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Abstract: Attaining accurate precipitation data is critical to understanding land surface processes
and global climate change. The development of satellite sensors and remote sensing technology
has resulted in multi-source precipitation datasets that provide reliable estimates of precipitation
over un-gauged areas. However, gaps exist over high latitude areas due to the limited spatial
extent of several satellite-based precipitation products. In this study, we propose an approach for
the reconstruction of the Tropical Rainfall Measuring Mission (TRMM) 3B43 monthly precipitation
data over Northeast China based on the interaction between precipitation and surface environment.
Two machine learning algorithms, support vector machine (SVM) and random forests (RF), are
implemented to detect possible relationships between precipitation and normalized difference
vegetation index (NDVI), land surface temperature (LST), and digital elevation model (DEM). The
relationships between precipitation and geographical location variations based on longitude and
latitude are also considered in the reconstruction model. The reconstruction of monthly precipitation
in the study area is conducted in two spatial resolutions (25 km and 1 km). The validation is
performed using in-situ observations from eight meteorological stations within the study area. The
results show that the RF algorithm is robust and not sensitive to the choice of parameters, while the
training accuracy of the SVM algorithm has relatively large fluctuations depending on the parameter
settings and month. The precipitation data reconstructed with RF show strong correlation with in
situ observations at each station and are more accurate than that obtained using the SVM algorithm.
In general, the accuracy of the estimated precipitation at 1 km resolution is slightly lower than that of
data at 25 km resolution. The estimation errors are positively related to the average precipitation.

Keywords: reconstruction; satellite-based; precipitation

1. Introduction

Precipitation is a significant factor affecting surface drought and wetness conditions, ecosystem
health, and regional environment change [1,2]. Precipitation data are the basic observation items of
meteorological stations. For a long time, meteorological ground observation stations have mainly
been used to observe precipitation. Today, with the improvements in observation technology, ground
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precipitation stations are automated and fundamental for the precipitation observation system [3,4].
However, the observation site can only reflect the precipitation information of limited discrete
points. The individual site can only represent the precipitation within a certain radius around the
location, especially in complex terrains, which is influenced by local environmental factors. Acquiring
precipitation observations over mountainous and underdeveloped regions is therefore still difficult
due to the sparse rain gauge network.

The development of satellite technologies revolutionized the observations and acquisition
of precipitation information, and enriched the data sources for precipitation observations [5–14].
Remote sensing has been the main tool for the estimation of precipitation, and several satellite-based
precipitation datasets have been developed [15], such as the Global Precipitation Climatology Project
(GPCP) [12], Global Satellite Mapping of Precipitation Project (GSMaP) [16], Climate Prediction Center
(CPC) Morphing method (CMORPH) [17], Meteosat Visible and Infrared Imager (MVIRI) [18], and
the Tropical Rainfall Measuring Mission (TRMM) [19,20]. Among those remote sensing precipitation
datasets, the TRMM satellite (equipped with the first active microwave sensor dedicated to detect
precipitation) and the TRMM precipitation datasets have provided reliable data on water cycles for
ecological models and environmental and climate change studies [21].

However, acquiring precipitation datasets over regions without satellite coverage is still
challenging. For example, the spatial coverage of existing global satellite-based TRMM precipitation
datasets is 50◦ S to 50◦ N. The question therefore arises whether the application of the satellite
precipitation datasets may be limited by its spatial extents in global climate modeling. Hydrologic
modeling applications might also be restricted over high-latitude areas, especially in areas with sparse
in situ networks for precipitation measurements. There are various methods, including multiple linear
regression, machine learning, time series analysis, and interpolation techniques that have been used to
fill gaps in climatic variables, such as streamflow, total water storage changes, air temperature, and soil
moisture [22–24]. However, they have not been widely used for the reconstruction of satellite-based
precipitation. Due to the temporal and spatial complexity of precipitation itself and the complex
relationship with other influencing factors, simple fitting algorithms or image restoration methods
based on an image itself are difficult to use and the resulting products are unreliable. Therefore,
auxiliary information might be introduced into the reconstruction process.

