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Abstract: Oil spill accidents from ship or oil platform cause damage to marine and coastal
environment and ecosystems. To monitor such spill events from space, fully polarimetric (Pol-SAR)
synthetic aperture radar (SAR) has been greatly used in improving oil spill observation. Aiming to
promote ocean oil spill classification accuracy, we developed a new oil spill identification method by
combining multiple fully polarimetric SAR features data with an optimized wavelet neural network
classifier (WNN). Two sets of RADARSAT-2 fully polarimetric SAR data are applied to test the
validity of the developed method. The experimental results show that: (1) the convergence ability
of optimized WNN can be enhanced, improving overall classification accuracy of ocean oil spill,
in comparison to the classification results based on a common un-optimized WNN classifier; and
(2) the joint use of the multiple fully Pol-SAR features as the inputs of the classifier can achieve
better classification result than that only with single fully Pol-SAR feature. The developed method
can improve classification accuracy by 4.96% and 7.75%, compared with the classification results
with un-optimized WNN and only with one single fully polarimetric SAR feature. The classification
overall accuracy based on the proposed approach can reach 97.67%. Experimental results have proven
that the proposed approach is effective and applicable to classify the ocean oil spill.

Keywords: oil spill; wavelet neural network; fully polarimetric SAR; RADARSAT-2

1. Introduction

Oil spill happen often in the world oceans due to ship or oil platform accidents. They bring
damage to coastal environment and marine ecosystems [1–4]. Satellite remote sensing technology
has been widely used in oil spill observations due to its frequent large coverage and relatively low
cost [5–11]. Among remote sensing sensors, synthetic aperture radar (SAR) can provide valuable
synoptic information about the position and size of a particular oil spill under moderate wind speed
(4–12 m/s) weather conditions, day and night [12]. However, it is a challenge to distinguish oil spills
from other lookalike natural phenomena (biogenic slicks, upwelling, low wind areas, rain cells, shear
zones, internal waves, etc.) in SAR images [13]. Efforts have been devoted to improve oil spill detection
and classification. Nowadays, there is a general consensus that the extra information provided by
the polarimetric SAR (Pol-SAR) data enhances the capabilities of identifying and classifying the
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scattering behavior from different targets at sea [14–19]. A fully Pol-SAR transmits and receives two
orthogonally polarized fields and, as a result, measures the scattering matrix for each resolution cell.
Hence, this measurement process, considering the vectorial nature of the scattered field, retains all
the information in the scattered electromagnetic wave describing the polarimetric properties of the
observed scene [20–26]. Migliaccio used polarimetric decomposition theorem to show the polarimetric
SAR approach is effective in oil spill detection [2]. Since then, many polarimetric models and signatures
have been developed [7,8]. Some particular coefficients with fully polarimetric SAR for oil spill
detection were proposed, such as conformity coefficient [15], co-polarized phase difference [7], pedestal
height [21], Muller filter [24], degree of polarization [22] and geometric intensity and magnitude of
co-polarization correlation coefficient [8]. However, from previous literature on identification or
classification for ocean oil spill based on fully Pol-SAR feature, we find that scholars often employ a
single fully Pol-SAR feature rather than multiple features. Table 1 summarizes most fully Pol-SAR
features proposed by different scholars in recent years [26]. However, only using a single fully Pol-SAR
feature might limit the improvement of classification performance. Therefore, the idea of joint use
of multiple Pol-SAR features has been produced for the first time in this study to help enhance the
classification performance.

Table 1. Most employed polarimetric features and their expected behavior over sea surface with and
without slicks [26].

Pol-SAR
Feature

Slick-Free Sea
Surface/Lookalike

Oil Slice-Covered
Sea Surface References

H Low High
Migliaccio, Gambardella, and Tranfaglia (2007) [2],
Migliaccio, Nunziata, Montuori, et al. (2012) [14],

Minchew, Jones, and Holt (2012) [25]

A Low High Minchew, Jones, and Holt (2012) [25], Skrunes,
Brekke, and Eltoft (2014) [8]

A12 High Low Skrunes, Brekke, and Eltoft (2014) [8]

α Low High Minchew, Jones, and Holt (2012) [25]

ν High Low Skrunes, Brekke, and Eltoft (2014) [8]

M33
∣∣M33

I
∣∣ > ∣∣M33

I I
∣∣ ∣∣M33

I
∣∣ < ∣∣M33

I I
∣∣ Migliaccio et al. (2011) [14]

µ >0 <0 Zhang et al. (2011) [15], Skrunes Brekke,
and Eltoft (2014) [8]

P High Low Shivany, Chabert, and Tourneret (2012) [22]

Pheight Low High Nunziata, Migliaccio, and Gambardella (2011) [21]

