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Abstract: Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass
data and separate the interclass data, and it is very useful to analyze the high-dimensional data.
However, MFA just considers the structure relationships of neighbor points, and it cannot effectively
represent the intrinsic structure of hyperspectral imagery (HSI) that possesses many homogenous
areas. In this paper, we propose a new dimensionality reduction (DR) method, termed local
geometric structure Fisher analysis (LGSFA), for HSI classification. Firstly, LGSFA uses the intraclass
neighbor points of each point to compute its reconstruction point. Then, an intrinsic graph and
a penalty graph are constructed to reveal the intraclass and interclass properties of hyperspectral
data. Finally, the neighbor points and corresponding intraclass reconstruction points are used to
enhance the intraclass-manifold compactness and the interclass-manifold separability. LGSFA can
effectively reveal the intrinsic manifold structure and obtain the discriminating features of HSI data
for classification. Experiments on the Salinas, Indian Pines, and Urban data sets show that the
proposed LGSFA algorithm achieves the best classification results than other state-of-the-art methods.

Keywords: hyperspectral imagery; dimensionality reduction; manifold learning; local geometric
structure; marginal Fisher analysis

1. Introduction

Hyperspectral imagery (HSI) is captured by remote sensors recording the reflectance values
of electromagnetic wave, and each pixel in HSI is a spectral curve containing hundreds of bands
from visible to near-infrared spectrum [1–4]. The HSI can offer much richer information, and it can
discriminate the subtle differences in different land cover types [5,6]. HSI plays a significant role
in the application of anomaly detection, agricultural production, disaster warning, and land cover
classification [7–9]. However, the traditional classification methods commonly cause the Hughes
phenomena because of the high dimensional characteristics in HSI [10–12]. Therefore, a huge challenge
for HSI processing is to reduce the dimensionality of high-dimensional data with some valuable
intrinsic information preserved.

Dimensionality reduction (DR) is commonly applied to reduce the number of bands in HSI and
obtain some desired information [13–15]. A large number of methods have been designed for DR
of HSI. Principal component analysis (PCA) has been widely used for high-dimensional data, and it
applies orthogonal projection to maximize data variance [16]. To improve the noise robustness of PCA,
the researchers proposed minimum noise fraction (MNF) with noise variance [17]. MNF maximizes
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the signal-to-noise ratio to obtain the principal components, and it provides satisfactory results for HSI
classification. However, PCA and MNF are unsupervised methods, and they restrain the discriminating
power for HSI classification. To enhance the discriminating power, some supervised methods have been
proposed. Linear discriminant analysis (LDA) is a traditional supervised method based on the mean
vector and covariance matrix of classes, and it is defined by the maximization of between-class scatter
and the minimization of within-class scatter [18]. However, LDA only involves c− 1 features (where c
is the class number of data), which may not obtain sufficient features for hyperspectral classification.
To address this problem, the researchers proposed maximum margin criterion (MMC) [19] and local
Fisher discriminant analysis (LFDA) [20,21] for obtaining enough features, while these methods
originate from the theory of statistics and neglect the geometry properties of hyperspectral data.

Recently, the intrinsic manifold structure has been discovered in HSI [22]. Many manifold learning
methods have been applied to obtain the manifold properties from high-dimensional data [23–26].
Such methods include isometric mapping (Isomap) [27], Laplacian eigenmaps (LE) [28] and locally
linear embedding (LLE) [29]. The Isomap method adopts the geodesic distances between data points
to reduce the dimensionality of data. The LLE method preserves the local linear structure of data in
a low-dimensional space. The LE method applies the Laplacian matrix to reveal the local neighbor
information of data. However, these manifold learning algorithms cannot obtain explicit projection
matrix that can map a new sample into the corresponding low-dimensional space. To overcome this
problem, locality preserving projections (LPP) [30] and neighborhood preserving embedding (NPE) [31]
were proposed to approximately linearize the LE and LLE algorithms, respectively. However, LPP and
NPE are unsupervised DR methods that cannot perform good discriminating power in certain scenes.

To unify these methods, a graph embedding (GE) framework has been proposed to analyze
the DR methods on the basis of statistics or geometry theory [32]. Many algorithms, such as PCA,
LDA, LPP, ISOMAP, LLE and LE, can be redefined in this framework. The differences between these
algorithms lie in the computation of the similarity matrix and the selection of the constraint matrix.
With this framework, marginal Fisher analysis (MFA) is developed for DR. MFA designs an intrinsic
graph to characterize the intraclass compactness and a penalty graph to characterize the interclass
separability. The intrinsic graph represents the similarity of intraclass points from the same class,
while the penalty graph illustrates the connected relationship of interclass points that belongs to
different classes. MFA can reveal the intraclass and interclass manifold structures. However, it only
considers the structure relationships of pairwise neighbor points, which may not effectively represent
the intrinsic structure relationship of HSI with a larger number of homogenous areas [33,34]. Therefore,
MFA may not obtain good discriminating power for HSI classification.

To address this problem, we propose a new DR method called local geometric structure Fisher
analysis (LGSFA) in this paper. Firstly, it reconstructs each point with intraclass neighbor points. In
constructing the intrinsic graph and the penalty graph, it compacts the intraclass neighbor points
and corresponding reconstruction points, and it simultaneously separates the interclass neighbor
points and corresponding reconstruction points. LGSFA can better represent the intrinsic manifold
structures, and it also enhances the intraclass compactness and the interclass separability of HSI data.
Experimental results on three real hyperspectral data sets show that the proposed LGSFA algorithm is
more effective than other DR methods to extract the discrimination features for HSI classification.

The rest of this paper is organized as follows. Section 2 briefly reviews the theories of GE and MFA.
Section 3 details our proposed method. Experimental results are presented in Section 4 to demonstrate
the effectiveness of the proposed method. Finally, Section 5 provides some concluding remarks and
suggestions for future work.

2. Related Works

Let us suppose a data set X = [x1, x2, · · · , xn] ∈ <D×n, where n and D are the number of samples
and bands in HSI, respectively. The class label of xi is denoted as li ∈ {1, 2, · · · , c}, where c is the
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number of classes. The low-dimensional data is represented as Y = [y1, y2, · · · , yn] ∈ <d×n, where d is
the embedding dimensionality. Y is represented by Y = VTX with projection matrix V ∈ <D×d.

2.1. Graph Embedding

The graph embedding (GE) framework is used to unify most popular DR algorithms [32]. In GE,
an intrinsic graph is constructed to describe some of the desirable statistical or geometrical properties
of data, while a penalty graph is utilized to represent some of the unwanted characteristics of data [35].
The intrinsic graph G = {X, W} and penalty graph GP = {X, WP} are two undirected weighted
graphs with the weight matrices W ∈ <n×n and WP ∈ <n×n, where X denotes the vertex set. Weight
wij reveals the similarity characteristic of the edges between vertices i and j in G, while weight wP

ij

refers to the dissimilarity structure between vertices i and j in GP.
The purpose of graph embedding is to project each vertex of the graph into a low-dimensional

space that preserves the similarity between the vertex pairs. The objective function of the graph
embedding framework is formulated as follows:

J(Y) = min
tr(YTHY)=h

1
2

n

∑
i=1

n

∑
j=1

∥∥∥yi − yj

∥∥∥2
wij = YTLY (1)

where h is a constant, H is a constraint matrix defined to find the non-trivial solution of (1), and L is
the Laplacian matrix of graph G. Typically, H is the Laplacian matrix of graph GP, that is, H = LP.
Laplacian matrices L and LP can be reformulated as

L = D−W, D = diag([
n

∑
j=1

w1j,
n

∑
j=1

w2j, · · · ,
n

∑
j=1

wnj]), W = [wij]
n
i,j=1 (2)

LP = DP −WP, DP = diag([
n

∑
j=1

wP
1j,

n

∑
j=1

wP
2j, · · · ,

n

∑
j=1

wP
nj]), WP = [wP

ij ]
n
i,j=1 (3)

where diag(•) denotes that a vector is transformed as a diagonal matrix.