Selecting appropriate land surface characteristics that are strongly related to precipitation is
the primary issue. Those datasets must be easily accessible and widely covered. Previous studies
acknowledged the response of vegetation to precipitation [25–28]; vegetation can also influence the
development of moist convection both locally and on scales of ten to thousands of kilometers [2,29].
Multiple studies reported the co-variability between surface temperature and precipitation [30,31].
When the ground is wet, more energy likely contributes to evaporation. If the ground is wet due to
rainfall, the associated clouds block the sun, reducing the energy and temperature. Furthermore, high
rates of evaporation could occur directly from bare soil after periods of rain, further suppressing the
sensible heat and surface temperature [32,33]. Therefore, remote sensing vegetation indices (e.g., the
Normalized Difference Vegetation Index, NDVI) and land surface temperature (LST) are often used to
monitor dry and wet surface state [25,27,28,34,35]. Moreover, the topography could also have great
impact on the regional atmospheric circulation and spatial pattern of precipitation [36,37]. In theory, an
increase in the elevation could increase the relative humidity of air masses by expanding and cooling
arising air masses, resulting in precipitation [38]. Globally covered NDVI, LST, and digital elevation
model (DEM) products with fine spatial resolution provide reliable remote sensing data. These data
products are all released online and are easily accessible.

The purpose of this study is to develop an approach for the estimation of precipitation over
regions that are not covered by satellite-based precipitation datasets. Based on the relationship
between precipitation and NDVI, LST and DEM, we constructed estimation models using machine
learning algorithms, and conducted a case study over regions in Northeast China that are uncovered
by TRMM 3B43 precipitation data.
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2. Study Area and Data Resources

2.1. Study Area

China is located in the eastern part of Asia at the western Pacific coast, between 20◦13′ N and
53◦34′ N, 73◦ E and 135◦05′ E, covering a total area of 9.6 million km2. China’s climate is mainly
dominated by dry seasons and wet monsoons [39,40], which lead to pronounced precipitation and
temperature differences between winter and summer [41]. The study area, with a total area of
175,546 km2, is located in the northern part of Northeast China (Figure 1). The region is in the high
latitudes and belongs to the cold temperate zone. Precipitation data from eight meteorological ground
stations in the study area are used for validation (Figure 1b). Based on in situ observations, the
average annual precipitation in the study area is 448.5 mm. The wettest month is July (monthly
average precipitation is 123.7 mm), while the driest month is February (monthly average precipitation
is 4.2 mm).
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Figure 1. (a) Tropical Rainfall Measuring Mission (TRMM) 3B43 V7 precipitation data over China in
August 2009; (b) region in Northeast China uncovered by TRMM.

2.2. Data Resources

The remote sensing precipitation data were obtained from the Tropical Rainfall Measuring Mission
(TRMM), which is a research satellite launched in 1997 for monitoring precipitation over the tropical
and sub-tropical regions [19]. The original spatial resolution of precipitation data obtained from TRMM
is 0.25◦ × 0.25◦, and the spatial coverage of products is 50◦ N–50◦ S. The datasets used in this study are
monthly precipitation data from the version 7 of TRMM 3B43 product (TRMM 3B43 V7) of 2003, 2006
and 2009 (http://pmm.nasa.gov/TRMM/trmm-instruments). The original data were projected to the
Albers Conical Equal Area projection and the spatial resolution of the data was resampled to 25-km.

The monthly NDVI and land surface temperature (LST) datasets were obtained from Moderate
Resolution Imaging Spectroradiometer (MODIS) products that acquired with Terra (https://lpdaac.
usgs.gov/). These products with original sinusoidal projection were re-projected to the Albers Conical
Equal Area projection. The spatial resolution of the data was maintained at 1 km.

The DEM data were obtained from the NASA Shuttle Radar Topographic Mission (SRTM)
(http://srtm.csi.cgiar.org/) [42]. DEM data with 30 and 90m spatial resolutions are available. The
data with 90 m spatial resolution were downloaded considering the spatial scales of this study. Then

http://pmm.nasa.gov/TRMM/trmm-instruments
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
http://srtm.csi.cgiar.org/
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the data were re-sampled to 1 km using an average algorithm by averaging the values of all pixels
within each 1 km pixel.