Over the past several decades, artificial neural network algorithms have been widely
used in remote sensing image classification [27–29], due to their good self-organization [30–32],
self-learning [33,34], and self-adaptive abilities [35]. Among these, BP (Back Propagation) neural
network is one of the first widely used network models due to its simple and easy to implement
training in initially stage. Its network construction can realize mapping from the sample inputs to
outputs through nonlinear relationship. In general, through iterative operation with gradient descent
algorithm, the error of the network gradually decreases to tolerant range. However, BP algorithm also
has shortcomings. It is a kind of local optimization search methods, and the calculation often does not
converge, or converge to a local minimum. In addition, slow convergence calculation speed makes it
only useful for solving small-scale problems. To overcome the deficiency of the BP network, wavelet
neural network (WNN) was proposed [36]. WNN takes the topological structure of BP neural network
as the basis of the network. The nonlinear function of BP neural network is replaced with the wavelet
basis function. WNN combines time-frequency domain features of wavelet transform and self-learning
ability of BP network. It effectively solves the BP neural network problem and has strong learning and
generalization abilities. These advantages make WNN a widely applied method in remote sensing
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image classification [37–39]. The initial value of WNN plays a key role in the neural network training
process, and affects the network convergence nature and classification capability. In this study, we
develop a method of setting better initial value for the WNN to improve SAR image classification
performance to locate oil slicks.

The main objectives of this study are to: (1) demonstrate the capability and superiority of the
combined utilization of multiple fully Pol-SAR features as the inputs of an classifier for ocean oil spill
classification; and (2) indicate the superiority and effectiveness of an optimized WNN classifier in
improving classification performance of ocean oil spills, compared with un-optimized WNN.

The remainder of this paper is organized as follows: In Section 2, RadarSat-2 Pol-SAR data
used in this study and methodology are described; in Section 3, the experimental results are given.
The discussion and the conclusions are given in Sections 4 and 5, respectively.

2. Data and Methodology

2.1. Remote Sensing Data

We used two sets of remote sensing data of fully Pol-Radarsat-2. Tables 2 and 3 present the
information on the two RADARSAT-2 scenes and Figure 1 shows the images of the two sets of datasets
used in this study. The product type is SLC (simple look complex). Both images are acquired in fine
quad-polarization imaging in the Gulf of Mexico. The RADARSAT-2 fine quad-polarization imaging
mode provides single-look complex data in HH, VV, HV, and VH channels with a low noise floor of
−35 dB. The space resolution along azimuth directions and range directions are about 5 m. The range
of the incident angle is 26.093◦ to 29.395◦ for Image 1, and 43.631◦ to 44.954◦ for Image 2. The place
of study in Dataset 1 is SW of New Orleans in the northern Gulf of Mexico, near the mouth of the
Mississippi River. The Mississippi River Delta can be seen obviously in the image.

Table 1 is a sectional table extracted from Reference [26], summarizing the behaviors of fully
Pol-SAR features of seawater, lookalike and oil spill. According to the table, it can be known the pixel
values of α and H of oil spills are high, so their image tone should be brighter than the area covered
by water or lookalike. On the contrary, the values of ν, µ, p and M33 of oil spill are low, therefore
their image tone should be darker than the area covered by water or lookalike. According to this
criterion [26], in terms of behavior of fully Pol-SAR features of an oil spill and water/lookalike, we
can determine that the long strip objects in Dataset 1 and Dataset 2 in Figure 2, are oil spills, rather
than lookalikes.

Table 2. Information on the image of RadarSAT-2 used in this study (Dataset 1).

Product Type SLC (Single Look Complex)

Start Time 2015-05-08 T 23:53:36
Beam Mode FQ8W
Polarization HH VV HV VH

Look Direction Right
Pixel Spacing 4.73 m × 4.78 m

Incidence Angle 2.60E1~2.93E1
Area Covered 32.95 km × 23.2 km

Table 3. Information on the image of RadarSAT-2 used in this study (Dataset 2).

Product Type SLC (Single Look Complex)

Start Time 2011-06-17 T 11:48:20
Beam Mode FQ25
Polarization HH VV HV VH

Look Direction Right
Pixel Spacing 4.73 m × 5.05 m

Incidence Angle 4.36E1~4.49E1
Area Covered 37.17 km × 19.34 km
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Figure 1. The ocean oil spill image of RadarSat-2 in fine quad-polarization imaging mode used in this 
study: (a) oil spill image of RadarSat-2 SAR (Dataset 1); and (b) oil spill image of RadarSat-2 SAR 
(Dataset 2). There are oil spill, water, island, and oil platform in the image of Dataset 1, and there are 
oil spill, water and oil platform in the image of Dataset 2. 

