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Abstract: Automated classification of earthquake damage in remotely-sensed imagery using machine
learning techniques depends on training data, or data examples that are labeled correctly by a human
expert as containing damage or not. Mislabeled training data are a major source of classifier error due
to the use of imprecise digital labeling tools and crowdsourced volunteers who are not adequately
trained on or invested in the task. The spatial nature of remote sensing classification leads to the
consistent mislabeling of classes that occur in close proximity to rubble, which is a major byproduct
of earthquake damage in urban areas. In this study, we look at how mislabeled training data, or
label noise, impact the quality of rubble classifiers operating on high-resolution remotely-sensed
images. We first study how label noise dependent on geospatial proximity, or geospatial label noise,
compares to standard random noise. Our study shows that classifiers that are robust to random noise
are more susceptible to geospatial label noise. We then compare the effects of label noise on both
pixel- and object-based remote sensing classification paradigms. While object-based classifiers are
known to outperform their pixel-based counterparts, this study demonstrates that they are more
susceptible to geospatial label noise. We also introduce a new labeling tool to enhance precision and
image coverage. This work has important implications for the Sendai framework as autonomous
damage classification will ensure rapid disaster assessment and contribute to the minimization of
disaster risk.

Keywords: machine learning; classification; crowdsourcing; earthquake damage; damage detection;
GEOBIA; mislabeled training data

1. Introduction

Two major innovations have improved our ability to rapidly assess damage in the aftermath
of a major earthquake event: high spatial resolution remote sensing imagery and online
crowdsourcing [1,2]. In the two days after the 2011 earthquake in New Zealand, nearly 70,000 unique
online visitors amassed 779 reports that informed the activities of local volunteers who helped clear
more than 360,000 tons of silt and rubble [3]. This effort effectively allocated assistance to the neediest
areas and enabled accurate estimation of the cost of recovery. Due to the success of crowdsourcing
efforts, damage assessment has largely shifted to websites such as Tomnod and OpenStreetMap
(OSM) [4].
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Despite success stories associated with crowdsourced damage assessment, the quality of
amateur data is a major concern. A study of the 2010 crowdsourced effort that mapped damage
in high-resolution images of the Haiti earthquake validated crowd annotations against ground
observations and Pictometry data. This study found the accuracy of the crowdsourced effort to range
between 20% and 80% depending on the damage class and data source used for validation [5]. One Red
Cross member reported after the 2015 Nepal earthquake that “more than half of the contributors are
completely new to OSM and are making their very first edits...Whilst that’s undoubtedly a good thing,
many are making mistakes and need to be trained along the way” [6]. Many projects have tried to
address data quality issues by requiring volunteer training or a minimum level of expertise. However,
projects seeking to improve data quality experience trade-offs in terms of increased costs to implement
quality controls and decreased volunteer participation [7]. Meanwhile, the number of remotely-sensed
data products with increased spatial, spectral and temporal coverage is proliferating. It is unclear
that crowdsourcing can continue to be the primary method for the annotation of damage in the era
of big data. If crowdsourced volunteers can be shifted toward the generation of training data, then
automated classifiers can classify damage in large amounts of imagery in a fraction of the time.

This study focuses on the machine-learned classification of rubble in remotely-sensed images
taken in the aftermath of an earthquake event. Automated classifiers have shown promise detecting
rubble in remote sensing images [8]. However, the impact of training data quality on classifier
performance has received little attention in both earthquake damage detection and remote sensing as
a whole. Even within the machine learning literature, label noise is usually simulated and assumed to
be distributed uniformly [9,10]. In reality, objects that occur near rubble, like buildings and streets,
are more likely to be mislabeled than unrelated structures, such as water or trees. Similar problems may
arise if labeling instructions are not carefully specified. Figure 1 is an example of two user annotations
of the same damaged structure where different labeling tools and instructions were used. User 1
was tasked with labeling “damage” and marked intact roofs that belonged to damaged buildings,
an ambiguity that would confuse a classifier whose annotations of damage largely consist of rubble.
We call this type of label confusion that occurs in spatially-contiguous regions of remote sensing
imagery geospatial label noise. The effects of geospatial label noise can be seen in the map in Figure 2.
This figure shows five individuals’ attempts to identify earthquake damage in an image. Bright red
regions indicate areas that all labelers believed contained damage. Dark red regions indicate areas
that only one labeler did. Noticeably, regions in which labelers tend to disagree with the majority vote
happen in close geospatial proximity to regions in which all labelers agree.