3. Methods

3.1. Precipitation Reconstruction Algorithm

The basic idea of the reconstruction method in this study is to build estimation models using
samples extracted from available TRMM 3B43 pixels; the models are established based on the
relationship between precipitation and land surface characteristics. In this study, we considered
NDVI, daytime LST (LSTday), nighttime LST (LSTnight), day-night LST difference (LSTDN), and DEM
as land surface characteristics. The land surface characteristics datasets over the study area were then
used as input for the established model to estimate the precipitation over the un-covered region. This
method is based on the assumption that the machine learning algorithm can simulate the relationship
between precipitation and land surface characteristics with high accuracy. This simulation model can
be used to estimate the precipitation over regions that were uncovered by the precipitation datasets.

Relationships between precipitation and the surface conditions may vary widely from one
environment to another and from one region to another. Therefore, to establish a robust reconstructing
model, sufficient training datasets were required to guarantee that there are enough training samples.
Meanwhile, concerning the spatial heterogeneity of precipitation, we included geo-locations (latitude
and longitude) as independent variables. In this study, we used the TRMM data covering the China
land area as input dependent variable samples, and land surface temperature, NDVI, DEM, and
geo-locations (latitude and longitude) were input as independent variables. The process of the
approach can be described as follows:

(1) In regions covered with snow, water bodies, and desert, the NDVI values are usually constant
under 0.0. To eliminate the influence of snow and water bodies, the threshold NDVI < 0.0 was
used to distinguish and remove snow, and water body pixels from original monthly NDVI images.

(2) The LSTDN was calculated by subtracting LSTnight from LSTday; NDVI1km, DEM1km, LSTday-1km,
LSTnight-1km, LSTDN-1km were resampled to 25 km resolution using an average method. The
geographical coordinates of the center of each 25 × 25 km grid were extracted.

(3) The relationship between the resampled independent variables and TRMM 3B43 V7 precipitation
data were established using machine learning algorithms. In this study, we tested two machine
learning algorithms for simulating the monthly precipitation, support vector machine (SVM) and
random forests (RF).

(4) The reconstruction of monthly precipitation in the study area was conducted on two scales.
First, the resampled independent variables (NDVI, DEM, LSTday, LSTnight and LSTDN ) with
25 km spatial resolution were input into the established model. Reconstructed results of 25 km
resolution were achieved. Second, the 1 km spatial resolution precipitation can be simulated by
applying the established model to the variables with original 1 km spatial resolution.

3.2. Support Vector Machine (SVM)

The SVM is an outstanding machine learning algorithm for classification and regression problems,
and has been successfully applied in different fields such as soil moisture estimation [43], impervious
surface estimation [44] and biophysical parameter estimation from remote sensing data [45]. The
original SVM algorithm was invented by Vladimir Vapnik and his co-workers in the early 1990s for
classification problems, and then was extended to the case of regression [46,47]. The basic idea of
the SVM algorithm is derived from optimization theory that uses a hyper-plane to classify the input
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variables into an m-dimensional feature space with maximal margin. The maximal margin is derived
by solving the constrained dual problem:

Maximize W(α)

= −ε
L
∑

i=1
(αi + α∗i ) +

L
∑

i=1
(yi(αi − α∗i ))

− 1
2

L
∑

ij=1
(αi − α∗i )((αj − α∗j ))k

(
Xi, Xj

) (1)

Subject to

{
L

∑
i=1

(αi − α∗i ) = 0 and 0 ≤ αi, α∗i ≤ C

}
(2)

where xi are independent variables, yi is dependent variables, C is the capacity parameter cost, and
i = 1, . . . ., L is the sample size and the approximating function is given by

f (x) =
N

∑
i=1

(αi − α∗i )k(x, xi) + b (3)

where α and α∗ are Lagrange multipliers, and b is the “bias” term; and k(x, xi) is the kernel function
that measures non-linear dependence between the two input variables x, and xi. The xi’s are “support
vectors”, and N (usually N � L) is the number of selected data points or support vectors corresponding
to values of the independent variable that are at least ε away from actual observations. The training
pattern in the dual formulation can be used to estimate the dot product of two vectors of any dimensions
and is regarded as the advantage of the dual formulation. This advantage in SVM is used to deal with
non-linear function approximations.