Table 1 is a sectional table extracted from Reference [26], summarizing the behaviors of fully 
Pol-SAR features of seawater, lookalike and oil spill. According to the table, it can be known the 
pixel values of   and H  of oil spills are high, so their image tone should be brighter than the area 
covered by water or lookalike. On the contrary, the values of  ,  , p  and M33 of oil spill are low, 
therefore their image tone should be darker than the area covered by water or lookalike. According 
to this criterion [26], in terms of behavior of fully Pol-SAR features of an oil spill and water/lookalike, 

Figure 1. The ocean oil spill image of RadarSat-2 in fine quad-polarization imaging mode used in this
study: (a) oil spill image of RadarSat-2 SAR (Dataset 1); and (b) oil spill image of RadarSat-2 SAR
(Dataset 2). There are oil spill, water, island, and oil platform in the image of Dataset 1, and there are
oil spill, water and oil platform in the image of Dataset 2.
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we can determine that the long strip objects in Dataset 1 and Dataset 2 in Figure 2, are oil spills, 
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Figure 2. Presentation of several fully Pol-SAR features of Dataset 1 and Dataset 2.  

2.2. Introduction of Method Frame for Classifying the Ocean Oil Spills from Water 

Figure 3 demonstrates the scheme of the proposed method. The method includes two main 
parts. The first main part is about the selection process of the fully Pol-SAR features based on the J-M 
distance index method, extracted from RadarSAT-2 SAR data. The selected features will be used as 
the inputs of an optimized classifier. The process is explained in detail in Section 2.2.2. The second 
key part of the proposed method is an introduction about developed optimized wavelet neural 
networks (WNN) classifier. The optimization processing of the classifier is exhibited in Section 2.2.3. 
Oil spill classification results will be generated based on the optimized WNN classifier with the 
multiple selected fully Pol-SAR features. Classification accuracy will be assessed and compared with 
these based on: (1) un-optimized WNN classifier; and (2) single fully Pol-SAR feature. The 
effectiveness of the proposed method will be estimated in Section 4. 

 
Figure 3. Frame chart of experimental process for ocean oil spill classification. 

Figure 2. Presentation of several fully Pol-SAR features of Dataset 1 and Dataset 2.

2.2. Introduction of Method Frame for Classifying the Ocean Oil Spills from Water

Figure 3 demonstrates the scheme of the proposed method. The method includes two main
parts. The first main part is about the selection process of the fully Pol-SAR features based on the J-M
distance index method, extracted from RadarSAT-2 SAR data. The selected features will be used as the
inputs of an optimized classifier. The process is explained in detail in Section 2.2.2. The second key
part of the proposed method is an introduction about developed optimized wavelet neural networks
(WNN) classifier. The optimization processing of the classifier is exhibited in Section 2.2.3. Oil spill
classification results will be generated based on the optimized WNN classifier with the multiple
selected fully Pol-SAR features. Classification accuracy will be assessed and compared with these
based on: (1) un-optimized WNN classifier; and (2) single fully Pol-SAR feature. The effectiveness of
the proposed method will be estimated in Section 4.
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2.2.1. The Combination of Multiple Fully Pol-SAR Features for Improving Ocean Oil
Spill Identification

The ground object classification in remote sensing imagery is based on the difference of its feature
values. Generally, the feature pixel values of the same object are similar; on the contrary, different
objects possess different feature values. Therefore, the pixels of the same object present gathered and
cluster characteristic and hold certain area coverage, while different objects occupy different areas in
the feature space (shown in Figure 4). The more different the feature value of each object is, the higher
the probability of being accurately classified is each object. Although the feature value of the most of
pixels of different objects are separate in feature space, there is always observed mixture phenomenon
of feature value of few pixels of different objects. As shown in Figure 4, feature values of most oil
and water pixels are separate, but there are still a few cross-mixed regions of pixels, marked as the
red border.
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Figure 4. Clusters of ocean oil spill and water in region of interesting in two and three dimensional 
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Figure 5 shows the probability density distribution of pixels feature value between ocean oil 
spill and water in region of interest (ROI) in the case of one-dimensional feature space. The overlaid 
area shows the cross-mixed phenomena. The X-axis is the feature value, and the Y-axis is the 
number of pixels under the corresponding feature value. Figure 5a,b shows Span, and H of fully 
Pol-SAR features derived from the RadarSAT-2 Dataset 1. The peak value of probability density of 
oil spill and water is separated entirely, which illustrates that Span and H are effective features. 
However, the cross section of curve in the red border of the probability density figure displays the 

Figure 4. Clusters of ocean oil spill and water in region of interesting in two and three dimensional
feature space: (a) span-α; (b) span-H; and (c) α-span-H.

