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Abstract: Despite the fact that economic data are of great significance in the assessment of human
socioeconomic development, the application of this data has been hindered partly due to the
unreliable and inefficient economic censuses conducted in developing countries. The night-time light
(NTL) imagery from the Defense Meteorological Satellite Program’s Operational Linescan System
(DMSP/OLS) provides one of the most important ways to evaluate an economy with low cost and
high efficiency. However, little research has addressed the transferability of the estimation across
years. Based on the entire DN series from 0 to 63 of NTL data and GDP data in 31 provinces of
mainland China from 2000 to 2012, this paper aims to study the transferability of economy estimation
across years, with four linear and non-linear data mining methods, including the Multiple Linear
Regression (MLR), Local Weighted Regression (LWR), Partial Least Squares Regression (PLSR), and
Support Vector Machine Regression (SVMR). We firstly built up the GDP estimation model based
on the NTL data in each year with each method respectively, then applied each model to the other
12 years for the evaluation of the time series transferability. Results revealed that the performances
of models differ greatly across years and methods: PLSR (mean of R2cv = 0.84) and SVMR (mean
of R2cv = 0.86) are superior to MLR (mean of R2cv = 0.72) and LWR (mean of R2cv = 0.75) for
model calibration; only PLSR (mean of R2 p = 0.88, mean of RPD = 1.8) holds a strong transferability
among different years; the frequency of three DN sections of (0–1), (4–16), and (57–63) are especially
important for economy estimation. Such results are expected to provide a more comprehensive
understanding of the NTL, which can be used for economy estimation across years.
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1. Introduction

Regional and global economic data are important indicators of the assessment of human societal
development, and most countries conduct economic censuses every year for the evaluation of national
economy strength [1]. However, problems may occur in the case that the statistical data are not
available in some places. Furthermore, the economic census always requires a long period of time
with low efficiency and high costs, which is especially serious in developing countries with weak
government statistical infrastructure [2]. These problems have hindered the understanding of the real
status of the economy. Therefore, surveying the economy by technical methods is of great significance
as an alternative supplementation to the traditional economic census [3].

With the rapid development of science and technology, remote sensing has gradually gained
attention, which is an efficient approach for the observation of earth on a global scale based on the
optical images from the satellite sensors in the outer space. It can also provide us with a real-time
mirror of the human activities and the socioeconomic status, making it relatively cheaper and far
more efficient than the traditional economic census. Thus, surveying the regional or global economy
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with remote-sensing technology has been a hotspot in this field in recent years [4,5]. Meanwhile,
the most widely used remotely-sensed data source for economy investigation is the night-time light
(NTL) imagery from the Defense Meteorological Satellite Program’s Operational Linescan System
(DMSP/OLS). The stable NTL data mainly contains the lights from cities, towns, and other facilities
with persistent lighting with occasional noise removed, such as fire, or sunlight, moonlight, aurora, and
cloud impact [6]. The digital number (DN) value of the stable NTL data ranges from 1 to 63 according
to the annual average light intensity, with 0 representing the background or ephemeral lighting [7].
With a reasonable temporal coverage on a global scale since 1992 [8,9], the NTL has a great advantage
in revealing the distribution and quality of the human activities that are closely associated with
economy status.

