24],
it was defined by “20 days after silking”. But we only have the statistics of the next stage: Dough. And
it is defined as “26 days after silking”. Therefore, we define “the date when 50% or more of the plants
in that acre are in or beyond Dough stage, minus 6 days “as the start date of stage 3. For the end of
each stage, we use one date before new stage start. And the end of stage 3 is the time when 50% or
more of the corn develop to stage maturity.

Appendix B

Based on the drought evolution process (i.e., onset and development phases) obtained by EPMC,
PADI assesses the agricultural drought impacts by integrating it with crop phenology [20]. In particular,
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PADI combined the different water-deficit sensitivities during different crop growth stages with
drought evolutions. The concept of PADI is defined as the crop accumulated drought severity from its
growth. The calculation of PADI begins when both crop growth and agricultural drought exist. Its
formula is proposed as below:

PADIt = PADIt−1 +

n
∑

i=1
[(T ∩ si ∩ p2) ∗ λi ∗ (1− SMCIt) + (T ∩ si ∩ p3) ∗ (1−VCIt)]

PADImax
(A1)

where PADIt is the PADI value in the time t, and T is the time interval for each PADI value. Here T is 7
days, as PADI will be refreshed weekly. si represents different crop growth stages in the study area, and
n is the total number of growth stages. This data was obtained from USDA NASS in 2012 as described
in Appendix A. p2 and p3 are the durations of the onset phase and development phase, respectively.
T∩ si ∩ p2 represents the duration of the intersection between this calculation week, growth stage i, and
the onset phase, which is similar to T∩ si ∩ p3. λi is the water-deficit sensitivity coefficient in the growth
stage i, which describes the degree of soil water stress impacts on the crops. SMCIt and VCIt are the
SMCI and VCI values during the period of T ∩ si ∩ p2 and T ∩ si ∩ p3, respectively. Using these two
univariate drought indices (SMCI and VCI) in PADI ensures anomalies in root zone soil moisture and
vegetation can be directly represented. By adding the previous PADI value (PADIt−1), a higher PADI
indicates increased accumulated impacts over the crop areas. The most severe agricultural drought
occurs when crop growth is affected by extreme environmental conditions. In this case, PADI reaches

up to the maximum value, PADImax =
n
∑

i=1
[(si ∩ p2) ∗ 1 + (si ∩ p3) ∗ 1], which is the denominator.
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