Figure 5 shows the probability density distribution of pixels feature value between ocean oil spill
and water in region of interest (ROI) in the case of one-dimensional feature space. The overlaid area
shows the cross-mixed phenomena. The X-axis is the feature value, and the Y-axis is the number of
pixels under the corresponding feature value. Figure 5a,b shows Span, and H of fully Pol-SAR features
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derived from the RadarSAT-2 Dataset 1. The peak value of probability density of oil spill and water is
separated entirely, which illustrates that Span and H are effective features. However, the cross section
of curve in the red border of the probability density figure displays the cross-mixed phenomena of
feature value of pixels between oil spills and water in a one-dimensional feature space. This indicates
using any single fully Pol-SAR feature we will inevitably make some misclassification for oil spill
and water which pixels features point clusters locate in overlaid area in feature space. Therefore, the
threshold segmentation method based only on a single feature value for identifying the oil spills from
water will almost surely cause segmentation error. The probability of wrong classification is related to
mix degree of oil spills and water in the feature space.
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However, when we add more Pol-SAR parameters in classification process, those pixels in the
mixture cluster in feature space will reduce when finding a suitable segmentation curved surface,
hence they will obtain more chances to be classified to the correct object types. This is because a higher
separation ability will be achieved in higher dimensional feature space than that in a one-dimensional
feature space, according to the knowledge of feature classification [40–42], such as in the classification
process for sea ice with Pol-SAR data [41,42], multiple features are often employed to classify the
objects, rather than only depending on a single feature. Therefore, we naturally generate an idea
that, when making classification of ocean oil spill with fully Pol-SAR data, multiple features should
be jointly used to try to enhance the classification performance, since we have obtained many types
of fully Pol-SAR features of oil spill proposed by different scholars. For example, Figure 6 exhibits
the different ability of identifying the oil spill from other objects based on several Pol-SAR features.
In Figure 6a, the objects in the region of the “a” are drilling platform. It has similar image tone with the
oil spill, consequently it is difficult to classify them. However, in Figure 6b,c, it is very easy to identify
oil spill from the drilling platform shown in areas “b” and “c”, since they have a contrary image tone,
compared with the oil spill. In the same way, the object in areas “d”, “e”, and “f” is the wake of a boat.
In Figure 6a,c, the oil spill and boat wake have a similar tone, so it is hard to correctly classify them,
whereas, when introducing the image of Figure 6b, the problem is easily solved, since the boat wake
has different image tone, compared with the image tone of oil spill. As a whole, Figure 6a–c presents a
visualized behavior of oil spill and water/lookalike in different fully Pol-SAR features. By analyzing
the characteristic of different objects in different fully Pol-SAR features images, we can be convinced of
jointly usage of multiple fully Pol-SAR features can really improve the identifying ability of oil spill
from water or lookalike, like the wake of a boat, and some other objects, such as the drilling platforms.
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Figure 6 effectively proves the necessary of combined use of multiple fully Pol-SAR features for oil
spill classification.Remote Sens. 2017, 9, 799 8 of 20 
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Figure 6. The difference of identifying ability of oil spill from the boat wake and drilling platforms
based on several fully Pol-SAR features extracted from Dataset 1. (a) the image of fully Pol-SAR feature
H (polarization entropy); (b) the image of fully Pol-SAR feature α (mean scattering angle); (c) is the
image of fully Pol-SAR feature span (backscattered energy).

2.2.2. Selection Criteria of Fully Pol-SAR Features Based on J-M Distance Method

For adequately exploiting the advantages of joint usage of multiple fully Pol-SAR features for oil
spill classification, we first need to determine optimal combination pattern of multiple features. It is
not necessary for every single Pol-SAR feature to be used in the classification process. The commonly
used fully Pol-SAR features for oil spill detection include span [8], ρ [7], H [1], A [25], α [25], µ [15],
and P [22]. Each of these features has its own different ability for identifying the ocean oil spills from
water. To achieving joint use of fully Pol-SAR features, we have to employ feature selection method to
determine combination pattern of fully Pol-SAR features. Jeffreys–Matusita distance (J-M) is an index
that is widely used to select useful features [43]. The chosen features will be as the inputs of the WNN
in this study. The calculation of the index is simple and has good universality [43]. The calculation
method of J-M distance of two different objects (oil and water) with a feature is shown in Equations (1)
and (2):

J = 2(1− e−B) (1)
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where J represents J-M distance index under a certain feature, such as span or µ in this study. m1 and
m2 are mean of a certain feature value of two kinds of different ground objects, respectively. In this
study, m1 and m2 are mean of the feature value of oil spill and water. δi and δi are the deviation of a
certain feature value of oil spill and water, respectively. The value range of J is 0–2. When the value of
the J is 0–1, the two objects have weak separability under a certain feature. When J is 1–1.9, the two
objects have a certain separability under a certain feature. When J > 1.9, the two objects have strong
separability under a certain feature [44].