An early study by Elvidge et al. [10] found a strong correlation between NTL luminosity and the
Gross Domestic Product (GDP). After this, a wealth of research has confirmed similar principles in
different areas. For example, Ma et al. [11] presented the responses to socioeconomic activity and the
potential utility of NTL data by investigating the quantitative correspondence between them. This
study [11] found that NTL data was strongly correlated with GDP. Bustos et al. [12] used a regression
analysis to examine the links between NTL and the change in socioeconomic indicators over time in
Europe, which suggested that the extent of human settlement was closely related to the GDP. Various
light indexes were proposed for regression or calibration with the socioeconomic indicators, such as
the TNL (total night-time light) [1], SOL (sum of light) [13,14], AL (area lit) [15,16], NTM (night light
mean), NTSD (night light standard deviation), PTNL (proportion of total night light) [17], ULI (urban
light index) [18], CNLI (compounded night light index) [19] and so on. However, there may be three
issues to consider in the previous studies. Firstly, these extractions of the NTL data and the formation
of the light indexes may bring risks due to the loss of the majority of the information from the original
data and the generation of second-hand data for analysis. As the light indexes could only contain
segmental features of the NTL from particular aspects, they do not make full use of the NTL data,
which has an entire DN series that ranges from 0 to 63. Secondly, the majority of studies preferred
to use linear regressions (including the log-linear relationship) for the lights–economy model [5,10].
Bickenbach et al. [20] found a non-linear relation between night-time lights and economic status, which
was ascribed to the censored nature of the night lights. Nonetheless, only a few studies have tried
to build up a non-linear regression between these two variables to ensure the coverage of complex
features of the data. Thirdly, a considerable number of studies focused on the relationship between
NTL and economy in a specific year and discussed the transferability between regions of different
scales [21,22], but little research has addressed the transferability between years. Nordhaus et al. [23]
analyzed the time series errors in the estimation of NTL as a proxy for economy, but the exploration of
a universal model that can be used for different years still remains a difficult challenge.

The objective of this study was to explore the possibility of establishing a transferable economy
estimation model across multiple years with different data-mining methods, based on the DMSP/OLS
night-time light data from 2000 to 2012. In this case, the frequency table of the entire DN series from 0
to 63 was adopted to form 64 independent variables, which might help us make better use of the full
information from the NTL data. This made a closer approximation of the original lights with in the
advantage of being able to deeply excavate the inner relationship between the lights and economy (the
dependent variable). Both linear and non-linear data-mining methods were taken into consideration,
including the Multiple Linear Regression (MLR), Local Weighted Regression (LWR), Partial Least
Squares Regression (PLSR), and Support Vector Machine Regression (SVMR). A comparison of the
modeling performances of these different methods was conducted. Furthermore, the estimation model
from a single year with a single method was applied to the other 12 years for the evaluation of the
time series transferability. The performance of each model transfer was analyzed in detail. From this
analysis, we will be able to obtain a clear view of the capability of these four methods to establish a
transferable economy estimation model across years.
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2. Data and Methods

2.1. Data Sources and Preprocessing

The economic data of China was derived from the National Bureau of Statistics (http://data.stats.
gov.cn/). The GDP data of 31 mainland provinces (except for Hong Kong, Macau, and Taiwan) from
2000 to 2012 were used in this paper. The Chinese currency unit of the GDP is Yuan. Figure 1 shows
the distribution of GDP in 2000 and 2012.

Remote Sens. 2017, 9, 786 3 of 13 

 

2. Data and Methods  

2.1. Data Sources and Preprocessing 

The economic data of China was derived from the National Bureau of Statistics (http://data. 
stats.gov.cn/). The GDP data of 31 mainland provinces (except for Hong Kong, Macau, and Taiwan) 
from 2000 to 2012 were used in this paper. The Chinese currency unit of the GDP is Yuan. Figure 1 
shows the distribution of GDP in 2000 and 2012.  

 
Figure 1. Distribution of GDP in mainland China in (a) 2000 and (b) 2012. 

The annual stable night-time light data from 2000 to 2012 of China were obtained from the 
National Oceanic and Atmospheric Administration (NOAA) of the National Centers for 
Environmental Information (NCEI) website (http://ngdc.noaa.gov/eog/dmsp/downloadV4composit 
es.html). It was collected by the Air Force Weather Agency (AFWA) and then processed by NOAA 
to constitute 30 geographic grids, which cover the majority of the surface of the earth except for the 
high latitude regions. 