2.2. Marginal Fisher Analysis

MFA constructs an intrinsic graph and a penalty graph. The intrinsic graph connects each
point with its neighbor points from the same class to characterize the intraclass compactness,
while the penalty graph connects the marginal points from different classes to characterize
the interclass separability.

In intrinsic graph G, each data point xi is connected with the intraclass neighbor points that are
from the same class. The similarity weight wij between xi and xj is defined as

wij =

{
1, xi ∈ N1(xj) or xj ∈ N1(xi) and li = lj
0, otherwise

(4)

where N1(xi) denotes the k1 intraclass neighbor points of xi. The k1 intraclass neighbor points
denotes the intraclass similarity relationship of data that should be preserved in low-dimensional
embedding space.

For penalty graph GP, xi is connected with the interclass neighbor points that are from different
classes. The penalty weight wp

ij between xi and xj is set as

wp
ij =

{
1, xi ∈ N2(xj) or xj ∈ N2(xi) and li 6= lj
0, otherwise

(5)
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where N2(xi) denotes the k2 interclass neighbor points of xi. The k2 interclass neighbor points
represents the interclass similarity relationship of data that should be avoided in low-dimensional
embedding space.

To enhance intraclass compactness and interclass separability, the optimal projection matrix V
can be obtained with the following optimization problem:

J(V) = min
∑i,j

∥∥VTxi −VTxj
∥∥2wij

∑i,j
∥∥VTxi −VTxj

∥∥2wp
ij

=
VTXLXTV
VTXLpXTV

(6)

3. Local Geometric Structure Fisher Analysis

To effectively reveal the intrinsic manifold structure of hyperspectral data, a local geometric
structure Fisher analysis (LGSFA) method was proposed based on MFA. This method computes the
reconstruction point of each point with its intraclass neighbor points. Then, it uses the intraclass
and interclass neighbor points to construct an intrinsic graph and a penalty graph, respectively.
With the intrinsic graph, it utilizes the intraclass neighbor points and corresponding reconstruction
points to compact the data points from the same class. With the penalty graph, it adopts the interclass
neighbor points and corresponding reconstruction points to separate the data points from different
classes. LGSFA further improves both the intraclass compactness and the interclass separability
of hysperspectral data, and it can obtain better discriminating features to enhance the classification
effect. The process of the LGSFA method is shown in Figure 1.

Figure 1. Process of the proposed LGSFA method.

Each point xi can be reconstructed with its neighbor points from the same class. The reconstruction
weight is computed by minimizing the sum of reconstruction errors

J(sij) = min
n

∑
i=1

∥∥∥∥∥xi −
n

∑
j=1

sijxj

∥∥∥∥∥
2

(7)

where sij is the reconstruction weight between xi and xj. If xj is the k1 intraclass neighbor points of xi,

sij 6= 0 or sij = 0, and
n
∑

j=1
sij = 1.
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With some mathematical operations, (7) can be reduced as

n
∑

i=1

∥∥∥∥∥xi −
n
∑

j=1
sijxj

∥∥∥∥∥
2

=
n
∑

i=1

∥∥∥∥∥xi
n
∑

j=1
sij −

n
∑

j=1
sijxj

∥∥∥∥∥
2

=

n
∑

i=1

∥∥∥[xi − x1
i , xi − x2

i , · · · , xi − xk1
i ]si

∥∥∥2
=

n
∑

i=1
sT

i zisi

(8)

where zi = [zi
mn]k1×k1 = [xi − x1

i , xi − x2
i , · · · , xi − xk1

i ]T [xi − x1
i , xi − x2

i , · · · , xi − xk1
i ], xk1

i is the ith
intraclass neighbor point of xi.

Thus, (7) can be denoted as

J(sij) = min
n

∑
i=1

sT
i zisi, s.t.

n

∑
j=1

sij = 1 (9)

According to the method of Lagrangian multipliers, the optimization solution is

sij =


k1
∑

m=1
(zi

jm)
−1

k1
∑

p=1

k1
∑

q=1
(zi

pq)
−1

, if xj ∈ N1(xi) and li = lj

0, otherwise

(10)

where zi
mn = (xi − xi

m)
T(xi − xi

n). After obtaining si = [si1, si2, · · · , sin]
T , the reconstruction point of xi

can be represented as Xsi.
To reveal the manifold structure of hyperspectral data, we construct an intrinsic graph to

characterize the similarity properties of data from the same class and a penalty graph to stress the
dissimilarity of data from different classes. The similarity weight between xi and xj of the intrinsic
graph are defined as

ww
ij =

 exp(−‖xi−xj‖2

2t2
i

), if xi ∈ N1(xj) or xj ∈ N1(xi) and li = lj

0, otherwise
(11)

where ti =
1
n

n
∑

j=1

∥∥xi − xj
∥∥.

For the penalty graph, the weights are represented as

wb
ij =

 exp(−‖xi−xj‖2

2t2
i

), if xi ∈ N2(xj) or xj ∈ N2(xi) and li 6= lj

0, otherwise
(12)

To illustrate the graph construction of the LGSFA method, an example is shown in Figure 2. In the
intrinsic graph, point x2 is the intraclass neighbor point of x1, and point x3 is the reconstruction point
of x2 obtained by its intraclass neighbor points that are in the curve of dot dash line. In the penalty
graph, point x4 is the interclass neighbor point of x5, and point x6 is the reconstruction point of x5.
The intrinsic graph and the penalty graph are constructed on the basis of intraclass neighbor points,
interclass neighbor points and corresponding reconstruction points. In these graphs, we consider the
structure relationships not only between each point and its neighbor points but also between that point
and the reconstruction points of its neighbor points. This process can effectively represent the intrinsic
structure of HSI, and it can improve the compactness of data from the same class and the separability
of data from different classes.
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Figure 2. Graph construction of the LGSFA method.

To enhance the intraclass compactness, we apply the intraclass neighbor points and corresponding
reconstruction points to construct an objective function in a low-dimensional embedding space

J1(V) = min
n
∑

i=1

n
∑

j=1
(
∥∥VTxi −VTxj

∥∥2
+
∥∥VTxi −VTXsj

∥∥2
)ww

ij (13)

With some mathematical operations, (13) can be reduced as

1
2

n
∑

i=1

n
∑

j=1

∥∥VTxi −VTXsj
∥∥2ww

ij

= 1
2{V

T [
n
∑

i=1

n
∑

j=1
(xiww

ij x
T
i − xiww

ij s
T
j XT+Xsjww

ij s
T
j XT − Xsjww

ij x
T
i )]V}

= 1
2 [V

TX(Dw −WwST + SWwST − STWw)XTV] = VTXBw
1 XTV

(14)

1
2

n
∑

i=1

n
∑

j=1

∥∥VTxi −VTxj
∥∥2ww

ij

= VT [ 1
2

n
∑

i=1

n
∑

j=1
(xiww

ij x
T
i − 2xiww

ij x
T
j + xjww

ij x
T
j )]V

= VTX(Dw −Ww)XTV = VTXBw
2 XTV

(15)

where Bw
1 = 1

2 (D
w − WwST + SWwST − STWw), Bw

2 = Dw − Ww, Dw = diag([
n
∑

j=1
ww

ij ]
n
i=1),

Ww = [ww
ij ]

n
i,j=1, S = [sij]

n
i,j=1.