Calculation result of J-M index based on the feature value demonstrates that span, H, µ , α , and P
all have higher separability ability for identifying the ocean oil spills from water, because the value
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of J index is greater than 1.5. Therefore, these features are used in this classification experiments.
The calculations of these features are summarized in Table 4.

J-M distance indexes are shown in Figure 7. Four fully Pol-SAR features (span, H, µ, and P) are
selected for Dataset 1 (solid line), while the other four (α, H, µ, and P) are selected for Dataset 2 (dash
line), as these J-M distance indexes are similar to or greater than 1.5. Therefore, five selected features
(span, H, µ, P and α) have certain identification ability for separating oil spill from water.
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Table 4. Introduction of selected full pol-SAR features used in this study.

Feature Formula Symbol Characterization

span span = |Shh|2 + |Shv|2 +
|Svh|2 + |Svv|2

Sxy: represents scattering
amplitudes

the total power of SAR
scattering target

H
H = −

3
∑

i=1
pi log3 pi

pi =
λi

∑3
i=1 λi

λi: weight of corresponding
scattering mechanisms
pi: pseudo-probability

characterizes the degree of
randomness of the polarimetric

scattering behavior

µ µ ∼= 2(<(ShhS∗vv)−|Shv |2)
(|Shh |2+2|Shv |2+|Svv |2)

Sxy: element of scattering
matrix

<: real part

represents the different
scattering mechanism

P p =

√
ss(2)+ss(3)+ss(4)

ss(1)
Ss(i): element of scattered

Stokes vector

characterize that how close the
scattering mechanism of the

observed scene is to be
deterministic

α α =
3
∑

i=1
piαi

αi: phase related to each
scattering mechanism

describes the scattering
mechanism that characterizes

the observed scene

Figure 2 shows the images of chosen fully Pol-SAR features. We can intuitively see the difference
of image tone of oil spill and water; hence, we believe the chosen features have good classification
ability. Meanwhile, the edge of the oil spills, such as the bottom pixels of the oil spills of Dataset 1,
present weak contrast with water. Classification that only depends on one or two fully Pol-SAR feature
images will inevitably cause segmentation error. The combined usage of the multiple fully Pol-SAR
feature images are necessary to help improve the classification performance of oil spills and water.
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As a general view, the chosen fully Pol-SAR features are effective for oil spill classification, in terms of
the feature images contrast degree (shown in Figure 2). These selected features will all be used as the
inputs of the optimized WNN classifier, and for conducting the training of neural network.

2.2.3. Optimization Strategy of the Initial Value of Wavelet Neural Network

In Section 2.2.2, we explain the selection method of fully Pol-SAR features based on the J-M
distance index. These features are span, H, µ and P for the classification experiment with Dataset
1, and α, H, µ, and P for the classification experiment with Dataset 2. The selected features will be
as the inputs of the optimized WNN classifier, guiding the training process of the neural network.
In Section 2.2.3, we introduce the optimization strategy of the WNN. In Section “The Architecture
of the Wavelet Neural Network”, we firstly exhibit the architecture of the WNN. Then, in Section
“Optimization Method of the WNN”, we present the optimization process of WNN.

The Architecture of the Wavelet Neural Network

The WNN applied in this study includes an input layer, a hidden layer, and an output layer.
A corresponding weight value matrix is used for connecting the input layer with the hidden layer, and
the hidden layer with the output layer. The WNN architecture with a single hidden layer is shown in
Figure 8.
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The excitation function of the hidden layer of the WNN uses the Morlet wavelet function
(see Formula (3)).

ψ(t) = e(−
t2
2 ) cos(1.75t) (3)

The wavelet neural network model is constructed by Equations (4)–(7).

netp
j = ∑ M

k=1wjkxp
k (4)

ψa,b(netp
j ) = ψ(

netp
j − bj

aj
) (5)

yp
i = f [∑ n

j=1wijψa,b(netp
j )− βi], i = 1, 2, · · · , n (6)
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netp
i = ∑ n

j=1wi,jψa,b(netp
j ) (7)

The meaning of the parameters is summarized in Table 5.

Table 5. The definition of parameters used in Equations (4)–(7).