With the aim to fully utilize night-time light for data mining, we created a workflow to 
preprocess the data, which involves the following steps: (1) project the NTL data to the Lambert 
Azimuthal Equal Area projection for map matching [24]; (2) improve the continuity and 
comparability of the NTL data with systematic correction carried out according to the method 
proposed by Liu [25], which involved steps of intercalibration, intra-annual composition, 
interannual series correction, and so on; (3) extract NTL imagery for each province of each year 
according to the Chinese administrative boundary; and (4) conduct a count for each DN value from 
0 to 63 in the imagery from each province in order to create the frequency table of the entire DN 
series. Figure 2 shows the results of 2000 and 2012, where the frequency number within (0, 340) was 
colored white, (341, 680) was colored green, (681, 1020) was colored red, and so on. It is important 
to note that the frequency number for DN 0 was out of the color bars and thus, was not displayed.  

024681012
      GDP            

(a) 2000        

0 1 2 3 4 5 6

x 10
4                GDP               

          (b) 2012         ×102 billion ×103 billion

Sic huan
Beijing

Shanghai
Hebei

Chongqing
Neimenggu

Shaanxi
Gansu

Qinghai
Tianjin

Liaoning
J ilin

Hainan
Guangdong

Guangxi
Fujian

Guizhou
Yunnan
Hunan
J iangxi

Zhejiang
Hubei
Anhui

J iangsu
Henan

Shandong
Xizang
Ningxia
Shanxi

Xinjiang
Heilongjiang

Figure 1. Distribution of GDP in mainland China in (a) 2000 and (b) 2012.

The annual stable night-time light data from 2000 to 2012 of China were obtained from the
National Oceanic and Atmospheric Administration (NOAA) of the National Centers for Environmental
Information (NCEI) website (http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). It was
collected by the Air Force Weather Agency (AFWA) and then processed by NOAA to constitute
30 geographic grids, which cover the majority of the surface of the earth except for the high
latitude regions.

With the aim to fully utilize night-time light for data mining, we created a workflow to preprocess
the data, which involves the following steps: (1) project the NTL data to the Lambert Azimuthal
Equal Area projection for map matching [24]; (2) improve the continuity and comparability of the
NTL data with systematic correction carried out according to the method proposed by Liu [25], which
involved steps of intercalibration, intra-annual composition, interannual series correction, and so
on; (3) extract NTL imagery for each province of each year according to the Chinese administrative
boundary; and (4) conduct a count for each DN value from 0 to 63 in the imagery from each province
in order to create the frequency table of the entire DN series. Figure 2 shows the results of 2000 and
2012, where the frequency number within (0, 340) was colored white, (341, 680) was colored green,
(681, 1020) was colored red, and so on. It is important to note that the frequency number for DN 0 was
out of the color bars and thus, was not displayed.
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2.2. Data Mining Methods

For the multiple linear regression (MLR), as one phenomenon may be often interpreted by a
series of factors, it will be much more effective to predict the dependent variable with an optimal
combination of multiple variables, which is why it is MLR. In this case, the frequencies of the entire
DN series from 0 to 63 were adopted to estimate GDP with MLR in order to fully utilize the entire
information contained in the NTL data. The calibration mechanism is more sophisticated than the
previous Simple Linear Regression (SLR) with the added advantage of being able to deeply excavate
the inner connection between the NTL data and GDP.

Local weighted regression (LWR) is proposed as a solution for the problem of a linear regression
occasionally being able to underfit results and not exactly matching the true distribution of the data.
This method allows the data analyst to not need to specify a universal model to fit all the GDP data
of 31 provinces as it only aims to fit each subset of the data separately. It is obvious that the LWR
combines much of the simplicity of linear regressions with the flexibility of non-linear regressions [26],
which is more accurate for data fitting in the consideration of the regional differences among provinces.

The partial least squares regression (PLSR) was first proposed by Wold et al. [27], who used a
multivariate statistical analysis algorithm to form this linear regression by projecting the dependent
variable and independent variables to a new space. Following this, regression modeling, data
simplification, and correlation analysis were conducted simultaneously [28]. Furthermore, PLSR
can effectively overcome the multicollinearity within the NTL data and remains suitably applicable
even in the case where the number of samples (31 provinces) are less than that of variables (64 DN
variables) [29]. Therefore, it has the potential to produce results of high quality.