In this paper, we compare how geospatial label noise affects classifiers from the two major remote
sensing classification paradigms: pixel-based and object-based. Object-based methods are also known
as Geographic Object-Based Image Analysis (GEOBIA) [11] and assume a pre-processing step of image
segmentation that partitions the scene into relatively homogeneous segments that ideally correspond
to semantically-meaningful objects (e.g., cars, buildings, roads). Then, a feature extraction process
runs upon each object to yield measurements that characterize the object’s shape, texture and colors.
Pixel-based classification uses only the spectral content of each pixel or passes a sliding window over
each pixel to capture contextual textural and spectral features.

We conduct experiments with both pixel- and object-based classifiers on two large orthorectified
images of downtown Christchurch, New Zealand, taken after the 22 February 2011 earthquake.
Our results confirm the results from the GEOBIA literature that object-based classifiers outperform
pixel-based classifiers when trained on data that are free of label noise. However, the performance
of object-based classifiers degrades more quickly and sinks below the performance of pixel-based
classifiers as training data are mislabeled with increasing amounts of geospatial label noise.
We experiment with two types of simulated geospatial label noise and demonstrate the use of a
new labeling tool that is less prone to introducing noise during the labeling process.
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(a) User 1 (b) User 2

Figure 1. Annotations of the same destroyed building by two users using different labeling tools and
methodologies. (a) User 1 was tasked with marking “damage” and included an intact roof in the
training data, whereas in (b) User 2 limited annotation to rubble only. User 1’s annotation would
confuse a rubble classifier.

Figure 2. This image superimposes the attempts of five individuals at labeling rubble. Bright red
indicates that all labelers believed the area was damage, while dark red indicates that only one labeler
did. Regions in which labelers tend to disagree happen in close geospatial proximity to regions in
which all labelers agree.

The remainder of the paper includes the following sections. Section 2 describes related work
on remote sensing classification, random forest classifiers and label noise. Section 3 introduces the
data and imagery used in the experiments. Section 4 describes the experimental setup. Section 5
presents the results from all noise experiments. Section 6 summarizes our findings and presents their
implications for disaster preparedness and risk management.
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2. Related Work

2.1. Pixel- vs. Object-Based Classifiers

Pixel-based classifiers were popular in the later 20th Century [12] and are still used for lower
resolution classification tasks at scales where shapes are largely uninformative, such as in rainforest
classification [13,14]. However, at higher resolutions, pixel-based approaches face limitations.
Increased spatial resolution creates settings in which scene objects are significantly larger than the
sensor’s resolution cell. These settings, called H-resolution situations, expand the number and variety
of pixels in small structures such as buildings and trees [15]. This increased intra-class variance of
pixels diminishes the predictive capabilities of pixel-based approaches, an issue referred to as the
H-resolution problem [11]. However, this improved detail enables the use of image segmentation in
order to partition the scene into objects that ideally correspond to natural features in the scenes. Object
construction allows for the calculation of features that encapsulate new information about an object’s
context and shape, in addition to texture and color. In high resolution imagery, the combination of
textural, shape and color features allows GEOBIA classifiers to outperform pixel-based methods.

2.2. Label Noise

Label noise is broadly categorized into three models: Noise Completely at Random (NCAR),
Noise at Random (NAR), or Noise Not at Random (NNAR) [16]. NCAR occurs in binary classification
when every label is equally probable of being wrong and may be modeled by a simple Bernoulli
random variable, independent of class. NAR occurs in binary classification when one class is more
likely to be modeled incorrectly than the other and may be modeled by a Bernoulli random variable
with different prior probabilities for each class. These first two types of noise have been greatly
analyzed mathematically and their simple probability functions make them easy to simulate. Classifier
performance is often only evaluated against these two models of noise [9,10].

NNAR is the most elusive noise model in the machine learning literature [16]. NNAR is modeled
by a probability function dependent on the feature space of the data rather than its labeling scheme.
In one of the few studies that attempts to simulate NNAR noise, it is modeled with a probability
density function that is dependent on the distance of an example from the classification boundary [17].
Another study of label noise in a multi-class setting simulated label noise by swapping labels between
similar classes. Like the experiments in [17], these studies analyze NNAR based on class ambiguity
and proximity in the feature space as opposed to geospatial proximity [18]. Although these methods
model noise caused by class ambiguity, they do not model geospatial label noise that occurs in remote
sensing classification.

In the remote sensing literature, several papers have discussed both correlated and uncorrelated
imperfect ground reference data [19,20]. These methods of label noise analysis study alterations to
the confusion matrix of classifier predictions against ground observations and compromises counts of
false positives, true positives, false negatives and true negatives. The alteration of a confusion matrix
to generate prior probabilities simulates NAR label noise, but not NNAR.