Parameter Definition

p(p = 1, 2, · · · , P) number of input samples

k(k = 1, 2, · · · , M) number of nodes in the input layer

j(j = 1, 2, · · · , n) number of nodes in the hidden layer

i(i = 1, 2, · · · , N) number of nodes in the output layer

[wjk]n×M

weight matrix n ×M from the input layer to the hidden layer, with wjk as the weight
connecting node j of hidden layer with the node k of the input layer); (the initial value is a

random value of −1–1)

[w1j]N×n

weight matrix N × n from the hidden layer to the output layer, with wij as the weight
connecting the node i of the output layer and node j of the hidden layer; (the initial value is a

random value of −1–1)

xp
k The kth input of the pth sample in the input layer

netp
j input of the jth node in the hidden layer of the pth sample

netp
i input of the ith node in the output layer of the pth sample

aj and bj scaling parameter and translation parameter of the jth node of the hidden layer, respectively

ψa,b(netp
j ) output of the jth node of the hidden layer of the pth sample

βi
threshold value at the ith node of the output layer, (the initial value is a random value of

−1–1)

yp
i the ith actual output in the output layer of the pth sample

Optimization Method of the WNN

The initial value of WNN plays an important role in train process of a network. A good initial
value can improve the convergence speed and classification accuracy of a network. The nature of
optimization method of the initial value of a WNN network proposed in this paper is obtaining a set
of optimal initial value for the classifier, by making use of the relationship between the initial value
(Wjk, ai, bi) of a WNN and training samples of ROI. The detailed steps are as follows:

Step 1 Set up the initial value of Wjk.

Firstly, a random number of 1–1 is generated as the initial value of Wjk. Then, Wjk is normalized
according to the Equation (8).

Wjk =
Wjk√
M
∑

k=1
W2

jk

j = 1, 2, · · · , n (8)

Next, Wjk is calculated. The function is given by Equations (9) and (10)

Wjk = C·n
1
m ·Wjk j = 1, 2, · · · , n (9)

Wjk =
2Wjk

xkmax − xkmin
j = 1, 2, · · · , n (10)

where M is the number of the input layer nodes. n is the number of the hidden layer nodes. C is a
constant. χkmax is the maximum value of the input samples of the ith neuron node of the input layer.
χkmin is the minimum value of the input samples of the ith neuron node of the input layer.
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Step 2 Calculate the initial value of ai (Scaling parameter of the jth node of the hidden layer).
The function is given by Equation (11)

ai =

(
M

∑
j=1

xjmax −
M

∑
j=1

xjmin

)
÷ (0.7× ∆x0i) (11)

where ∆x0i is the width of the window. xjmax is the maximum value of the input samples of the jth
neuron node of the input layer. xjmin is the minimum value of the input samples of the jth neuron
node of the input layer.

Step 3 Calculating the initial value of bi (translation parameter of the jth node of the hidden layer).
The function is given by Equation (12)

bi = 0.5×
(

M

∑
j=1

xjmax +
M

∑
j=1

xjmin

)
− ai × x0i (12)

where the meaning of xjmax, xjmin and ∆x0i are the same as above-mentioned explained.
The classification process of the WNN in this experiment is as shown in Figure 9. The process is

explained in detail as follows:

Step 1 Implement the preprocessing of the original image. The Pol-SAR features are extracted,
and the expert interpretation map is determined. The region of interest is selected.

Step 2 Build the WNN model. The number of nodes in each layer is determined. Numbers of the
input layer nodes equal to numbers of the selected features (in Dataset 1 experiment, span,
H, µ, and P fully Pol-SAR features are selected, and, in Dataset 2 experiment, α, H, µ, and
P features are selected by J-M index). Numbers of hidden layer nodes are determined by
the testing. In this study, we set the number of the hidden layer nodes as 15, 20, 25, 30, 35,
and 40 to evaluate the convergence and classification performance under different neural
network structure. The numbers of output layer nodes is equal to the number of classified
types. In this study, the classified types are oil spill and water, the number of the output
layer nodes is 2.

Step 3 Train the wavelet neural network. The pixel values of the selected fully Pol-SAR features
(span, H, µ, and P of Dataset 1; α, H, µ, and P of Dataset 2) in the region of interest are used as
the input of the WNN to conduct the training of the network. The number of iterations is set
to 100. The minimum output error Emin of the neural is set to 1 × 10−5. If the output error
E < Emin, then the training iteration ends. If E > Emin, then the training iteration continues.

Step 4 Obtain the classification results.
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3. Result