The support vector machine regression (SVMR) can establish a non-linear model, which uses
supervised learning algorithms for regression analysis. By optimizing the support vector regression
machine, SVMR tries to find the optimal function for approximating the relationship between variables.
In this case, complicated problems are transformed into a search for the optimal function by the sample
data [30]. Few studies have attempted to use this advanced non-linear method for the NTL data and
thus, the capacity of SVMR will be explored in this paper.

The frequency table of the entire DN series from 0 to 63 was adopted to estimate GDP with the
above-mentioned four data mining methods, according to Equation (1).

GDPi
j = f i( f re0, f re1, f re2, . . . . . . , f re62, f re63) (1)

where i ∈ [2000, 2012] and j ∈ [1, 31]. GDPi
j is the Gross Domestic Product of province j in year i; f rek

(k ∈ [0, 63]) is the frequency number when the DN value is k in the frequency table of province j in
year i; and f i is the estimating model for all the 31 provinces in year i.
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2.3. Model Evaluation

The performance of modeling was evaluated by the coefficient of determination of cross validation
R2cv. The performance of predicting of the model was evaluated by the coefficient of determination of
prediction R2 p and the residual prediction deviation RPD [31]. R2cv and R2 p are commonly used for
modeling and are calculated by Equation (2).

R2 = 1− ∑(yi − ŷi)
2

∑(yi − yi)
2 (2)

where yi and ŷi are the measured and predicted values of sample i; and yi is the mean of measured
values. In cross validation, R2 indicates the fit level of the model with original data set. In prediction,
R2 indicates the fit level of the model with new data set. To differ from them, the former is named
R2cv and the latter is named R2 p. The highest R2cv indicates the best model for regression and for
predicting, a higher R2 p indicates a better accuracy.

As for RPD, it is used to investigate the prediction error with variation in the data [32], which is
calculated by Equation (3).

RPD =
SD

RMSEP
(3)

where SD is the standard deviation of measured values and RMSEP is the root mean square error for
the prediction. We adopted the six-level interpretations of RPD as provided by Rossel [33]: RPD > 2.5
for excellent predictions; 2.5 > RPD > 2.0 for very good predictions; 2.0 > RPD > 1.8 for good
predictions where quantitative predictions are possible; 1.8 > RPD > 1.4 for fair predictions, which
may be used for assessment and correlation; 1.4 > RPD > 1.0 for poor predictions where only
high and low values are distinguishable; and RPD < 1.0 for very poor predictions, their use is
not recommended.

3. Results

3.1. Model Calibration

Both linear and non-linear data mining methods, including MLR, LWR, PLSR, and SVMR, were
used for the estimation of GDP based on the NTL data from 2000 to 2012. Figure 3 shows the R2cv
with four methods in 13 years.
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Figure 3. R2cv for different data mining methods: (a) MLR; (b) LWR; (c) PLSR; and (d) SVMR.
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The model established by MLR had an unstable R2cv, which varied greatly among different years.
Furthermore, this value only exceeded 0.8 in three years and thus, was found to be less than 0.7 for
the other six years. The model established by LWR also had an obvious interannual variability, which
was greater than 0.8 in three years in addition to being between 0.7 and 0.8 for seven years for R2cv.
However, it was slightly better than MLR. The model established by PLSR was relatively stable with its
R2cv being greater than 0.8 in 11 years with a peak value of 0.89 in 2005, which indicated an accurate
fit for the NTL and GDP. The model established by SVMR also showed good stability with R2cv being
greater than 0.8 in 11 years with a peak of 0.90 in 2005, which is even slightly better than PLSR.

3.2. Transferability Validation

Aimed at testing the transferability across years, a model established in a given year with a single
method was applied to the remaining 12 years for validation. The performances were evaluated by R2 p
and RPD. The former value represents the quality of the data fitting when a given model is applied
to another year, while the latter depicts the quality of the model transfer based on the prediction
errors [34]. The results are shown in Figures 4 and 5.
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Figure 4. R2 p for different data mining methods in validation across years.