Selecting a suitable kernel function and kernel parameter are important steps involved in SVM
modeling. In this study, we selected the Radial Basis Function (RBF) as the kernel. The RBF kernel
function is given by

k(x, x′) = exp (−γ|x− x′|2) (4)

where γ is specified by keyword gamma, must be greater than 0.
Thus, when training an SVM with the RBF kernel, two parameters must be considered: C and

gamma. The parameter C, common to all SVM kernels, trades off misclassification of training examples
against simplicity of the decision surface. A low C makes the decision surface smooth, while a high C
aims at classifying all training examples correctly. The gamma defines how much influence a single
training example has. The larger gamma is, the closer other examples must be to be affected. Interested
readers are referred to Kalra and Ahmad [48] for the illustration of the working mechanism and an
example of the SVM technique.

3.3. Random Forests (RF)

Random Forests (RF) as an non-parameter and ensemble learning algorithm for regression and
classification had been increasingly applied and was reported to yield high accuracy and be robust to
outliers [49]. The RF, which was proposed by Breiman [50], is a combination of tree predictors such
that each tree depends on the values of a randomly chosen subset of input variables vectors sampled
independently and with the same distribution for all trees in the forests [50]. The tree predictor is
based on the classification and regression trees (CART) algorithm [51]. The basic idea of CART is to
construct a tree-like graph or model of decisions and their possible consequences. It generates relative
homogeneous subgroups by recursively partitioning the training dataset to the maximum variance
between groups of independent and dependent variables. In each of the terminal nodes of the tree, a
simple and accurate model is built to explain the relationship of independent and dependent variables.
The RF regression algorithm process can be briefly described as follows:
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(1) The ntree (number of trees) samples sets are randomly drawn from the original training sample
set with replacement. Each sample set is a bootstrap sample, and the elements that are not
included in the bootstrap are termed “out-of-bag data” (OOB) for that bootstrap sample.

(2) For each bootstrap sample, an un-pruned regression tree is grown with the modification that a
random subset of the variables, from which the best variables are split, is selected at each node.

(3) Predictions for new samples can be made by averaging the predictions from all the individual
regression trees:

f =
1
N

N

∑
i=1

fi(x) (5)

where N is the number of trees, fi(x) is the prediction from each individual regression tree.

4. Results and Analysis

4.1. Performance of Regression Algortihms

The selected algorithms are openly accessible and easy to use; they are clearly documented
elsewhere. Sources of the codes are implemented in scikit-learn, which is a Python package integrating
a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and
unsupervised problems [52]. The establishment of the RF and SVM based models largely depends on
certain parameterizations, and the choice of optimal parameters is significant. In practice, we conducted
experiments to cover a majority range of parameter combinations for each algorithm [50–57] (Table 1).
A grid search algorithm was implemented to find the optimal parameters for each algorithm. The grid
search exhaustively considers all parameter combinations with a cross-validation scheme. We used
a k-fold strategy, which divides all the samples in k groups of samples, called folds, of equal sizes.
The prediction function is learned using k-1 folds, and the fold left out is used for test. In this study, we
used default k value 3.

Table 1. Parameter combinations for each algorithm.

Algorithm Parameter Type Parameters

Support Vectors Machine
Kernel rbf
Cost(C) 20, 40, 60,80,100, 150, 200, 220, 250, 280,300
gamma 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 1, 21, 22, 23, 24, 25, 26

Random Forests n_estimators 20, 40, 60, 80, 100, 120, 140, 160, 180, 200

The SVM and RF model were trained by using the same datasets with 25 km spatial resolution.
All available pixels covering China land area were used as samples, including 14,893 pixels for
each month. Figure 2 shows the training accuracy of the two algorithms under different parameter
conditions. The accuracy of the SVM algorithm is greatly influenced by the gamma parameter, and the
Cost has less effect on the accuracy of the algorithm. When the gamma changes in the range of [2−6, 26],
the R2 gradually increases and then decreases, and reaches the maximums when gamma = 24 and
gamma = 25. It can be seen that the accuracy of the SVM algorithm with the parameter setting changes
shows relatively large fluctuations. This indicates that SVM is sensitive to the choice of parameters.
For the RF algorithm, when the number of trees (n_estimators) changes within [20, 200], the average
fitting accuracy of the algorithm continues to rise, and gradually stabilize when n_estimators is larger
than 100. It can be seen that although the accuracy of RF algorithm fitting increases with the number
of trees, the R2 has been at a high level when using the various parameters. The average R2 is greater
than 0.99. This indicates that the RF algorithm is not sensitive to the choice of parameters and is robust.
Table 2 shows the average R2, mean absolute error (MAE), and the root mean squared error (RMSE) of
the two algorithms for each month. It can be seen that the training accuracy of SVM varies in different
months, while the R2 of RF for each month are all greater than 0.99 for each month.
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Table 2. The averaged training accuracy for different months by using the two algorithms.