According to (14) and (15), (13) can be represented as

J1(V) = min
n
∑

i=1

n
∑

j=1
(
∥∥VTxi −VTxj

∥∥2
+
∥∥VTxi −VTXsj

∥∥2
)ww

ij

= VTX(Bw
1 + Bw

2 )X
TV = VTXMwXTV

(16)

where Mw = Bw
1 + Bw

2 .
In addition, we also construct an objective function with interclass neighbor points and

corresponding reconstruction points to improve the interclass separability as follows:

J2(V) = max
n
∑

i=1

n
∑

j=1
(
∥∥VTxi −VTxj

∥∥2
+
∥∥VTxi −VTXsj

∥∥2
)wb

ij

= VTXMbXTV
(17)
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where Mb = Bb
1 + Bb

2, Bb
1 = 1

2 (D
b −WbST + SWbST − STWb), Bb

2 = Db −Wb, Db = diag([
n
∑

j=1
wb

ij]
n
i=1),

Wb = [wb
ij]

n
i,j=1.

To obtain a projection matrix, the optimization problems of (16) and (17) can be changed into
another form as follows:

J(V) = max
VTXMbXTV
VTXMwXTV

(18)

According to the method of Lagrangian multipliers, the optimization problem is transformed to
solve a generalized eigenvalue problem, i.e.,

XMbXTV = λXMwXTV (19)

The optimization projection matrix V = [v1, v2, · · · , vd] can be obtained by the d minimum
eigenvalues of (19) corresponding eigenvectors. Then, the low-dimensional features can be
formulated by

Y = VTX ∈ <d×n (20)

In summary, the proposed LGSFA method considers the neighbor points and corresponding
reconstruction points to improve the intraclass compactness and the interclass separability
of hyperspectral data. Therefore, it can effectively extract the discriminating feature for HSI
classification. An example for the processing of LGSFA is shown in Figure 3.

Figure 3. An example for the processing of LGSFA.

According to Figure 3, the proposed LGSFA method applies the intraclass, interclass, and intraclass
neighbor reconstruction relationships to enhance the compactness of data from the same class and
the separability of data from different classes. The detailed steps of the proposed LGSFA method are
shown in Algorithm 1.

According to the process in Algorithm 1, we adopt big O notation to analyze the computational
complexity of LGSFA. The number of intraclass neighbors and interclass neighbors is denoted as
k1 and k2, respectively. The reconstruction weight matrix S is computed with the cost of O(nk3

1).
The intraclass weight matrix Wb and the interclass weight matrix Wb take O(nk1) and O(nk2),
respectively. The diagonal matrices Dw and Db both cost O(n). The intraclass manifold matrix
Mw and the interclass manifold matrix Mb are both calculated with O(n3). The costs of XMbXT

and XMwXT are both O(Dn2). It takes O(D3) to solve the generalized eigenvalue problem of (19).
For k1 < n and k2 < n, the total computational complexity of LGSFA is O(n3 + D3 + Dn2 + nk3

1) that
mainly depends on the number of bands, training samples, and neighbor points.
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Algorithm 1 LGSFA

Input: data set X = [x1, x2, · · · , xn] ∈ <D×n and corresponding class labels {l1, l2, · · · , ln}, embedding

dimension d (d < D), the number of intraclass neighbors k1, the number of interclass neighbors k2.

1: Find k1 intraclass neighborhood N1(xi) and k2 interclass neighborhood N2(xi) of xi.

2: Compute the intraclass reconstruction weight of xi by

3: min
n
∑

i=1
||xi −

n
∑

j=1
sijxj||

2

4: where sij 6= 0 if xj ∈ N1(xi) and
n
∑

j=1
sij = 1.

5: Calculate intraclass weight and interclass weight by

6: ww
ij =

 exp(−‖xi−xj‖2

2t2
i

), if xi ∈ N1(xj) or xj ∈ N1(xi) and li = lj

0, otherwise

7: wb
ij =

 exp(−‖xi−xj‖2

2t2
i

), if xi ∈ N2(xj) or xj ∈ N2(xi) and li 6= lj

0, otherwise

8: where ti =
1
n

n
∑

j=1

∥∥xi − xj
∥∥.

9: Compute intraclass manifold matrix and interclass manifold matrix

10: Mw = Bw
1 + Bw

2 , Mb = Bb
1 + Bb

2

11: where Bb
1 = 1

2 (D
b −WbST + SWbST − STWb), Bw

1 = 1
2 (D

w −WwST + SWwST − STWw),

Bw
2 = Dw −Ww, Bb

2 = Dw −Wb, Db = diag([
n
∑

j=1
wb

ij]
n
i=1), Wb = [wb

ij]
n
i,j=1, Dw = diag([

n
∑

j=1
ww

ij ]
n
i=1),

Ww = [ww
ij ]

n
i,j=1, S = [sij]

n
i,j=1.

12: Solve the generalized eigenvalue problem:

13: XMbXTV = λXMwXTV

14: Obtain the projection matrix with the d smallest eigenvalues corresponding eigenvectors:

15: V = [v1, v2, . . . , vd] ∈ <D×d

Output: Y = VTX ∈ <d×n

4. Experimental Results and Discussion

We employed the Salinas, Indian Pines, and Urban HSI data sets to evaluate the proposed LGSFA
method, and it was compared with some state-of-art DR algorithms.

4.1. Data Sets

Salinas data set: The HSI data set was collected by an airborne visible/infrared imaging
spectrometer (AVIRIS) sensor over Salinas Valley, Southern California, in 1998. This data set has
a geometric resolution of 3.7 m. The area possesses a spatial size of 512–217 pixels and 224 spectral
bands from 400 nm to 2500 nm. Exactly 204 bands remained after the removal of bands 108–122,
154–167 and 224 as a result of dense water vapor and atmospheric effects. The data set contains sixteen
land cover types. The scene in false color and its corresponding ground truth are shown in Figure 4.



Remote Sens. 2017, 9, 790 9 of 23

Figure 4. Salinas hyperspectral image. (a) HSI in false color; (b) Ground truth.

Indian Pines data set: This data set is a scene of the Northwest Indiana collected by the AVIRIS
sensor in 1992. It consists of 145× 145 pixels and 220 spectral bands within the range of 375–2500 nm.
Several spectral bands, including bands 104–108, 150–163 and 220, with noise and water absorption
phenomena were removed from the data set, leaving a total of 200 radiance channels to be used in the
experiments. Sixteen ground truth classes of interest are considered in the data set. The scene in false
color and its corresponding ground truth are shown in Figure 5.

Figure 5. Indian Pines hyperspectral image. (a) HSI in false color; (b) Ground truth.

Urban data set: This data set was captured by the hyperspectral digital imagery collection
experiment (HYDICE) sensor at the location of Copperas Cove, near Fort Hood, Texas, USA in
October 1995. This data set is of size 307 × 307 pixels, and it is composed of 210 spectral channels
with spectral resolution of 10 nm in the range from 400 to 2500 nm. After removing water absorption
and low SNR bands, 162 bands were used for experiment. Six land cover types are considered in this
data set. The scene in false color and its corresponding ground truth are shown in Figure 6.
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Figure 6. Urban hyperspectral image. (a) HSI in false color; (b) Ground truth.