3.1. Classification Result and Accuracy Analysis

The ocean oil spill classification results of experiments of Dataset 1 and Dataset 2 are summarized
in Tables 6 and 7, respectively. Table 6 shows the classification results with different Pol-SAR features
based on optimized and un-optimized WNN of the experiment of Dataset 1. On the one hand, the
combined usage of four features (µ, P, H, and span) has highest classification accuracy in the case
of same classifier, compared to single Pol-SAR feature. Classification accuracy of optimized WNN
with four features as the input of the network arrives to 96.55%, and Kappa coefficient is 0.936.
The classification accuracy of four Pol-SAR features is improved by 7.75%, 5.79%, 3.7% and 2.13%,
compared to the classification results only using single µ, P, H, and span as the input of the optimized
classifier, respectively. The classification accuracy of four Pol-SAR features is improved by 3.65%,
3.12%, 3.91% and 0.65%, compared with the classification results, only applying µ, P, H, and span as
the input of un-optimized classifier, respectively. This result proves that the four Pol-SAR features
as the network input can effectively improve the classification ability. On the other hand, when the
input feature is the same, optimized WNN classifier always has higher classification ability than that
of un-optimized classifier regardless of which one feature is as the input. Classification accuracy of
optimized classifier with four features µ, P, H, and span feature is improved by 4.65%, 0.55%, 1.98%,
4.86%, and 3.17%, respectively, compared with the classification accuracy of un-optimized classifier.
It indicates that optimal WNN has better enhanced the classification accuracy. When observing the
convergence times, it can also be seen the superiority of optimized classifier, in comparison to the
un-optimized classifier.

Table 6. The experimental results of Dataset 1.

Input(s) Training
Samples

Testing
Samples

Optimized WNN Un-Optimized WNN

OA (%) Kappa Convergence Rate OA (%) Kappa Convergence Rate

Four features 600 2000 96.55 0.936 174/180 91.90 0.877 149/180
µ 500 2000 88.80 0.876 155/180 88.25 0.810 105/180
P 500 2000 90.76 0.854 151/180 88.78 0.840 107/180
H 500 2000 92.85 0.860 170/180 87.99 0.842 108/180

span 500 2000 94.42 0.827 109/180 91.25 0.841 107/180

Note: OA is the overall accuracy of classification; Kappa is the meaning of Kappa coefficient.
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Table 7. The experimental results of Dataset 2.

Input(s) Training
Samples

Testing
Samples

Optimized WNN Un-Optimized WNN

OA (%) Kappa Convergence Rate OA (%) Kappa Convergence Rate

Four features 600 2000 97.67 0.948 153/180 92.71 0.877 135/180
µ 500 2000 92.56 0.871 145/180 91.66 0.810 101/180
P 500 2000 95.05 0.854 151/180 92.10 0.840 103/180
H 500 2000 94.10 0.860 170/180 92.64 0.842 110/180
α 500 2000 93.29 0.827 113/180 91.31 0.841 102/180

Note: OA and Kappa have the same meaning as above table.

Table 7 shows the classification results of the Dataset 2. It also shows that the optimized wavelet
neural network has great ability of enhancing the classification accuracy. As a whole, the classification
results of Dataset 1 and Dataset 2 manifest that the combined usage of multiple fully Pol-SAR features
and the optimal classifier can greatly improve classification accuracy of ocean oil spill.

3.2. Effect of Different Numbers of Hidden Layer Nodes on WNN Classification Performance

Figures 10 and 11 demonstrate the classification results of Image 1. Figure 10 shows the mean
of overall accuracy (OA) and kappa coefficient of 30 times of tests of Dataset 1 with the optimized
WNN and un-optimized methods. The optimal WNN is obviously superior to the un-optimized
WNN. No matter how many hidden layer nodes of the WNN, the optimized method has higher
average classification accuracy. Meanwhile, the un-optimized WNN presents obvious fluctuation in
classification accuracy. Especially when the number of the hidden layer nodes is 15, 20, 25, and 30,
the OA of classification shows strong fluctuation. When investigating the convergence of these
two classifiers, we can see that 30 times of classification tests of the optimized classifier are all
convergent. However, the un-optimized WNN did not converge twice when hidden layer node
is 25 and 30. The experimental results of Dataset 1 show that the optimized classifier has better and
stable classification ability.
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Figures 12 and 13 show experimental results of Dataset 2. Figure 12 also indicates the optimized
classifier has higher average classification accuracy. However, we can see that the classification
accuracy of optimized method presents three times vibrate state when the hidden layer node is 35.
In the case of other hidden layer node, the OA of classification of optimized network is always better
than that of the un-optimized network. In short, the experimental results of Dataset 2 also show that
optimized WNN classifier has better and stable classification ability.
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4. Discussion