Month
SVM RF

R2 MAE (mm) RMSE (mm) R2 MAE (mm) RMSE (mm)

January 0.803 4.2 8.9 0.991 0.7 1.7
February 0.901 5.1 11.0 0.996 1.0 2.1

March 0.875 7.5 15.5 0.996 1.4 2.7
April 0.870 11.8 22.6 0.996 2.2 4.0
May 0.853 17.8 32.1 0.996 2.9 5.0
June 0.806 25.7 44.3 0.996 3.9 6.6
July 0.743 30.0 49.0 0.994 5.0 8.0

August 0.522 36.5 60.0 0.993 4.2 7.1
September 0.633 19.9 34.5 0.992 3.1 5.2

October 0.647 9.9 21.4 0.993 1.8 3.3
November 0.863 6.2 12.1 0.995 1.1 2.1
December 0.786 3.4 7.0 0.992 0.6 1.3

Average 0.775 14.8 26.5 0.994 2.3 4.1

4.2. Reconstruction Results

The estimated results at 25 km resolution for June and October of 2009 are presented in Figure 3.
The results estimated at 1 km resolution for January, June and October are presented in Figure 4. Based
on the visual comparison, the results at 1 km resolution provide more detailed spatial information
compared with the results of 25 km resolution. The estimated results of TRMM 3B43 precipitation
using SVM and RF show quite different spatial distribution characteristics.
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Figure 4. Reconstruction results at 1 km spatial resolution: (a) reconstructed precipitation for June 2009
by using SVM; (b) reconstructed precipitation for June 2009 by using RF; (c) reconstructed precipitation
for September 2009 by using SVM; (d) reconstructed precipitation for September 2009 by using RF.
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4.3. Validation and Error Analysis

The results with coarse (25 km) and fine (1 km) spatial resolution were validated with observations
from eight meteorological stations in the study area. Figure 5 shows the scatter plots of the results with
coarse resolution and the observations for each algorithm; Figure 6 presents the scatter plots of the
results with fine resolution and the observations for each algorithm.
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Figure 6. Scatter plots between observed monthly total precipitation and estimated results using
(a) SVM and (b) RF at spatial resolution of 1 km.

It can be seen that the results obtained using the RF algorithm at 25 km and 1 km resolution
are more accurate than that of the SVM. The estimated precipitation based on RF strongly correlates
with the in situ observations; R2 of RF is larger than 0.8. However, the accuracy of the precipitation
estimated at 1 km resolution is slightly lower than that at 25 km resolution.

We examined the temporal behavior of the in situ measurements and the precipitation
reconstructed at eight stations during the entire period (the results at 1 km spatial resolution are
displayed in Figure 7). Except for individual months, the reconstruction results are in good agreement
with the site observations. The precipitation estimated at the eight sites accurately reflects annual and
inter-annual variations of the precipitation; the results obtained from the RF algorithm are closer to
the observations.
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Figure 7. Comparison of in situ observations and reconstructed monthly precipitation by using RF and
SVM at eight stations, respectively.

Tables 3 and 4 show the R2, RMSE, and Bias between observations and estimated monthly
precipitation of 25 km and 1 km resolution at eight stations, respectively. Accurate precipitation
estimates were obtained at each station. According to Table 3, with respect to the results at 25 km
resolution, the R2 of the RF algorithm is higher than that of the SVM algorithm at each station, ranging
from 0.72 to 0.93. The R2 values of Eergunayouqi, Tulihe, Daxinganling, and Heihe are larger than
0.9. The RMSE of the RF algorithm at each site is lower than that of the SVM algorithm. However, the
Bias of the RF algorithm is larger than that of the SVM algorithm at five stations (Mohe, Tahe, Huma,
Tulihe, and Daxinganling).