4.2. Experimental Setup

In each experiment, the data set was randomly divided into training and test samples.
A dimensionality reduction method was applied to learn a low-dimensional space with the training
samples. Then, all test samples were mapped into a low-dimensional space. After that, we employed
the nearest neighbor (NN) classifier, the spectral angle mapper (SAM) and the support vector machine
based on composite kernels (SVMCK) [36] to classify test samples. For NN, it depends on the nearest
Euclidean distance to discriminate the class of test samples. For SAM, the class of test samples is
obtained by the smallest spectral angle. For SVMCK, it is an extensional SVM and simultaneously
applies the spatial and spectral information of HSI to discriminate the class of test samples. Finally,
the average classification accuracy (AA), the overall classification accuracy (OA), and the Kappa
coefficient (KC) were adopted to evaluate the performance of each method. To robustly evaluate the
results, the experiments were repeated 10 times in each condition, and we displayed the average
classification accuracy with standard deviation (STD).

In the experiment, we compared the proposed LGSFA algorithm with the Baseline, PCA, NPE,
LPP, sparse discriminant embedding(SDE) [13], LFDA, MMC and MFA methods, where the Baseline
method represents that a classifier was directly used to classify the test samples without DR. To achieve
optimal results for each method, we adopted cross-validation to obtain the optimal parameters of each
method. For LPP, NPE and LFDA, the number of neighbor points was optimistically set to 9. For SDE,
we set the error tolerances to 5. For MFA and LGSFA, we set the intraclass neighbor k1 = k and
interclass neighbor k2 = βk, where β is a positive integer. The values of k and β were set to 9 and
20, respectively. For SVMCK, we used a weighted summation kernel, which generated the best
classification performance compared with other composite kernels [36]. The spatial information was
represented by the mean of pixels in a small neighborhood, and the RBF kernel was used with the
LibSVM Toolbox [37]. The penalty term C and the RBF kernel width δ were selected by a grid search
with a given set {2−10, 2−9, · · · , 210}. The spatial window of size in the SVMCK classifier was set to
9× 9 for Indian Pines and Salinas data sets, and 5× 5 for Urban data set. The embedding dimension
was 30 for all the DR methods. All the experiments were performed on a personal computer with
i7-4790 central processing unit, 8-G memory, and 64-bit Windows 10 using MATLAB 2013b.

4.3. Two-Dimension Embedding

In this section, we use the Indian Pines data set to analyze the two-dimension embedding
of the proposed LGSFA method. In the experiment, we only chose five land cover types from
Indian Pines data set including Corn-mintill, Grass-trees, Hay-windrowed, Wheat and Woods, and they
were denoted by 1, 2, 3, 4 and 5. We randomly chose 100 samples per class for training, and the
remaining samples were used for two-dimension embedding. Figure 7 shows the data distribution
after application of different DR methods.

As shown in Figure 7, the results of PCA, NPE and LPP produced the scattered distribution
of points from the same class and the overlapped points from different classes. This phenomenon
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may be caused by the unsupervised nature of the methods. The LFDA and MMC methods improved
the compactness of points from the same class, while there still existed overlapping points between
different classes. The reason is that LFDA and MMC originate from the theory of statistics that cannot
effectively reveal the intrinsic manifold structure of data. SDE and MFA can reveal the intrinsic
properties of data, but it may not effectively represent the manifold structure of hyperspectral data.
This case resulted in some overlapping points between different classes. The proposed LGSFA method
achieved better results than ohter DR methods, for the reason that LGSFA can effectively represent the
manifold structure of hyperspectral data.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Two-dimension embedding of different DR methods on the Indian Pines data set. (a) Spectral
signatures; (b) PCA; (c) NPE; (d) LPP; (e) SDE; (f) LFDA; (g) MMC; (h) MFA; (i) LGSFA.

4.4. Experiments on the Salinas Data Set

To explore the classification accuracy with different numbers of intraclass neighbor points and
interclass neighbor points, we randomly selected 60 samples from each class for training and the
remaining samples for testing. After DR, the NN classifier was used to discriminate the test samples.
Parameters k and β were tuned with a set of {3, 5, 7, · · · , 25} and a set of {5, 15, 20, · · · , 60}, respectively.
We repeated the experiment 10 times in each condition. In Figure 8, a curved surface map was depicted
to display the average OAs with respect to parameters k and β.

According to Figure 8, with the increase in k, the OAs first increased and then decreased,
for a small or large number of intraclass neighbor points cannot effectively represent the intrinsic
structure of HSI. When the value of k was lower than 15, the OAs improved and then maintained
a stable value with an increasing parameter β. The OAs decreased quickly with a large value of β when
the value of k exceeded 15. The reason is that too large values of k and β will result in the appearance
of over-learning in the margins of interclass data. As a result, the parameters k and β possesses a small
influence on the classification accuracy for the Salinas data set, and we selected k and β to 9 and 20 in
the next experiments.
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Figure 8. OAs with respect to different numbers of neighbors on the Salinas data set.

To analyze the influence of embedding dimension, we randomly selected 60 training samples for
each class in Salinas data set and the NN classifier is used to discriminating the class of test samples.
Figure 9 shows the average OAs under different dimensions with 10 times repeated experiment.
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Figure 9. OAs with respect to different dimensions on the Salinas data set.

According to Figure 9, the classification accuracies improved with the increase of the embedding
dimension and then reached a peak value. When the embedding dimension exceeded a certain value,
the classification results of LGSFA began to decline, which resulted in the Hughes phenomena. NPE,
LPP, LFDA, MFA, and LGSFA achieved better results than the baseline, thus indicating that the DR
methods can reduce redundant information in HSI data. MFA and LGSFA generated higher OAs than
other DR methods, the reason is that MFA and LGSFA can effectively reveal the intrinsic properties
of hyperspectral data. In all the methods, LGSFA obtained the best classification accuracy, which
indicates that LGSFA can better represent the intrinsic manifold of hyperspectral data that contains
many homogenous areas.

To show the performance of LGSFA with different numbers of training samples, we randomly
selected ni samples from each class for training and the remaining samples were used for testing.
We adopted NN, SAM and SVMCK for the classification of test samples and repeated the experiment
10 times in each condition. The average OAs with STD and the average KCs are given in Table 1.
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Table 1. Classification results with different numbers of training samples on the Salinas data set
(OA ± std (%) (KC)).

Classifier DR ni = 20 ni = 40 ni = 60 ni = 80

NN

Baseline 82.4 ± 0.9 (0.805) 84.1 ± 0.7 (0.824) 84.7 ± 0.6 (0.830) 85.1 ± 0.4 (0.834)
PCA 82.4 ± 0.9 (0.805) 84.1 ± 0.7 (0.824) 84.6 ± 0.6 (0.830) 85.1 ± 0.4 (0.834)
NPE 83.3 ± 0.9 (0.815) 85.8 ± 0.6 (0.842) 86.2 ± 0.5 (0.847) 87.1 ± 0.4 (0.856)
LPP 83.6 ± 0.9 (0.818) 85.6 ± 0.4 (0.840) 86.1 ± 0.5 (0.845) 86.7 ± 0.5 (0.852)
SDE 82.5 ± 1.0 (0.806) 83.8 ± 0.8 (0.821) 84.9 ± 0.6 (0.832) 85.1 ± 0.3 (0.835)

LFDA 83.5 ± 1.0 (0.818) 84.8 ± 0.6 (0.832) 85.3 ± 0.6 (0.836) 85.7 ± 0.4 (0.841)
MMC 82.2 ± 0.9 (0.803) 84.0 ± 0.7 (0.822) 84.4 ± 0.5 (0.827) 84.9 ± 0.4 (0.832)
MFA 86.6 ± 1.0 (0.852) 87.9 ± 0.7 (0.866) 88.2 ± 0.8 (0.869) 88.4 ± 0.7 (0.871)