Geospatial label noise as we define it falls under the NNAR category. Label noise for rubble is
likely to be restricted to sidewalks and rooftops because they are in closer geospatial proximity to the
rubble target class. This type of label noise cannot be modeled using distance from the classification
boundary because, although rubble and rooftops are in close geospatial proximity, the smooth textures
and simple geometries of roads and rooftops are dissimilar to the heterogeneous textures and jagged
boundaries of rubble. The likely source of error is not the labeler’s inability to distinguish between
an intact road versus rubble, but imprecision in labeling due to geospatial proximity and the use of
certain digital labeling tools.
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3. Study Area and Data

Study Site

Figure 3 shows the location studied in this paper. The images were taken following the 22 February
2011 earthquake. The study site is an urban area in downtown Christchurch, New Zealand, between the
latitudes of 172.6380 and 172.6546 and the longitudes of −43.53593 and −43.52836. The area contains
residential housing, a green park and a construction quarry that is always confused with rubble. The
entire region is filled with grid-like streets and large commercial buildings.

The images were released on 24 February 2011, by New Zealand Aerial Mapping two days after
a magnitude 6.3 earthquake was recorded [21]. The images were taken with a UCXp sensor at 0.1-m
spatial resolution and are comprised of red, green and blue spectral bands. The images were stitched
together and orthorectified by re-projecting from the center of each image to minimize building lean.
Our study is based on Tiles 1-0003-0002 and 1-0003-0003, each of which is 3600 × 7384 pixels in size.

(a) Region of Study in New Zealand (b) Remote Sensing Images Used for Study

Figure 3. (a) Region of study in New Zealand. (b) A top-bottom concatenation of Tiles 1-0003-0003
and 1-0003-0002 where 1-0003-0003 (top) contains the two tree-lined square enclosures and 1-0003-0002
(bottom) features a large rubble-filled X-shaped intersection and a construction quarry on the
bottom right.

4. Experiments

We conduct two major groups of experiments. In the first, we simulate label noise in order to
measure the impact of different types and amounts of label noise on both pixel- and object-based
classification. In the second, we solicited three human-labeled training sets that were labeled with
different labeling methodologies and tools in order to measure how different labeling methods impact
classification results.

4.1. Experimental Setup

In this section, we describe our experimental platform and its software implementation. We first
describe the overall classification framework, followed by the feature sets extracted for object- and
pixel-based classification, the methods of simulating both random, and geospatial label noise and our
performance metrics.
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4.1.1. Classification

Our classifier of choice is the random forest [22], a popular classifier known for its resilience to
overfitting and label noise [9,10,16]. We use scikit-learn’s implementation of the random forest for
classification, setting the number of trees at 85 and all other parameters at default values. In order to
quantify the uncertainty of the random forest decision, the share of trees that voted for rubble is used
as a posterior probability. By converting the output into a probability, we can evaluation our results at
arbitrary decision thresholds between 0.0 and 1.0 and generate Receiver Operator Characteristic (ROC)
curves, described in more detail in Section 4.1.4.

We perform two versions of each experiment where Tiles 0002 and 0003 are used for training
and testing, and vice versa. For each direction, we present the mean and standard deviation of ten
experimental iterations since the random forest has non-deterministic behavior.

4.1.2. Feature Extraction

In pixel-based classification, the unit of classification is the individual pixel. With object-based
classification, the unit of classification is a segment produced via segmentation of the image.
Pixel-based features include the spectral content of the individual pixel along with features extracted
from an nxn neighborhood of pixels centered on the pixel in question. For object-based classification,
we extract object-based features from the segments produced via image segmentation.

We used eCognition’s built-in implementation of the Baatz Schäpe algorithm [23] for image
segmentation. An important parameter, called the scale parameter, sets the average size of the
segment. When the scale parameter is set to 1000, multiple city blocks are included in one segment. At
smaller scales, such as 50, rubble patches are divided into dozens of segments. We additionally set
shape and compactness parameters to 0.5 and leave all other parameters set to eCognition’s default
settings.Classification is performed on a single segmentation, but features from other segmentations
with larger scale parameter values provide encompassing segments that contextualize features and
improve classification in a hierarchical approach. For our experiments, we classify at scale 50 and
generate contextual features from scale 100.