The colored area in Figure 4 represents the combinations of the modeling and validation sets
with an R2 p of greater than 0.75, while the black area represents those with values less than 0.75 or
the diagonal area (self-validated). It can be seen that only a few cases succeeded with MLR, which
indicated that this model was not suitable for fitting the data of other years. In comparison, LWR and
SVMR performed much more effectively, with an R2 p that was greater than 0.75 in more than half of
the cases. This indicates approximate estimations in other years. PLSR obtained the best result as it was
suitable for fitting most cases and its model remained capable despite the addition of different years.

The colored area in Figure 5 represents the combinations of the modeling and validation sets that
has a RPD greater than 1.4 (the threshold for fair predictions, which may be used for assessment and
correlation), while the black area represents the values of less than 1.4 and the diagonal area. It can be
seen that it was almost black for MLR and thus, this method was incapable for prediction. For LWR
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and SVMR, RPD was greater than 1.4 in more than 38% and 48% of the cases, indicating the possibility
of transferring these models to other years to a certain extent. Furthermore, the prediction ability of
PLSR was relatively good with RPD greater than 1.4 in 59% of the cases, which showed a relatively
strong transferability across years.
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Figure 5. RPD for different data mining methods in validation across years: (a) MLR; (b) LWR; (c) PLSR
and (d) SVMR.

4. Discussion

4.1. Comparison and Explanation

Four methods were used to excavate the relationship between NTL and economy. The model
evaluation parameters, which are R2cv, R2 p, and RPDalong with their statistical characteristics—are
listed in Table 1.

Table 1. Parameters for model performance evaluation.

Parameter Method Min Max Mean Std

R2cv

MLR 0.56 0.90 0.72 0.11
LWR 0.66 0.86 0.75 0.06
PLSR 0.67 0.90 0.84 0.07
SVMR 0.75 0.90 0.85 0.05

R2 p

MLR 0.00 0.89 0.35 0.26
LWR 0.00 0.98 0.65 0.29
PLSR 0.54 0.95 0.88 0.07
SVMR 0.00 0.97 0.63 0.32

RPD

MLR 0.01 2.22 0.50 0.41
LWR 0.07 7.05 1.27 1.14
PLSR 0.24 4.34 1.76 0.99
SVMR 0.14 4.95 1.50 1.00
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By comparing R2cv, it can be seen that the mean values of PLSR and SVMR are 0.836 and 0.847
respectively, which have reached a high level that indicates a satisfactory accuracy for modeling.
Between these two methods, all the minimum, maximum, and mean values of SVMR are slightly
higher than those of PLSR, while the standard deviation is lower. Thus, we conclude that SVMR
is slightly better than PLSR from the perspective of modeling. The reason may be that SVMR is a
non-linear method with a sophisticated data mining mechanism and thus, fits the variables better.
This also demonstrates that the non-linear method should have a good inherent advantage in deeply
excavating the economic information from the complex and diverse NTL data. On the other hand,
despite the fact that the R2cv of both MLR and LWR are relatively low, the latter’s four parameters
are superior to those of the former, which can also be explained by the model complexity. The LWR
method only needs to fit each subset of the economy data separately, instead of specifying a universal
model to fit all the data similar to MLR. Therefore, the LWR method has a higher degree of fitting and
a better modeling performance. Therefore, from the perspective of modeling, PLSR and SVMR were
better than MLR and LWR. The further ranking is SVMR > PLSR > LWR > MLR, which approximately
fits the model complexity.

By comparing R2 p, it can be seen that PLSR has the highest coefficient of determination (mean
of 0.88) and the lowest standard deviation (0.07), which represents the best accuracy and stability
for prediction. A similar pattern is shown in RPD, with PLSR having the highest mean value (1.76).
Contrary to the modeling performance of SVMR being slightly better than PLSR, from this perspective
of model transfer, PLSR is much better than SVMR. This is possibly because PLSR is an excellent
linear regression model, which can effectively overcome the multicollinearity within the NTL data and
remains applicative even when the sample numbers are less than the variables. These qualities may
help make it superior to alternatives when used for prediction across different years. However, SVMR
is a classical non-linear method with high-precision fitting in a single year and has greater advantages
in modeling. Its complexity of computation may also bring over-fitting problems, which makes it fail
to transfer the models to other years. In conclusion, only PLSR performed well with a high accuracy
and stability in terms of model transfer. The further ranking is PLSR > SVMR > LWR > MLR.