LGSFA 87.3 ± 1.4 (0.859) 88.8 ± 0.4 (0.875) 89.4 ± 0.6 (0.882) 89.8 ± 0.5 (0.886)

SAM

Baseline 82.9 ± 1.0 (0.811) 84.0 ± 0.9 (0.823) 84.3 ± 0.7 (0.826) 85.5 ± 0.5 (0.839)
PCA 82.8 ± 1.0 (0.809) 83.8 ± 0.8 (0.821) 84.1 ± 0.7 (0.824) 85.3 ± 0.4 (0.837)
NPE 84.2 ± 1.1 (0.825) 85.7 ± 1.0 (0.841) 86.1 ± 0.9 (0.846) 87.3 ± 0.5 (0.859)
LPP 83.2 ± 1.1 (0.814) 84.8 ± 0.9 (0.832) 85.3 ± 0.9 (0.837) 86.6 ± 0.4 (0.851)
SDE 83.4 ± 1.0 (0.815) 84.0 ± 1.1 (0.823) 85.2 ± 0.5 (0.835) 85.2 ± 0.4 (0.835)

LFDA 83.7 ± 1.0 (0.819) 84.4 ± 0.9 (0.827) 84.5 ± 0.7 (0.829) 85.6 ± 0.5 (0.840)
MMC 82.6 ± 0.9 (0.807) 83.6 ± 0.9 (0.818) 84.0 ± 0.6 (0.823) 85.0 ± 0.5 (0.833)
MFA 85.6 ± 1.1 (0.840) 86.7 ± 0.7 (0.853) 87.0 ± 0.6 (0.856) 87.4 ± 0.9 (0.860)

LGSFA 88.2 ± 0.6 (0.869) 89.3 ± 1.0 (0.881) 89.4 ± 0.8 (0.882) 90.0 ± 0.4 (0.889)

SVMCK

Baseline 89.2 ± 1.2 (0.880) 92.3 ± 0.9 (0.914) 94.1 ± 0.5 (0.934) 94.6 ± 0.4 (0.940)
PCA 88.1 ± 1.1 (0.868) 91.6 ± 0.7 (0.906) 93.7 ± 0.9 (0.930) 94.3 ± 0.4 (0.937)
NPE 87.0 ± 2.3 (0.855) 91.2 ± 1.0 (0.902) 93.4 ± 0.9 (0.927) 95.1 ± 0.3 (0.945)
LPP 86.7 ± 0.7 (0.853) 90.5 ± 1.1 (0.894) 92.8 ± 0.7 (0.920) 93.5 ± 1.0 (0.927)
SDE 86.2 ± 2.0 (0.847) 90.4 ± 1.2 (0.893) 92.6 ± 0.7 (0.917) 93.4 ± 0.6 (0.927)

LFDA 89.6 ± 1.4 (0.885) 92.1 ± 1.2 (0.912) 94.3 ± 0.7 (0.936) 94.8 ± 0.7 (0.942)
MMC 89.3 ± 2.0 (0.881) 91.9 ± 0.3 (0.910) 93.5 ± 0.8 (0.928) 94.1 ± 0.8 (0.934)
MFA 92.3 ± 1.5 (0.914) 94.9 ± 0.9 (0.943) 95.9 ± 0.3 (0.954) 96.1 ± 0.4 (0.956)

LGSFA 94.2 ± 1.2 (0.935) 95.8 ± 0.8 (0.953) 96.8 ± 0.5 (0.964) 97.1 ± 0.4 (0.968)

According to Table 1, the OAs and the KCs of each method improved as the increase of the number
of training samples, because there is more priori information to represent the intrinsic properties of HSI.
For different classifiers, each method with SVMCK possessed better classification accuracies than that
with other classifiers, because SVMCK utilizes the spatial-spectral information that is beneficial to
HSI classification. In all conditions, LGSFA achieved better results compared with MFA, and it also
displayed the best accuracies than other DR methods. The reason is that LGSFA utilizes the neighbor
points and corresponding intraclass reconstruction points to enhance the intraclass compactness and
the interclass separability. It can effectively represent the intrinsic structure of HSI and obtain better
discriminating features for classification.

To explore the performance of LGSFA under different training conditions, we evaluated the
classification accuracy of each class with a training set containing about 2% of samples per class.
The remaining samples were used for testing. After the low-dimensional features were obtained with
different DR methods, the SVMCK classifier was used to classify the test samples. The classification
results are shown in Table 2 and corresponding classification maps are given in Figure 10.

As shown in Table 2, the proposed method obtained the strongest classification effect in most
classes and achieved the best OA, AA, and KC. LGSFA is clearly effective in revealing the intrinsic
manifold structure of HSI, and it extracts better discriminating features for classification. The Baseline
method cost more running time than other method for classification, because the hyperspectral data
contains a large number of spectral bands to increase the computational cost of classification. LGSFA
took more running time to reduce the dimensionality of data for the graph construction. However,
LGSFA reduced the total running time for classification compared with the Baseline method, and it
improved the classification performances compared with other methods.
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Table 2. Classification results of different DR methods with SVMCK on the Salinas data set.

Class Samples DR with SVMCK Classifier

Training Test Baseline PCA NPE LPP SDE LFDA MMC MFA LGSFA

1 40 1969 100 100 99.9 99.9 99.7 100 100 99.8 100
2 75 3651 99.5 99.9 100 99.9 99.5 99.8 99.9 100 100
3 40 1936 100 97.1 99.9 99.9 99.9 99.5 96.1 99.8 100
4 28 1366 99.9 99.9 99.8 99.7 99.7 99.9 99.9 99.9 100
5 54 2624 99.6 96.4 98.6 98.9 98.5 98.7 97.1 99.3 99.8
6 79 3880 100 99.9 99.9 100 100.0 100 99.9 100 100
7 72 3507 99.5 99.4 99.7 99.7 99.3 99.5 99.5 100 100
8 225 11,046 90.1 89.1 89.7 90.4 89.5 91.0 88.8 92.4 97.8
9 124 6079 99.7 99.5 100 99.1 100 100 99.1 100 100
10 66 3212 97.9 96.9 98.2 97.2 98.0 98.8 97.1 98.0 100
11 21 1047 97.8 96.0 99.4 99.0 96.6 99.5 97.1 99.1 100
12 39 1888 100 99.9 99.9 100 99.9 99.7 100 100 100
13 18 898 97.9 96.8 97.6 88.8 98.0 99.2 96.1 100 99.2
14 21 1049 99.3 98.7 99.7 97.6 96.6 97.0 98.7 98.7 98.8
15 145 7123 87.2 84.0 91.6 90.3 87.3 88.6 84.3 80.1 97.4
16 36 1771 98.9 99.1 98.7 97.7 97.5 98.9 98.8 99.5 100

AA 98.0 97.0 98.3 97.4 97.5 98.1 97.0 97.9 99.6
OA 95.8 94.8 96.4 96.0 95.5 96.3 94.7 95.5 99.2
KC 0.954 0.942 0.960 0.955 0.950 0.958 0.941 0.950 0.991

DR time (s) - 0.059 0.220 0.119 2.228 0.045 0.243 0.179 2.185
Classification time (s) 1194.0 360.0 353.8 349.5 400.5 359.9 357.2 356.5 353.7

According to Figure 10, LGSFA produced more homogenous areas than other DR methods,
especially for the areas labeled as Grapes, Corn, Lettuce 4wk, Lettuce 7wk and Vinyard untrained.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Classification maps of different methods with SVMCK on the Salinas data set. (a) Ground
truth; (b) Baseline (95.8%, 0.954); (c) PCA (94.8%, 0.942); (d) NPE (96.4%, 0.960); (e) LPP (96.0%,
0.955); (f) SDE (95.5%, 0.950); (g) LFDA (96.3%, 0.958); (h) MMC (94.7%, 0.941); (i) MFA (95.5%, 0.950);
(j) LGSFA (99.2%, 0.991). Note that OA and KC are given in parentheses.
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4.5. Experiments on the Indian Pines Data Set

To analyze the performance of LGSFA with different land cover scenes, we utilized the AVIRIS
Indian Pines data set for classification. In the experiment, we randomly selected ni samples from each
class for training, and the remaining samples were used for testing. For the classes that are very small,
i.e., Alfalfa, Grass/Pasture-mowed, and Oats, the number of training samples was set to ni = Ni/2 if
ni ≥ Ni/2 where Ni is the number of the i-th class.