For both the object- and pixel-based classifiers, we generate features that reflect the random,
textured qualities of rubble. The features we calculate for the pixel-based classifier are edge densities,
Histograms of Oriented Gradients [24] and average color. The edge density is computed by applying
a canny edge detector (with thresholds 50 and 100) to the image and then subjecting the 100 ×
100 neighborhood around the pixel to a normalized box filter. We implemented the edge density
feature using the functions cv2.Canny and cv2.blur from the python implementation of the openCV
computer vision library [25]. We implement the Histogram of Oriented Gradients (HOG) by using
the cv2.Sobel filter to calculate partial derivatives of the image in the x and y directions, converting
both gradient images to polar coordinates using cv2.cartToPolar and creating a 16-bin histogram for
each pixel using a sliding 50 × 50 window of the polar coordinate image. We then used scikit-image’s
f ilters.rank.windowed_histogram function [26]. We calculated average color by taking a Gaussian blur
(using cv2.GaussianBlur) over each band using a sliding window size of 101 × 101. The total number
of pixel features is 23, comprised of 3 RGB pixel values, 3 average RGB pixel values, 16 HOG bins and
1 measure of edge density.

For the GEOBIA classifier, we use these same features calculated on individual segments rather
than window cells, as well as additional features collected using eCognition detailed in Table 1.
These features measure the texture, color and shape of each object. Figure 4 shows the top 24 features
in terms of their importance to the random forest classifier.
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Table 1. Object-based features calculated per segment using eCognition software. These features are
defined in [27].

Class Features

Spectral Brightness, Mean Value, Standard Deviation, Max. Diff., Hue, Saturation, Intensity

Texture GLCM Homogeneity, GLCM Contrast, GLCM Dissimilarity, GLCM Entropy, GLCM
Angular 2nd Momentum, GLCM Mean, GLCM Std. Dev., GLCM Correlation, GLDV
Angular 2nd Momentum, GLDVEntropy

Shape Extent
Area, Border Length, Length, Length/Thickness, Length/Width, Number of Pixels,
Thickness, Volume, Width

Shape
Asymmetry, Border Index, Compactness, Density, Elliptic Fit, Main Direction, Radius
of Largest Enclosed Ellipse, Radius of Smallest Enclosed Ellipse, Rectangular Fit,
Roundness, Shape Index

Based on Polygons
Area (excluding inner polygons), Area (including inner polygons), Average Length of
Edges (Polygon), Compactness (Polygon), Length of Longest Edge (Polygon), Number
of Edges (Polygon), Number of Inner Objects (Polygon), Perimeter (Polygon), Polygon
Self-Intersection (Polygon), Std. Dev. Of Length of Edges

Based on Skeletons
Average Branch Length, Average Area Represented by Segments, Curvature/Length
(Only Main Line), Degree of Skeleton Branching, Length of Main Line (No Cycles),
Length of Main Line (Regarding Cycles), Length/Width (Only Main Line), Maximum
Branch Length, Number of Segments, Std. Dev. Curvature (Only Main Line), Std. Dev.
of Area Represented by Segments, Width (Only Main Line)

Figure 4. The 24 features with the highest feature importance values to the GEOBIA classifier.

4.1.3. Label Noise Simulation

Our experiments using label noise simulation focus on the problem of “over-labeling” rubble.
This means that we assume users tend to draw generous boundaries around rubble and falsely
label non-rubble as rubble, rather than mistaking rubble as something non-rubble or some type of
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object that is not damage. Our simulations flip segments from a finely segmented image (using scale
parameter 50) rather than individual pixels, so that we can use the same simulated noise for both
object- and pixel-based classifiers.

We simulate random noise and two varieties of geospatial label noise. We present the performance
of the classifier as a function of the percentage of the rubble class that is mislabeled, where the x-axes
will be labeled percent noise. For the object classifier, this value is the percentage of segments, whereas
in the pixel classifier, it is the percentage of pixels. Starting with a noise-free labeling, we iteratively
select new non-rubble training segments to mislabel as rubble in batches of 100. Depending on the
experiment, these 100 segments are selected in the following ways:

1. NAR: NAR or random noise is simulated such that our labeled rubble class is flipped with
probability zero while non-rubble is flipped with probability 100/nnr, where nnr is the number of
non-rubble segments in an image. At the start of the experiment, 19,024 of the 19,745 segments are
non-rubble, so the probability that a non-rubble segment is flipped is 0.053.

2. Building noise: This type of NNAR represents the scenario in which a labeler misinterprets the task
and includes parts of the buildings adjacent to the rubble. For this class-specific contamination,
rather than flipping all non-rubble labels with equal likelihood, we flip only the labels of non-rubble
segments containing buildings.

3. Geospatial noise: This type of noise is simulated by applying a morphological dilation to the areas
correctly labeled as rubble. Non-rubble data that are geospatially closer to rubble are therefore
more likely to be corrupted. This emulates imprecise labeling tools because the regions of interest
have not changed, only the width of the label. An example of this process’s appearance can be seen
in Figure 5.