In general, the RF algorithm shows a higher accuracy than the SVM at 1 km resolution for each
individual station. However, the SVM performed better than RF at the Huma Station. Except for
the Mohe Station, the estimated precipitation is in good agreement with the observations, with R2

higher than 0.8. The best agreement was observed at the Heihe Station (R2 = 0.91), followed by Tulihe
(R2 = 0.90). Overall, the RF algorithm tends to underestimate the monthly precipitation, with a negative
Bias; the Bias reached −0.24 and −0.18 at the Huma and Eergunanyouqi stations, respectively.

Table 3. The correlation coefficient, root mean squared error (RMSE), and Bias between observed and
estimated monthly precipitation of 25 km resolution at eight stations.

Station
R2 RMSE (mm) B

SVM RF SVM RF SVM RF

Mohe 0.66 0.72 32.53 31.30 −0.02 −0.09
Tahe 0.71 0.76 34.59 31.87 −0.11 −0.12

Xinlin 0.85 0.89 24.96 21.60 0.06 0.01
Huma 0.83 0.88 28.52 38.38 −0.17 −0.28

Eergunayouqi 0.88 0.92 16.54 13.67 −0.19 −0.18
Tulihe 0.86 0.93 21.80 21.13 −0.16 −0.18

Daxinganling 0.86 0.91 23.63 19.29 0.01 −0.03
Heihe 0.86 0.90 37.20 27.23 0.16 −0.07
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Table 4. The correlation coefficient, RMSE, and Bias between observed and estimated monthly
precipitation of 1 km resolution at eight stations.

Station
R2 RMSE (mm) B

SVM RF SVM RF SVM RF

Mohe 0.66 0.72 32.53 31.30 −0.02 −0.09
Tahe 0.71 0.76 34.59 31.87 −0.11 −0.12

Xinlin 0.85 0.89 24.96 21.60 0.06 0.01
Huma 0.83 0.88 28.52 38.38 −0.17 −0.28

Eergunayouqi 0.88 0.92 16.54 13.67 −0.19 −0.18
Tulihe 0.86 0.93 21.80 21.13 −0.16 −0.18

Daxinganling 0.86 0.91 23.63 19.29 0.01 −0.03
Heihe 0.86 0.90 37.20 27.23 0.16 −0.07

To investigate the relationship between the estimation errors and precipitation observations, we
calculated the average MAE of the reconstructed results for each station and the average precipitation
observations of the stations (Figure 8). In general, the estimation errors positively correlate with the
average precipitation; the MAEs increase with increasing average precipitation. The MAE of the
SVM model increases at a rate of 2.6 mm/10 mm (R2 = 0.43); the MAE increase rate of the RF model
was 2.2 mm/10 mm (R2 = 0.35). These results indicate that the errors increase as the total monthly
precipitation increases and that the rate of increase of RF is lower than that of the SVM.
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Figure 8. Scatter plots between average mean absolute error (MAE) of reconstructed precipitation for
each station and average precipitation observations of the stations: (a) SVM; (b) RF.
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5. Discussion

5.1. Scale Sensitivity of the Model

In this study, we rebuilt precipitation data for Northeast China. The reconstructing models
were established at 25 km resolution. The scale effect is one of the most important issues in remote
sensing research. The information and characteristics reflected by different scales might be completely
different. The same model might produce completely different results at different spatial scales.
Based on Immerzeel et al. (2009) and Jia et al. (2011), models established based on precipitation and
NDVI/DEM might have different accuracies at different spatial scales. To explore the scale sensitivity
of the reconstruction model, we established models at 25 km, 50 km, 75 km, and 100 km resolution
based on the two machine learning algorithms. The simulation abilities of the models were analyzed
at different scales.

Figure 9 shows the simulation accuracy (R2 and RMSE) of the two machine learning algorithms
based on four different scales. The R2 and RMSE of the different scales are quite similar. This indicates
that the machine learning algorithm of the reconstruction model is not affected by scale changes.
In addition, the RF-based model has a higher accuracy at each scale and in each month; however,
Figure 9d shows that the accuracy of the RF-based model decreases from 25 to 100 km. Therefore, it is
reasonable to establish the reconstruction model at the 25 km scale. If the model is established at a
larger scale (50 km to 100 km), the original TRMM data need to be scaled up, which will cause the loss
of spatial information and introduce uncertainty to the reconstruction model.
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achieved by using RF on different scale from January to December; (c) The MAE achieved by using
SVM on different scale from January to December; (d) The MAE achieved by using RF on different
scale from January to December.