To explore the influence of parameters k and β, 60 samples were randomly selected from each
class for training, and the remaining samples were used for testing. The NN classifier was adopted to
classify the test samples. Figure 11 shows the OAs with respect to parameters k and β.

Figure 11. OAs with respect to different numbers of neighbors on the Indian Pines data set.

According to Figure 11, the OAs improved quickly and then declined with the increase of k,
because a small value of k cannot obtain enough information to reveal the intraclass structure and
a large value of k will cause over-fitting to represent the intrinsic properties of hyperspectral data.
The increased β promoted the improvement of OAs, and then OAs reached to a stable peak value.
To obtain optimal classification results, we set k and β to 9 and 20 in the experiments.

To analyze the classification accuracy under different embedding dimensions, 60 samples of each
class were randomly selected as training set, and the NN classifier was used to classify the remaining
samples. The results are shown in Figure 12. In the figure, LGSFA possessed the best classification
accuracy, because it can better reveal the intrinsic manifold properties of hyperspectral data.
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Figure 12. OAs with respect to different dimensions on the Indian Pines data set.
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To compare the results of each DR with different classifiers, we randomly selected 20, 40, 60, 80
samples from each class for training, and the remaining samples were used for testing. Each experiment
was repeated 10 times and Table 3 shows the average OAs with STD and the average KCs.

Table 3. Classification results with different numbers of training samples on the Indian Pines data set
(OA ± std (%) (KC)).

Classifier DR ni = 20 ni = 40 ni = 60 ni = 80

NN

Baseline 55.1 ± 1.1 (0.498) 58.5 ± 1.6 (0.535) 61.1 ± 0.9 (0.562) 62.6 ± 0.7 (0.578)
PCA 55.0 ± 1.2 (0.496) 58.6 ± 1.7 (0.535) 61.4 ± 1.1 (0.565) 62.6 ± 0.9 (0.578)
NPE 54.5 ± 1.9 (0.491) 57.3 ± 1.5 (0.521) 60.1 ± 1.3 (0.552) 61.5 ± 1.0 (0.566)
LPP 55.9 ± 1.4 (0.506) 60.3 ± 1.6 (0.554) 62.8 ± 1.1 (0.581) 64.4 ± 0.4 (0.598)
SDE 53.3 ± 1.2 (0.478) 57.5 ± 0.9 (0.523) 61.0 ± 0.9 (0.561) 62.3 ± 0.8 (0.575)

LFDA 55.2 ± 1.4 (0.499) 59.2 ± 1.6 (0.542) 62.4 ± 0.8 (0.576) 63.9 ± 0.9 (0.593)
MMC 54.8 ± 1.4 (0.494) 58.7 ± 1.6 (0.537) 61.9 ± 1.0 (0.571) 63.4 ± 0.5 (0.587)
MFA 51.0 ± 1.1 (0.454) 57.8 ± 1.2 (0.528) 60.8 ± 1.6 (0.559) 61.3 ± 1.0 (0.564)

LGSFA 58.1 ± 1.5 (0.530) 67.0 ± 1.6 (0.628) 72.2 ± 0.8 (0.686) 73.7 ± 0.9 (0.702)

SAM

Baseline 55.5 ± 1.8 (0.502) 60.4 ± 1.1 (0.555) 62.2 ± 1.5 (0.574) 64.6 ± 1.1 (0.600)
PCA 55.8 ± 1.8 (0.505) 60.9 ± 1.2 (0.560) 62.3 ± 1.4 (0.575) 64.6 ± 1.2 (0.600)
NPE 53.0 ± 2.0 (0.474) 58.0 ± 1.6 (0.528) 60.2 ± 1.1 (0.551) 62.3 ± 1.3 (0.575)
LPP 55.8 ± 1.8 (0.505) 61.0 ± 1.5 (0.561) 62.8 ± 1.2 (0.581) 65.0 ± 1.1 (0.605)
SDE 54.1 ± 2.0 (0.487) 58.7 ± 0.7 (0.537) 60.2 ± 1.1 (0.552) 62.9 ± 1.0 (0.581)

LFDA 54.3 ± 1.8 (0.489) 60.0 ± 1.4 (0.550) 62.1 ± 1.5 (0.573) 64.4 ± 1.3 (0.598)
MMC 58.6 ± 2.0 (0.537) 63.6 ± 1.0 (0.590) 65.7 ± 1.2 (0.613) 67.3 ± 1.1 (0.630)
MFA 48.8 ± 2.2 (0.432) 57.0 ± 2.2 (0.519) 58.4 ± 1.9 (0.533) 58.9 ± 1.9 (0.538)

LGSFA 57.6 ± 1.5 (0.525) 67.7 ± 1.1 (0.635) 71.0 ± 1.4 (0.672) 73.3 ± 0.8 (0.697)

SVMCK

Baseline 77.1 ± 1.7 (0.743) 84.6 ± 1.1 (0.825) 88.2 ± 1.0 (0.865) 89.8 ± 1.0 (0.883)
PCA 73.1 ± 2.5 (0.697) 81.8 ± 1.5 (0.793) 85.4 ± 1.0 (0.833) 87.9 ± 1.5 (0.862)
NPE 73.1 ± 2.9 (0.697) 81.6 ± 2.2 (0.791) 85.4 ± 1.2 (0.834) 87.7 ± 1.7 (0.859)
LPP 70.7 ± 1.6 (0.672) 81.1 ± 2.1 (0.786) 84.6 ± 1.2 (0.825) 87.4 ± 1.4 (0.856)
SDE 73.4 ± 1.8 (0.700) 81.8 ± 1.4 (0.794) 86.7 ± 1.1 (0.849) 89.2 ± 0.8 (0.876)

LFDA 74.4 ± 2.4 (0.712) 82.4 ± 1.4 (0.800) 86.2 ± 1.1 (0.843) 88.1 ± 1.0 (0.863)
MMC 74.7 ± 2.3 (0.715) 81.3 ± 1.3 (0.788) 84.4 ± 2.7 (0.822) 84.7 ± 2.4 (0.825)
MFA 71.3 ± 2.0 (0.678) 82.2 ± 1.4 (0.798) 88.1 ± 1.0 (0.865) 91.4 ± 1.1 (0.901)

LGSFA 85.3 ± 3.1 (0.833) 91.2 ± 1.7 (0.900) 95.0 ± 1.0 (0.942) 96.2 ± 1.0 (0.957)

As shown in Table 3, the classification accuracy of each DR method improved with the increasing
number of training samples. The results of different DR methods with NN or SAM were unsatisfactory
for the restricted discriminating power of NN or SAM. However, LGSFA with NN or SAM showed
better results than other DR methods in most cases. The reason is that LGSFA effectively reveals
the intrinsic manifold structure of hyperspectral data and obtains better discriminating features for
classification. In addition, each DR method with SVMCK possessed better results than that with NN
or SAM, and LGSFA with SVMCK achieved the best classification performances in all conditions.