(a) 0% Simulated Noise (b) 40% Simulated Noise

Figure 5. Simulated geospatial label noise using morphological dilation. Red pixels indicate rubble
labels: (a) 0% simulated noise; (b) 40% simulated noise.

4.1.4. Performance Evaluation and Metrics

The default performance metric in machine learning is accuracy. However, for classification
problems like rubble detection where 97% of the data are in the non-rubble class, a classifier that
predicts all data as non-rubble will result in a 97% accuracy, which is a misleading result. We use the
False Positive Rate (FPR) and the True Positive Rate (TPR) defined as follows:

Definition 1. FPR = False Positives
False Positives + True Negatives

Definition 2. TPR = True Positives
True Positives + False Negatives

By default, the decision threshold that determines whether an example is positive or negative
is 0.5. However, in order to consider the full range of possible decision thresholds in the evaluation
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of our classifier performance, we use Receiver Operator Characteristic (ROC) curves, which form
a continuum over all possible decision thresholds. ROC curves can be summarized as a single value,
called Area Under the Curve (AUC). A large AUC, close to one, indicates a high-performing classifier,
whereas an AUC of 0.5 indicates random classification.

In order to ensure comparability between pixel- and object-based classifiers, we weight the
classification of each object in the object-based classification by the number of pixels it contains.

4.2. Human-Labeled Training Data and Labeling Tools

We solicited three human-labeled training sets for our final experiment, each of which made
use of a different labeling tool. Table 2 describes for each training dataset the labeling tool and
methodology used.

Table 2. Human-labeled datasets.

Dataset Labeling Tool Methodology

L1 QGIS Polygon Drawing Full image labeled. Tendency toward over-labeling rubble.
L2 Web-based Segment Labeling (scale = 50) Full image labeled by segment. Considered the cleanest of three.
L3 eCognition Segment Labeling (scale = 25) Partial image labeled. Some rubble areas omitted from training.

Dataset L1 uses QGIS’s polygon drawing tool. This interface works by allowing the user to draw
arbitrary polygons by specifying vertices with a mouse. An example of labeling rubble using this
tool can be seen in Figure 6a. We found that this method of labeling had a number of problems. First,
labeling with polygons is imprecise for identifying rubble. Polygon tools are helpful for when a class
object can be easily outlined with a simple shape (e.g., buildings). Rubble is inherently random and
often concave in shape. It takes dozens of points to carefully outline one small patch. Second, it is
difficult to ensure that the entire image has been labeled. Many images are extremely large and require
zooming in 10 to 20 times to label in detail. When zooming and panning around large images, it is
easy to miss unlabeled sections of the map entirely. Dataset L1 was also labeled with an objective of
identifying damage as opposed to rubble. This caused the labeler to annotate non-rubble pixels as
damage. Figure 7d reveals that the labeler annotated the relatively intact roof of a damaged building
as damage. This tendency towards over-labeling rubble resulted in large amounts of geospatial
label noise.

Dataset L3 was solicited in response to the noise issues with Dataset L1. L3 was labeled with
the objective of conservatively identifying areas that were rubble. This labeler used eCognition’s
segmentation (at scale parameter 25) and selected only those segments that he/she was certain
contained rubble. As a result, large sections of each image were not labeled, and many rubble areas
were omitted from the training set.

To solve both of these issues, we developed a web-based labeling tool that labels objects created
via image segmentation. First, each image is divided into a number of tiles that may be zoomed into for
reference. Each tile is outlined in green when seen, giving the user an indicator of whether they have
omitted a section of the map. Figure 6c shows an example of this view after labeling the entire map.
When the user zooms into a tile, the map is further partitioned, in this case by a scale 50 segmentation.
Each segment is outlined when hovered over. To label areas as rubble, users click and drag across
relevant regions, causing the segments covering those regions to glow red. Because the segmentation
is small and adheres to the natural edges of the image, painting these segments is both precise and
fast. An example of this editing view can be seen in Figure 6b. All segments highlighted in red have
been painted by the user as rubble. In the figure, the user’s mouse hovers over the car in the center,
and the relevant segment is outlined in white. Although it is possible to label in this way with both
eCognition and QGIS by adjusting multiple settings, both are full-featured GIS applications that may
be unfriendly for inexperienced users performing a one-off task. Our tool is lightweight and easily
deployed on a web server. Dataset L2 was labeled with this tool.
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(a) QGIS’s built-in polygon tool (b) Custom labeling tool in edit mode

(c) Custom labeling tool with image zoomed out

Figure 6. A comparison of labeling tools. (a) Labeling rubble using QGIS’s built-in polygon tool.
(b) The editing mode of our custom labeling tool. The user labels segments via clicking and dragging
her/his mouse. (c) A zoomed out view of our custom labeling tool. A tile outlined in green indicates
that the user has already labeled it.