4.1. Combination Pattern of Pol-SAR Features for Oil Spill Classification Should Be Taken into Consideration

Quad-polarization SAR measures the scattering matrix and provides full amplitude and
phase information of each image pixel [7]. In land-use classification, previous studies show that
quad-polarization SAR data yield more useful information than conventional single-polarization
SAR [7,8]. RADARSAT-2 quad-polarization (HH, HV, VH, and VV) SAR measures the scattering matrix
of each SAR image pixel. The measurement retains all the information describing the polarimetric
properties of the observed scene in the scattered field. Due to the vector nature of the scattered
field, quad-polarization measurements can be used to classify SAR imagery with different scattering
mechanisms [8,15]. However, previously, most research on the identifying of ocean oil spill from the
water was based only on a single fully Pol-SAR feature, which would inevitably limit the enhancement
of classification accuracy. Therefore, in this study, combined use of multiple fully Pol-SAR features for
oil spill classification has been suggested and proved it can improve the classification ability, compared
with only a single feature. Combination pattern of joint use of several fully Pol-SAR features should
be discussed and investigated carefully in further research. Although in this study with two sets of
RADARSAT-2, the five fully Pol-SAR features are successfully selected by J-M distance method and
proved effectiveness of improving classification performance of ocean oil spill, when applying the
other fully Pol-SAR datasets, or when there are other lookalikes in SAR imagery, effective combination
pattern of fully Pol-SAR features might vary. The reason is that the types of oil spill and variable
ocean environment, such as the wind speed change, may result in changing of effective combination
pattern. Consequently, different methods for selecting features are suggested to be tested to determine
effective combination pattern of fully Pol-SAR features for ocean oil spill classification. The research
achievements and reference studies in regard to the features selection or bands selection have been
obtained in previous related research field, such as hyperspectral band selection, not only by J-M
distance method used in this study [43–46]. Especially in the case of that there are several complex
lookalikes in the images, more effective feature selection methods are particularly of importance
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for enhancing classification accuracy. It is noteworthy that main contribution of this paper is at the
first proposing a scheme of jointly use of multiple fully Pol-SAR features for oil spill classification.
Generally, in further oil spill classification experiments, which specific combination pattern of Pol-SAR
features should be employed will be determined by test.

4.2. More Advanced Classifier Should Be Introduced or Developed for Further Promoting Ocean Oil Spill
Classification Performance

From the pattern recognition perspective, selection/extraction of representative features of oil
spill image is important for its classification. However, it is also a bottleneck to improving accuracy,
due to variation of ocean environment when oil spill occurs. Therefore, learning features automatically
from a remote sensing data set rather than using manually designed features, and then performing
classification on the learned features, is an effective way to improve the accuracy of classification [47].
Deep learning theory was explicitly proposed by Hinton et al. [48] in 2006. It is a branch of machine
learning based on a set of algorithms that attempt to model high level abstractions in data [49].
Compared with the traditional machine learning theories, the most significant difference of deep
learning is emphasizing automatic feature learning from a huge data set through the organization
of multi-layer neurons. In recent years, various deep learning architectures such as Deep Belief
Networks (DBN) [50], Convolutional Neural Networks (CNN) [47], and Recurrent Neural Networks
(RNN) [51] have been proposed and applied in speech, vision and image recognition and classification
fields [52], they have been shown to produce state-of-the-art results in these domains, nevertheless,
deep learning usually requires big data [53]. In deep learning techniques, CNN has achieved
remarkable results in image classification, recognition, and other vision tasks [54–57]. Therefore,
we believe CNN classification model will have a wide applying space in ocean oil spill image
recognition and classification field, since increasing Pol-SAR datasets of ocean oil spill, such as
RADARSAT-2, ENVISAT-ASAR, SIR-C/X SAR, and ALOS-PALSAR, allow a large amount of Pol-SAR
data to be archived, and generate big Pol-SAR data of ocean oil spill. In the future research on
ocean oil spill classification, we will be devoted to develop a CNN to achieve further enhancement of
classification accuracy.

5. Conclusions

Oil spill pollution arising from ship or oil platform accidents represents a serious threat to the
marine and coastal environment and ecosystems. Remote sensing observations are key to identify oil
spills. To monitor such spill events from space, fully polarimetric synthetic aperture radar data has
been increasingly employed in improving oil spill classification. In this study, the combined usage
of multiple fully Pol-SAR features is exploited to classify sea oil spill in SAR imagery. Experiments,
undertaken using two sets of RADARSAT-2 fully Pol-SAR data, confirm the effectiveness of the
proposed approach. The main novelties that characterize this study can be summarized as follows.

• J-M distance index method is beneficial to select the fully Pol-SAR features. µ, H, span, P, and α

are selected in this study. Strong contrast degree of gray level of pixels between oil spill and water
illustrates the selected features have good separability of oil spill and seawater.

• Jointly using multiple fully Pol-SAR features shows better classification performance of oil spill
and seawater, compared with the classification results of only using single fully Pol-SAR feature.

• We build a more robust WNN classifier through setting optimal initial values of the network for
oil spill classification. The experimental results demonstrate that the optimized WNN classifier
can promote the classification performance largely, compared to an un-optimized WNN classifier.

• Since both the combined usage of fully Pol-SAR features and an optimized WNN classifier can
improve classification performance, it proves the effectiveness and applicableness of the proposed
method for ocean oil spill classification.
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