5.2. Influence Factors of the Reconstructing Model

The factors influencing the precipitation are complex and diverse. The factors affecting the
accuracy of the precipitation reconstruction model also vary, including various environmental factors
considered in the reconstruction model and the accuracy of multi-source remote sensing information.

The TRMM precipitation products have been the focus of research and applications due to the
high data quality and accuracy. In theory, the accuracy of reconstruction results largely depends
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on the accuracy of the original satellite precipitation data. Although TRMM 3B43 V7 precipitation
products show a high consistency with in situ observations, the accuracy of the TRMM data might vary
during different seasons and from one region to another. Multiple studies showed that the satellite
precipitation datasets have a limited ability in estimating trace and solid precipitation. Therefore, the
accuracy of reconstructed precipitation might be lower during winter.

The response of vegetation to precipitation has been extensively studied. Water is an important
factor affecting the growth of vegetation. Therefore, NDVI, as the best indicator of vegetation
growth, has been widely used in precipitation monitoring. Figure 10 shows the in situ observed
precipitation and NDVI values at eight stations during the entire period. Figure 11 presents the
in situ observed precipitation and land surface temperature values at eight stations. According to
the figures, there are positive relationships between precipitation and the NDVI and LST variables.
Compared with the land surface temperature, the variation curve of NDVI agrees well with the change
of precipitation. However, both the LST and NDVI cannot be consistent with changes in precipitation
in some individual months. There are limitations by using NDVI and LST as indicator variables. The
NDVI and LST cannot objectively reflect the real precipitation change due to human and natural
factors. For example, harvesting and irrigating farmland artificially changes the NDVI and surface
temperature, and defoliation of vegetation might worsen the relationship between precipitation and
NDVI, LST. The NDVI and LST changes caused by human intervention and natural factors are not
controlled by precipitation. In addition, NDVI cannot effectively reflect the change of precipitation in
sparsely vegetated areas (NDVI is a constant smaller than or close to zero) and lush vegetation areas
(NDVI saturation). The NDVI and surface temperature data are transient data, reflecting the transient
state of the surface environment; however, the impact of precipitation on the surface environment is
continuous. Although those data have been composited by calculating maximum and average values,
data gaps and quality issues caused by clouds and atmospheric conditions still exist, which have an
impact on the accuracy of reconstruction results.
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6. Conclusions

In this study, a reconstruction algorithm is proposed for monthly TRMM 3B43 precipitation based
on machine learning algorithms. The reconstruction is performed over Northeast China at two spatial
resolutions (25 km and 1 km). The reconstructed precipitation is validated with in situ observations of
eight meteorological stations in the study area.

Based on the training results, the RF algorithm produces a higher training accuracy than the SVM.
Moreover, the accuracy of the SVM is greatly affected by the selection of parameters and varies in
different months. In contrast, the RF produces a consistent and high accuracy. This indicates that
the RF algorithm is more robust than the SVM. The validation results show that the reconstructed
monthly precipitation based on RF is more accurate than the results obtained from the SVM. The results
estimated by RF show high correlations with the in situ observations for each station and the estimated
precipitation at eight stations accurately reflects annual and interannual variations. In general, the RF
algorithm outperforms the SVM with respect to the reconstruction model.

The relationship between the estimations errors and precipitation observations was analyzed by
comparing the average MAE with the average precipitation observations at each station. The results
show that there is a positive relationship between the absolute error and average precipitation. The
absolute errors increase as the monthly total precipitation increases, while the rate of increase of RF is
lower than that of SVM.

The scale effect is important for remote sensing models. We also analyzed the scale sensitivity
of the reconstruction model by comparing the accuracy of the models established at different scales
(25 km, 50 km, 75 km, and 100 km). The results show that the training accuracies are quite similar at
different scales, indicating that the reconstruction model is not affected by scale changes.
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