In summary, L1, L2 and L3 were not only labeled with different tools, but also with different
definitions of damage. A closeup of the differing labeling styles can be seen in Figure 7 where the
translucent red indicates labeled rubble. In both examples, L1 encircles entire buildings when they are
adjacent to rubble. L2 primarily only covers rubble regions. L3 labels nothing in Figure 7c and only
labels the very centers of rubble patches in Figure 7f.

We consider L2 to be the best of the three in terms of completeness and cleanliness and use
it as a starting point for the simulated label noise. We did not have access to the ground truth for
this dataset.
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(a) L1 Label Example 1 (b) L2 Label Example 1 (c) L3 Label Example 1

(d) L1 Label Example 2 (e) L2 Label Example 2 (f) L3 Label Example 2

Figure 7. Annotations of the same destroyed building. The translucent red indicates labeled rubble.
The left labels, L1, were drawn with polygons in QGIS. The middle labels, L2, were drawn with
a custom labeling tool. The right labels, L3, were labeled using eCognition.

5. Results and Discussion

We present our results on experiments with simulated noise before showing results on experiments
with human-labeled training data.

5.1. Experiments with Simulated Noise

Figure 8 shows the effects of increasing levels of NNAR noise types (building and simulated
geospatial noise) on both pixel and object-based (GEOBIA) classifiers. We compare both noise
types against random noise as a baseline. The horizontal-axis represents the percent of the labeled
rubble that is noise. The vertical-axis represents the performance of the classifier trained on the
noisy labels. The results are the mean of ten experimental iterations with line width indicating the
standard deviation.

We first note that both our pixel-based and GEOBIA classifier are more robust to NAR (random
noise) than they are to NNAR (building noise and simulated geospatial noise). The AUC of the
GEOBIA classifier’s performance dropped by only 2.02 percentage points when 40% of the damage
class was contaminated. The same classifier’s performance dropped by 7.3 percentage points under
building noise and 10.9 percentage points under the simulated geospatial label noise. Similarly, the
pixel-based classifier’s performance dropped by only 0.85 percentage points under random noise, but
dropped by three and 4.3 points under building and simulated geospatial noise, respectively.

Under all forms of label noise, the GEOBIA classifier’s performance drops faster than the
pixel-based classifier. While the GEOBIA classifier initially outperforms its pixel-based counterpart,
classifiers’ performances under geospatial label noise are nearly even when the percentage of noise
is slightly over 25%. Although 25% contamination may seem numerically significant, the visual
differences lie well within human error. In fact, L1 had nearly 3.8-times more rubble pixels labeled
than L2.
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(a) Building Noise (b) Simulated Geospatial Label Noise vs Random Noise

Figure 8. We measure classification performance (in terms of AUC) under increasing amounts of label
noise. Object-based classifiers perform better at low noise levels, but are less resilient to label noise.
The line width indicates the standard deviation of the result. (a) Building noise. (b) Geospatial noise vs.
random noise.

To understand why classifiers are so much more sensitive to building noise, we can analyze the
probability heat maps in Figure 9. Dark blue corresponds to a probability of zero, indicating that the
classifier is confident that the segment or pixel is non-rubble. Dark red corresponds to a probability of
one, indicating that the classifier is confident that the segment or pixel is rubble. White corresponds to
a probability close to 0.5, indicating that the classifier is unsure of the class of the segment or pixel.
Figure 9a shows this heat map when trained on clean labels, and Figure 9c shows this heat map when
contaminated with 40% random label noise. Initially, the rubble is primarily correctly identified in
dark red, and the rest of the map is confidently not rubble. As more random noise is added, the
non-rubble sections uniformly brighten due to increasing uncertainty in their predicted labels. Because
all labels increase gradually and uniformly, even when the non-rubble approaches 40%, it is still
possible to cleanly threshold the prediction at 50% without losing any true positives or generating new
false positives. Figure 9e shows the prediction probabilities when the training data are contaminated
with building noise. Because the contaminated segments are solely buildings, the influence on the
prediction is concentrated only in these structures. This eliminates the clean threshold separating the
damage and non-damage class and generates false positives.