To show the classification power of different methods for each class, 10% samples per class
were selected for training, and other samples were used for testing. For very small classes, we take
a minimum of ten training samples per class. The results of different methods with SVMCK are shown
in Table 4.
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Table 4. Classification results of different DR methods with SVMCK on the Indian Pines data set.

Class Samples DR with SVMCK Classifier

Training Test Baseline PCA NPE LPP SDE LFDA MMC MFA LGSFA

1 10 36 83.3 91.7 75.0 72.2 94.4 61.1 44.4 55.6 66.7
2 143 1285 87.9 87.2 86.2 85.3 85.7 84.4 85.2 91.3 96.5
3 83 747 93.3 89.6 85.4 85.0 87.1 91.6 84.5 94.8 96.3
4 24 213 93.9 79.3 93.0 90.1 85.0 73.7 84.5 74.2 97.7
5 48 435 95.2 95.9 95.6 95.9 97.2 96.3 96.8 95.9 97.5
6 73 657 99.7 100 100 99 99.7 100 97.0 99.1 100
7 10 18 94.4 94.4 100 100 94.4 94.4 88.9 100 100
8 48 430 99.8 97.4 99 100 99.5 99.1 99.8 100 100
9 10 10 100 100 100 100 100 100 100 90.0 100

10 97 875 85.7 86.6 86.5 83.3 82.1 86.3 80.2 86.1 96.1
11 246 2209 95.2 91.1 92.3 91.4 91.8 90.6 91.1 94.7 99.3
12 59 534 92.3 84.8 83.9 82.0 83.3 81.3 85.0 88.4 97.8
13 21 184 98.9 98.9 97.8 98.9 97.8 99.5 98.9 98.9 97.3
14 127 1138 97.8 98.1 98.6 98.0 97.7 98.2 96.9 97.7 99.9
15 39 347 96.3 96.5 97.4 96.8 94.2 94.2 88.8 93.7 100
16 10 83 97.6 96 100 89.2 90.4 88 92.8 98.8 92.8

AA 94.5 93.0 93.2 91.7 92.5 89.9 88.4 91.2 96.1
OA 93.9 91.8 92.0 91.0 91.1 90.9 89.9 93.5 98.1
KC 0.930 0.907 0.908 0.897 0.899 0.896 0.885 0.926 0.978

DR time (s) - 0.012 0.163 0.051 2.056 0.012 0.528 0.086 1.827
Classification time (s) 40.7 12.7 12.7 12.6 14.4 12.7 12.7 12.9 12.8

According to Table 4, LGSFA achieved the best classification accuracy for most classes, as well
as the best AA, OA, and KC among all the methods, because it can effectively represent the hidden
manifold structure of hyperspectral data. The corresponding classification maps are displayed in
Figure 13, which clearly indicates that the proposed method produces a smoother classification map
compared with other methods in many areas.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. Classification maps of different methods with SVMCK on the Indian Pines data set.
(a) Ground truth; (b) Baseline (93.9%, 0.930); (c) PCA (91.8%, 0.907); (d) NPE (92.0%, 0.908); (e) LPP
(91.0%, 0.897); (f) SDE (91.1%, 0.899); (g) LFDA (90.9%, 0.896); (h) MMC (89.9%, 0.885); (i) MFA (93.5%,
0.926); (j) LGSFA (98.1%, 0.978). Note that OA and KC are given in parentheses.
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4.6. Experiments on the Urban Data Set

To further explore the effectiveness of LGSFA with different sensors, we selected the Urban data
set captured by HYDICE sensor. We randomly selected 60 samples as training set to analyze OAs with
respect to parameters k and β. Figure 14 displays the classification results.

Figure 14. OAs with respect to different numbers of neighbors on the Urban data set.

According to Figure 14, with the increase of intraclass neighbor k, the classification accuracies
improved and then reached a stable value. The main reason is that the larger k will provide more
effective information to reveal the intrinsic properties. The OAs also increased when the value of β

enlarged, because there is more information to represent the margin of different classes with a larger β.
To obtain better results, we set k and β to 9 and 20 in the experiments.

To explore the relationship between the classification accuracy and the embedding dimension,
we randomly selected 60 samples form each class for training, and the remaining samples were used
for testing. Figure 15 shows the OAs with different dimensions using the NN classifier. As shown
in Figure 15, the OAs improved with the increase of the embedding dimension and then kept
a balanced value. Compared with other methods, the proposed LGSFA method provided the best
classification results.
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Figure 15. OAs with respect to different dimensions on the Urban data set.
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To compare the proposed method with other methods under different numbers of training
samples, we randomly selected 20, 40, 60, 80 samples as training set, and the remaining samples
were applied for testing. After DR with different methods, we adopted the NN, SAM, and SVMCK
classifiers to discriminate the class of test samples with 10 times repeat experiments. The average OAs
with std and KC (in parentheses) are given in Table 5.

Table 5. Classification results with different numbers of training samples on the Urban data set
(OA ± std (%) (KC)).

Classifier DR ni = 20 ni = 40 ni = 60 ni = 80

NN

Baseline 72.3 ± 3.5 (0.577) 72.6 ± 2.1 (0.585) 75.1 ± 1.0 (0.614) 76.0 ± 1.3 (0.627)
PCA 72.3 ± 3.5 (0.577) 72.6 ± 2.1 (0.585) 75.1 ± 1.0 (0.615) 76.0 ± 1.3 (0.627)
NPE 72.2 ± 3.5 (0.575) 71.7 ± 2.1 (0.574) 74.8 ± 1.0 (0.613) 75.7 ± 1.4 (0.627)
LPP 71.9 ± 3.9 (0.571) 72.1 ± 2.2 (0.579) 74.3 ± 0.9 (0.604) 75.3 ± 1.6 (0.617)
SDE 72.6 ± 3.6 (0.581) 72.9 ± 2.2 (0.589) 75.3 ± 1.1 (0.617) 76.1 ± 1.3 (0.628)

LFDA 75.3 ± 2.7 (0.620) 75.6 ± 1.6 (0.625) 76.9 ± 1.0 (0.641) 77.5 ± 1.3 (0.651)
MMC 71.4 ± 4.0 (0.565) 70.9 ± 2.0 (0.562) 72.3 ± 1.7 (0.576) 73.4 ± 1.7 (0.590)
MFA 74.6 ± 3.3 (0.609) 74.1 ± 2.5 (0.605) 76.2 ± 1.0 (0.630) 77.1 ± 1.1 (0.644)

LGSFA 75.3 ± 3.1 (0.622) 76.7 ± 1.7 (0.641) 78.1 ± 1.5 (0.658) 78.7 ± 0.5 (0.669)

SAM

Baseline 70.3 ± 2.8 (0.552) 72.0 ± 3.4 (0.572) 72.6 ± 2.1 (0.584) 73.5 ± 1.3 (0.595)
PCA 70.2 ± 2.7 (0.550) 71.9 ± 3.4 (0.570) 72.6 ± 2.1 (0.583) 73.4 ± 1.3 (0.594)
NPE 72.0 ± 2.6 (0.574) 74.7 ± 3.6 (0.609) 75.4 ± 2.4 (0.620) 75.8 ± 1.4 (0.628)
LPP 72.0 ± 2.8 (0.576) 74.0 ± 4.0 (0.600) 74.5 ± 1.9 (0.610) 75.4 ± 1.7 (0.623)
SDE 70.3 ± 2.7 (0.551) 71.9 ± 3.4 (0.571) 72.6 ± 2.1 (0.584) 73.5 ± 1.3 (0.595)