4.2. Transferability Across Years

Some of previous studies used simple linear regressions (SLR) to build up the GDP estimation
model based on NTL data, and further discussed the transferability of the models across regions.
There is a lack of research addressing the transferability across years. In order to find out whether
a traditional SLR model can be used for the prediction of other years, we conducted an additional
experiment with a popular light index, namely the total night-time light (also referred to as ‘sum of
light’) [1,4,5]. Similarly, models of each single year from 2000 to 2012 were built by SLR, before each
was applied to the other 12 years. The results are shown in Table 2. It can be seen that the mean value
of R2 is 0.742, indicating a good performance of modeling. However, the mean value of R2 p was
less than 0, indicating that these models could not be used for the prediction of other years. Thus, a
traditional SLR model based on a certain light index can only be used for modeling in a single year
and is not capable for model transfer across years. This is possibly because the data underwent great
changes in the structure and distribution between different years, making it difficult for a SLR model
to cover all the variants and obtain accurate predictions. On the other hand, it might be that the light
index did not make full use of the information from the NTL data and thus, its models missed some of
the most important mechanisms of interaction between lights and economy.

Table 2. Parameters for SLR performance evaluation.

Parameter Method Min Max Mean Std

R2 SLR 0.682 0.775 0.742 0.028
R2 p SLR −7.07 0.771 −0.198 1.539
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In contrast, the entire DN series of the NTL data were adopted for the estimation of the economy
with four data mining methods. In this estimation, PLSR performed well in both modeling and
transferring with the highest R2cv of 0.89 in 2005. This model was applied to the prediction of the other
12 years, with the results shown in Figure 6. It can be inferred that this PLSR model showed a certain
level of transferability across years, with a mean R2 p of 0.90 and a mean RPD of 2.20. Nevertheless,
the economy of 2000–2001 was underestimated to a certain extent, possibly for the reason that the
development level was low in 2000 and 2001 with a considerable number of 0 values in the frequency
table of the entire DN series. With the development of the society, the frequency table in 2005 was
more complete with fewer 0 values and more valid DNs for modeling. In consequence, when the
model from 2005 was used for 2000 and 2001, parts of the valid DN variables met 0 values and made
no contributions to the estimation and thus, resulted in an undervaluation. The scattered points from
2002 to 2007 mainly distributed closely to the 1:1 line, indicating relatively reliable prediction results.
The economy values from 2008–2012 were underestimated. The first reason might be that these years’
frequency tables were more complete with fewer 0 values than in 2005, so some of their valid DN
variables were possibly not valid (0 values) in the model of 2005. Consequently, the earlier model
only calculated parts of the DNs’ contribution and caused the underestimation. The second reason
might be that the frequency table changed rapidly in these years and resulted in an aggregation at the
section of high DN values, which usually represented the city cores and had a greater influence on the
economy. In 2005, there were a smaller number of high DN values and thus, their contributions were
not so significant in the original model. When this model was applied to 2007–2012, the contributions
of these newly high DN value sections were underestimated, resulting in prediction bias occurring.
Nevertheless, PLSR solved the problem of transferability and was capable of economy estimation
across years.
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Figure 6. GDP and GDP PRED based on the estimation model of 2005.

4.3. Important DN Section Extraction

The frequency table of the entire DN series from 0 to 63 was used for modeling. However, the
importance and contribution of the 64 DN variables are not exactly the same in the estimation (if so,
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the annual GDP will remain the same, since the sum of frequency table is actually the number of image
grids that also represents the area). In order to highlight the different roles of different variables, a
Variable Importance in Projection (VIP) extraction was carried out. The VIP scores will help to visually
point out the importance of each DN variable in interpreting the GDP. A higher score indicates a
greater contribution to the estimation [35]. A variable with a VIP Score close to or greater than 1 can be
considered important in the model. Variables with VIP scores that are significantly less than 1 are less
important and might be good candidates for exclusion from the model [36].