Interestingly, the classifier impacted by simulated geospatial label noise maintains a steady
performance for the first 10 to 15%. This could mean that a slightly looser definition of rubble, one that
extends spatially farther than our clean labels, would not harm performance. However, as we move
past that point, the performance declines at an accelerated rate.

Although the noise progression curves of the simulated geospatial noise appear similar to those of
the building noise, the probability heat maps differ greatly. While the building contamination results
clearly find only more buildings, the positive predictions for the simulation in Figure 9g are harder to
define. Many of the streets are correctly predicted as non-rubble, but the intersections all see spikes
in false positives. Some buildings are confidently non-rubble, but others are riddled with incorrect
classifications. The prediction is clearly not random, but also defies a simple semantic interpretation.
This more realistic noise simulation is just as destructive to the classifier performance, but harder to
visually diagnose. The classifier’s extreme degradation is particularly surprising given the relatively
minimal and localized contamination as visualized in Figure 5.

The pixel-based heat map of building noise in Figure 9f shows that the pixel-based classifier does
not learn to classify buildings nearly as fast as the GEOBIA classifier. Some of the buildings in the
pixel heat map show flecks of dark red, but not nearly as uniformly as in the GEOBIA heat map.
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(a) GEOBIA prediction with 0% noise (b) Pixel prediction with 0% noise

(c) GEOBIA prediction with 40% random noise (d) Pixel prediction with 40% random noise

(e) GEOBIA prediction with 40% building noise (f) Pixel prediction with 40% building noise

(g) GEOBIA prediction with 40% geospatial noise (h) Pixel prediction with 40% geospatial noise

Figure 9. Probability heat maps with noise. Dark blue indicates that the classifier is confident that
the segment or pixel is non-rubble. Dark red indicates that the classifier is confident that the segment
or pixel is damage. White indicates that the classifier is unsure of the class of the segment or rubble.
(a) GEOBIA prediction with 0% noise. (b) Pixel prediction with 0% noise. (c) GEOBIA prediction
with 40% random noise. (d) Pixel prediction with 40% random noise. (e) GEOBIA prediction with
40% building noise. (f) Pixel prediction with 40% building noise. (g) GEOBIA prediction with 40%
geospatial noise. (h) Pixel prediction with 40% geospatial noise.

Explaining the Noise Resilience of the Px-Based Classifier

To understand why the pixel-based classifier is more robust to noise, we look at the two most
prominent differences between the classifiers: the GEOBIA classifier has far more features than
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the pixel-based classifier, and the pixel-based classifier contains more training data points than the
GEOBIA classifier.

Figure 10 shows how these differences impact classifier noise resilience. Figure 10a shows changes
in a GEOBIA classifier subjected to building noise when we limit the GEOBIA classifier’s features to
only those available to the pixel-based classifier: colors, edge density and the histogram of gradients.
This change decreases the overall performance of the classifier, as expected. It also makes the classifier
less robust to noise and drops 9.21 percent compared to the original 7.3 percent drop. This means that
the additional features help with noise resilience and do not explain the difference between the noise
resilience of the pixel-based and GEOBIA classifiers.

Figure 10b shows how the pixel-based classifier subjected to building noise changes when we
only sample the number of data points available to the GEOBIA classifier, approximately three orders
of magnitude smaller than its original size. Under these conditions, the pixel-based classifier does
become more sensitive to noise. Its performance drops by 5.01 percentage points, whereas the original
classifier’s performance dropped by only three percentage points. This change accounts for much of
the noise resilience disparity between the two classifier paradigms. The smaller training size allows
for a larger variance of trees in the random forest because the trees are generated via sampling with
replacement. This difference in classifier variance is visible in Figure 10b, where the standard deviation
of the classifier using less data is significantly larger. Thus, because GEOBIA classifiers tend to use
fewer samples, they are more prone to label contamination in training sets.

(a) Limiting GEOBIA features. (b) Limiting Px-based training samples.

Figure 10. A test of two hypotheses: (a) What is GEOBIA’s performance when limited to the features
used by the pixel-based (Px-based) classifier? (b) What is the Px-based performance when limited to
the same number of training samples as GEOBIA?

5.2. Experiments with Human-Labeled Training Sets

Finally, we compare the performance of the user-labeled training sets L1, L2 and L3 described in
Table 2. We will define the predictions generated by models trained on Li as Pi.

Because the QGIS labeling was performed with a polygon tool, where polygons do not correspond
to the segments used by a GEOBIA classifier, we looked at the composition of labels overlaying the
segment in question. If any segment contains more than 50% damage pixels, it is labeled as damage.
At larger segment levels, this overlap threshold greatly impacts the training data, but because level 50
segments are small, the difference in prediction based on the threshold is marginal.