LFDA 74.6 ± 2.0 (0.611) 74.9 ± 3.3 (0.614) 75.5 ± 1.5 (0.623) 75.8 ± 1.2 (0.628)
MMC 69.3 ± 2.9 (0.537) 69.3 ± 4.5 (0.535) 70.5 ± 2.5 (0.552) 70.6 ± 2.4 (0.554)
MFA 72.4 ± 2.1 (0.580) 73.6 ± 3.6 (0.595) 74.3 ± 1.8 (0.607) 75.0 ± 1.3 (0.617)

LGSFA 76.7 ± 1.9 (0.641) 77.8 ± 2.5 (0.655) 78.1 ± 1.1 (0.659) 78.9 ± 1.2 (0.671)

SVMCK

Baseline 75.5 ± 3.1 (0.626) 78.2 ± 0.9 (0.661) 79.8 ± 0.9 (0.684) 81.4 ± 1.4 (0.707)
PCA 72.0 ± 3.7 (0.581) 74.5 ± 2.5 (0.610) 75.6 ± 1.7 (0.627) 78.7 ± 1.4 (0.666)
NPE 73.1 ± 3.0 (0.592) 77.3 ± 1.7 (0.648) 78.0 ± 1.5 (0.660) 80.4 ± 1.8 (0.691)
LPP 72.5 ± 3.3 (0.586) 77.3 ± 3.5 (0.652) 79.6 ± 1.5 (0.683) 81.2 ± 2.0 (0.703)
SDE 73.0 ± 3.5 (0.591) 75.6 ± 3.2 (0.624) 77.8 ± 3.0 (0.656) 80.2 ± 2.7 (0.689)

LFDA 75.2 ± 2.6 (0.622) 77.9 ± 1.6 (0.658) 79.1 ± 1.9 (0.675) 80.5 ± 2.1 (0.693)
MMC 70.5 ± 4.8 (0.558) 75.7 ± 3.7 (0.628) 75.2 ± 3.8 (0.621) 80.4 ± 3.1 (0.691)
MFA 72.6 ± 2.8 (0.587) 76.7 ± 1.7 (0.642) 78.3 ± 1.8 (0.664) 80.2 ± 1.4 (0.688)

LGSFA 79.8 ± 2.8 (0.688) 82.9 ± 1.4 (0.731) 84.0 ± 1.5 (0.748) 85.5 ± 1.0 (0.767)

In Table 5, the results improved with the increase of the number of training samples in most
conditions. Compared with other DR methods, LGSFA achieved the best OAs and KCs under different
classifiers. Each DR method with SVMCK presented better classification results than other classifiers,
and LGSFA with SVMCK possessed the best results in all cases. The experiment indicates that the
proposed LGSFA method can effectively reveal the intrinsic manifold properties of hyperspectral data
containing many homogenous areas.

To show the classification results of each class, we randomly selected 2% samples as training set,
and the other samples were used for testing. The classification maps are shown in Figure 16.

As shown in Figure 16, the LGSFA method displayed more similar compared with the ground
truth. The corresponding numerical results are shown in Table 6. In the table, the proposed method
obtained better classification accuracy in most classes and achieved the best AA, OA, and KC among
all the methods, which indicates that LGSFA is more beneficial to represent the hidden information
of hyperspectral data.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16. Classification maps of different methods with SVMCK on the Urban data set. (a) Ground
truth; (b) Baseline (86.0%, 0.765); (c) PCA (85.1%, 0.750); (d) NPE (86.5%, 0.773); (e) LPP (87.0%,
0.781); (f) SDE (85.7%, 0.758); (g) LFDA (85.6%, 0.759); (h) MMC (86.1%, 0.765); (i) MFA (87.5%, 0.788);
(j) LGSFA (88.8%, 0.809). Note that OA and KC are given in parentheses.

Table 6. Classification results of different DR methods with SVMCK on the Urban data set.

Class Samples DR with SVMCK Classifier
Training Test Baseline PCA NPE LPP SDE LFDA MMC MFA LGSFA

1 185 9045 90.6 86.3 87.1 87.2 85.3 87.9 84.1 87.3 88.6
2 29 1444 14.1 54.1 53.0 51.3 51.2 55.9 46.6 60.4 53.6
3 65 3165 94.7 95.6 96.3 95.7 94.5 95.4 91.9 94.8 97.2
4 30 1466 90.0 93.0 92.2 91.5 88.3 93.4 92.2 91.5 95.0
5 829 40,613 90.7 88.9 90.8 91.4 90.4 89.5 91.6 92.3 93.5
6 268 13,108 73.7 72.2 73.5 74.8 72.7 72.3 72.8 73.4 75.5

AA 75.6 81.7 82.2 82.0 80.4 82.4 79.9 83.3 83.9
OA 86.0 85.1 86.5 87.0 85.7 85.6 86.1 87.5 88.8
KC 0.765 0.750 0.773 0.781 0.758 0.759 0.765 0.788 0.809

DR time (s) - 0.040 0.308 0.085 3.390 3.390 0.449 2.185 3.837
Classification time (s) 1637.7 438.0 421.3 445.5 438.5 434.4 438.1 435.8 430.4

4.7. Discussion

The following interesting points are revealed in the experiments on the Salinas, Indian Pines,
and Urban HSI data sets.

• The proposed LGSFA method consistently outperforms Baseline, PCA, NPE, LPP, SDE, LFDA,
MMC and MFA in most conditions on three real HSI data sets. The reason for this appearance
is that LGSFA utilizes neighbor points and corresponding intraclass reconstruction points to
construct the intrinsic and penalty graphs, while MFA just uses the neighbor points to construct
the intrinsic and penalty graphs. That is to say, our proposed method can effictively compact
the intraclass data and separate the interclass data, and it can capture more intrinsic information
hidden in HSI data sets than other methods.

• It is clear that LGSFA produces a smoother classification map and achieves better accuracy
compared with other methods in most classes. LGSFA effectively reveal the intrinsic manifold
structures of hyperspectral data. Thus, this method obtains good discriminating features
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and improves the classification performance of the NN, SAM and SVMCK classifiers for
hyperspectral data.

• In the experiments, it is noticeable that the SVMCK classifier always performs better than NN
and SAM. The reason is that SVMCK applies the spatial and spectral information while NN and
SAM only use the spectral information for HSI classification.

• With the running time of different DR methods, the computational complexity of LGSFA depends
on the number of bands, training samples, and neighbor points. The proposed method costs more
time than other DR algorithms. The reason is that LGSFA needs much running time to construct
the intrinsic graph and the penalty graph.

• In the experiments of two-dimension embedding, LGSFA achieves better distribution for data
points than other DR methods. The results show that LGSFA can improve the intra-manifold
compactness and the inter-manifold separability to enhance the diversity of data from
different classes.

5. Conclusions

In this paper, we proposed a new method called LGSFA for DR of HSI. The proposed LGSFA
method constructs an intrinsic graph and a penalty graph using the intraclass neighbor points,
the interclass neighbor points and their corresponding reconstruction points. It utilizes neighbor
points and corresponding intraclass reconstruction points to improve the intraclass compactness and
the interclass separability. As a result, LGSFA effectively reveals the intrinsic manifold structure
of hyperspectral data to extract effective discriminating features for classification. Experiments on
the Salinas, Indian Pines, and Urban data sets show that the proposed method achieves better results
than other state-of-the-art methods in most conditions and LGSFA with SVMCK obtains the best
classification accuracy. Our future work will focus on how to improve the computational efficiency
and the misclassified pixels.
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