Figure 7 shows the importance of different DN values in the 13-year economy estimation using
the PLSR data mining method. It can be found that there were mainly three DN sections with scores
greater than 1: (0–1), (4–16), and (57–63). These sections were especially important to the economy
and occupied vital roles for the estimation results. The first section (0–1) was important possibly due
to its frequency, which is considerably larger (for the same reason, it was not shown in Figure 2).
This would enlarge its contribution to the interpretation of the results. The second section (4–16)
was important due to its obvious changes in the frequency table. This was further illustrated by
Figure 8, which depicts the frequency change of the entire DN series between 2000 and 2012. The
largest change in Figure 8 was found at (0–1) with another peak having occurred within a small section
around 10, which just confirmed the first two important sections in Figure 7. Furthermore, the (4–16)
section possibly indicated the early stages of urbanization or urban growth, especially considering
this section contained a real nascent signal that probably represented actual economic development.
As for the third section, (57–63), the DN values had reached a relatively high level or even saturation,
which represented the highly developed area and is usually accompanied by the booming economy.
Therefore, it is easy to understand why this section held an important role in economy estimation.
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Additionally, the frequency tables of the DN sections of (0–1), (4–16), and (57–63) were extracted
to form new independent variables. Then they were used for model calibration and transferability
validation with PLSR. The results are shown in Table 3. It can be seen that the results were relatively
satisfactory: mean of R2cv = 0.91, mean of R2 p = 0.79, mean of RPD = 1.82. This confirmed the findings
above that the three DN sections played a vital role in economy estimation.

Table 3. Parameters for PLSR performance evaluation using important DN sections.

Parameter Method NTL Dataset Min Max Mean Std

R2cv PLSR Important DN sections only 0.83 0.95 0.91 0.04
R2 p PLSR Important DN sections only 0.01 0.95 0.79 0.18
RPD PLSR Important DN sections only 0.14 5.54 1.82 1.27

4.4. Limitations of Present Study

The spatial overflow sometimes causes lit pixels to extend beyond the real illuminated area of
nighttime light [14], which is especially serious in DMSP/OLS imagery. This issue partially limits
the results for relevant studies. However, it is noted that this study takes the developing country of
China as the example, with a large proportion of the western and middle areas of China still being
underdeveloped [37]. All estimation models are built on a provincial scale with an average area over
300,000 km2. In other words, areas with high DN values are just a small part of the province (such
as the provincial capital). The lights may overflow to the adjacent areas but rarely escape out of the
province and thus, will not have too much impact on the models.

Moreover, this study does suffer from saturation of the DN values of the NTL data, which may
bring some prediction bias when using lights to estimate economy [38]. We expect that we can
overcome this problem by using the night-time Visible Infrared Imaging Radiometer Suite (VIIRS)
Day/Night Band (DNB) data, with a measured wavelength range of 505–890 µm. This shows a
significant advantage over the DMSP/OLS data (0.4–1.1 µm). Nonetheless, these new products are
only available from 2013 [39] and will be widely used in the near future when there are more data.
Furthermore, He et al. offer a new method to correct the saturated lights of DMSP/OLS [40], which
may also help to solve these limitations.

5. Conclusions

This paper adopts four data mining methods for transferable economy estimation across years
based on the entire DN series of DMSP/OLS night-time light. From the results, we conclude that:
(1) from the perspective of modeling, PLSR and SVMR are superior to MLR and LWR, although they all
performed quite well; (2) from the perspective of model transfer, only PLSR has a strong transferability
across different years; (3) three important DN sections of (0–1), (4–16), and (57–63) are particularly
important for economic estimations. Such findings are expected to provide a more comprehensive
understanding of the relationship between NTL and economy in addition to helping to build up a
transferable model across different years. The idea of data mining on the basis of the entire DN series
and the extraction of important DN sections may open up the field of remote sensing to statisticians and
economists, who will be interested in using it to estimate years of multiple socioeconomic indicators.
Thus, this will help to promote interdisciplinary applications.
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