It is difficult to directly compare two labellings because no ground truth labeling exists for the
evaluation. However, we can compare how two classifiers trained on two datasets predict new imagery
differently by subtracting their probability predictions (Pi − Pj) as seen in Figure 11. Areas that are
red indicate locations where Pi is more likely to label as rubble than Pj. Areas that are blue indicate
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locations where Pj is more likely to label as rubble than Pi. Areas that are white indicate locations
where both Pi and Pj agree.

(a) GEOBIA P2 − P1 (b) GEOBIA P2 − P3

(c) Px-based P2 − P1 (d) Px-based P2 − P3

Figure 11. Prediction differences resulting from the use of L1, L2 and L3. For any Pi − Pj, areas that are
red indicate locations where Pi is more likely to label as rubble than Pj. Areas that are blue indicate
locations where Pj is more likely to label as rubble than Pi. Areas that are white indicate locations where
both Pi and Pj agree. (a) GEOBIA P2 − P1. (b) GEOBIA P2 − P3. (c) Px-based P2 − P1. (d) Px-based
P2 − P3.

Figure 11 depicts these probability differences. Figure 11a shows (P2 − P1) for the GEOBIA
classifier. This figure shows a very clear trend that is consistent with our previous simulated results.
Because L1 includes more rubble-adjacent buildings, the predictions of building tops shift much more
rapidly and threaten the performance of the classifier. Figure 11c shows this same difference, but with
the pixel-based classifier. In this probability difference, the buildings are solid white because, even
though more buildings have been included in the training, the model’s prediction of them has barely
changed. Instead, the rubble sections are darker red toward their centers and light blue toward their
edges. This pattern reveals that the building noise has simply broadened P2’s rubble predictions and
diluted its confidence. In the presence of L2’s noisier labeling, the GEOBIA classifier predicted new
types of structures, while the pixel-based classifier primarily broadened and became less sure of the
structures it had already found. These findings are consistent with the simulated results.

Figure 11b shows (P2 − P3). Here, L3 has a more conservative labeling and therefore misses much
of the rubble. In this case, as expected, the only difference in prediction is the extent of the prediction.
No blue is present, which means that P3 does not predict anything that P2 misses. Instead, P3 simply
misses much of the rubble that P2 identifies. A similar trend is seen for the pixel-based classifier in
Figure 11d. However, the damage classification of P2 is worse for the pixel-based model than it is for
the GEOBIA model, and it therefore predicts more false positives.

6. Conclusions

In this study, we examined a more accurate representation of label noise in remote sensing
classification. Our study shows that claims made of classifier resilience to label noise in the machine
learning literature do not fully extend to remote sensing. While an object-based classifier does
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outperform a pixel-based classifier in a clean environment, it must also be trained on a larger area
of imagery than is sufficient for the pixel-based classifier. Based on these results, we suggest a few
precautionary lessons, especially when dealing with inexperienced labelers.

First, when choosing a classifier, it is important to recognize that the machine learning analyses
may need to be reexamined in the context of the specific domain to which they are applied. Although
random forest classifiers are known to be robust to label noise, it is worth investigating how label noise
appears in remote sensing specifically before accepting theoretical results. In this study, we found
that a classifier’s sensitivity to label noise increases in a remote sensing environment. When choosing
between pixel-based and GEOBIA classifiers, if label quality is known to be poor and the training
region consists of a small geographic area, pixel-based classifiers’ robustness to geospatial label noise
may be preferable despite their weaker performance in a clean label environment.

Second, finding or developing effective tools cannot only expedite the labeling process, but also
diminish the geospatial label noise that comes with imprecision. Polygon-drawing interfaces may not
be precise or efficient enough for some labeling tasks.

Finally, defining a classification task carefully is crucial for high performance results. Broad class
definitions are prone to introducing unwanted class-specific noise that may greatly impact classifier
predictions. In our own experimentation, performance significantly improved when we refined our
objective definition from any damage to just rubble. Both definitions point to the same regions of
interest, but the broader term is less separable in the feature space.

These lessons have important implications for the future of crowdsourcing in the remote sensing
community. One of the priorities of the Sendai framework for disaster reduction is to enhance
disaster preparedness for effective response and “Build Back Better” in terms of recovery, rehabilitation
and reconstruction. Earth-observing satellites and crowdsourcing will play a critical role in achieving
this principle. The results of this study indicate that while classifier design is crucial, creating an online
environment with explicit expectations and carefully crafted tools is perhaps just as important for
generating accurate and useful results when trying to harness crowdsourcing to map the impact of
extreme events in remotely-sensed images.
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