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Abstract: Monitoring the dynamic characteristics of the diffuse attenuation coefficient (Kd(490)) on the
basis of the high temporal-resolution satellite data is critical for regulating the ecological environment
of lake. By measuring the in-situ Kd(490) and the remote-sensing reflectance, a semi-analytical
algorithm for Kd(490) was developed to determine the short-term variation of Kd(490). From 2006 to
2014, the data about 412 samples (among which 60 were used as match-up points, 282 for calibrating
dataset and the remaining 70 for validating dataset) were gathered from nine expeditions to calibrate
and validate the aforesaid semi-analytical algorithm. The root mean square percentage error (RMSP)
and the mean absolute relative error (MAPE) of validation datasets were respectively 27.44% and
22.60 ± 15.57%, while that of the match-up datasets were respectively 34.29% and 27.57 ± 20.56%.
These percentages indicate that the semi-analytical algorithm and Geostationary Ocean Color Imager
(GOCI) data are applicable to obtain the short-term variation of Kd(490) in the turbid shallow inland
waters. The short-term GOCI-observed Kd(490) shows a significant seasonal and spatial variation
and a similar distribution to the matching Moderate Resolution Imaging Spectroradiometer (MODIS)
which derived Kd(490). A comparative analysis on wind (observed by buoys) and GOCI-derived
Kd(490) suggests that wind is a primary driving factor of Kd(490) variation, but the lacustrine
morphometry affects the wind force that is contributing to Kd(490) variation.

Keywords: Geostationary Ocean Color Imager (GOCI); Lake Taihu; semi-analytical algorithm;
wind speed

1. Introduction

The diffuse attenuation coefficient (Kd) is a fundamental optical property that describes the
transfer process of light and heat in the aquatic ecosystems [1]. It is a better estimator of the euphotic
depth and light availability in various depths compared with the traditional method using secchi
disk. Kd is affected by the water constituents, the inherent optical properties, the incident light
angle and etc., and thus obviously possesses the quasi-optical properties [2–4]. Therefore, the spatial
and temporal variation of Kd is significant since it could indicate the dynamic changes in these
represented factors [5,6]. The accurate estimation of Kd and its distribution is critical for understanding
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and modeling the biochemical and physical processes, such as photobleaching, phytoplankton
photosynthesis and organism mineralization in the euphotic zone of the aquatic ecosystems [7,8].

Satellite remote sensing could promptly provide the repeated synoptic information on Kd [9–11]
and several empirical algorithms for Kd at the wavelength of 490 nm (Kd(490)), which have been
developed to estimate Kd(490) in clear waters [7,12,13]. In order to accurately determine Kd or
Kd(490), Lee et al. [3] proposed a semi-analytical algorithm based on radiation transfer simulation.
After that, Wang et al. [9] improved such semi-analytical algorithm because of its inability to predict
backscatter coefficient (bb) (estimation uncertainty > 50%) in highly turbid coastal waters [14,15].
The improved semi-analytical algorithm could retrieve Kd and Kd(490) with a relatively acceptable
accuracy in optically complex coastal waters [9,11,15]. Therefore, Kd and Kd(490) have become
the important optical parameters for ocean satellite imagers, such as Moderate Resolution Imaging
Spectroradiometer (MODIS), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), MEdium Resolution
Imaging Spectrometer (MERIS) and Geostationary Ocean Color Imager (GOCI) [10,16–18], and are
processed by the empirical or semi-analytical algorithms.

The empirical algorithms have also been used to estimate Kd(490) and the diffuse attenuation
coefficient of the photosynthetically active radiation (Kd(PAR)) in the extremely turbid and productive
inland lakes [5,7,17]. However, the application of the semi-analytical algorithms for Kd and Kd(490) in
the turbid inland lakes (such as Lake Taihu, the third largest freshwater lake in China) is seldom
reported, which is primarily due to the following reasons: (1) in order to provide the accurate
semi-analytical estimation of Kd, the absorption (a) and bb must be derived precisely first [3];
(2) whether the quasi-analytical algorithm (QAA) [19] or bb has been first derived or not [9,20],
the validated relationship between the remote-sensing reflectance (Rrs) and a (or bb) is the foremost;
and it’s difficult to accurately measure the inherent optical properties, especially bb, in the highly
turbid inland waters [21].

Based on satellite data, the long-term records of Kd in lakes have revealed the large temporal
and spatial variation of Kd caused by the meteorological and geographical features of lakes [5,6,17].
To reflect the significant short-term spatial and temporal variation of Kd, a high temporal-resolution
satellite is required to characterize the dynamic features of Kd [10,11], which is particularly necessary
for the shallow inland lakes having high dynamic ratio ((square root of the area)/depth), such as
Lake Taihu with a dynamic ratio of 25.4. In conclusion, the semi-analytical algorithm of Kd applied in
GOCI satellite is important and critical to the observation of Kd in the shallow inland lakes.

The objectives of this study were (1) to develop a semi-analytical algorithm of Kd for the GOCI
sensor based on Kd(490) and Rrs measured in situ, (2) to reveal the necessity of tracing the high
temporal-resolution fluctuations in Kd(490), and (3) to monitor the highly dynamic characteristics of
Kd(490) by using GOCI-derived results.

2. Materials and Methods

2.1. In-Situ Measurement

2.1.1. Study Area

Located in the Yangtze River delta, Lake Taihu is a large shallow eutrophic lake with a surface area
of 2338 km2 and a mean depth of 1.9 m [7]. In Lake Taihu, the sediment resuspension frequently occurs
due to its high lacustrine dynamic ratio and the East Asian monsoon. Most water area of Lake Taihu is
extremely turbid where Kd(490) can reach 20 m−1. However, East Lake and East Bay (see its aquatic
plant in Figure 1) are very clear and contain a large amount of the submerged aquatic vegetation.

From 2006 to 2014, the remote-sensing reflectance (Rrs) and the ambient downwelling irradiance
(Ed) were measured in situ by taking 473 samples in nine expeditions (respectively in November 2006,
November 2007, November 2008, April 2009, May 2010, August 2011, October 2012, August 2013 and
October 2014 ). During the in-situ measurement of the optical properties (Rrs and Ed), water samples
were collected. The water quality (suspended particulate matter, SPM) was measured in the laboratory
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within 24 h after water samples have been collected. In order to obtain the high-quality data about
Kd(490), measurements carried out under the low solar radiance conditions (Ed(λ,z)/Ed(λ,0+) < 1%)
were removed. In final, we left 412 samples, among which 60 (from 6 August 2013 to 10 August 2013
marked in Figure 1) were used as match-up points (their in-situ measurement time is synchronous
with the transit time of satellite images), and 282 were selected randomly to calibrate the model, while
the remaining 70 were to validate the model. The wind speed and direction were observed by putting
10 buoys on the lake (see Figure 1).
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Figure 1. Sample sites of in-situ measurement. MU (match up points collected from 6 August 2013 to
10 August 2013) was marked from SS (sample sites) of the expeditions from 2006 to 2014.

2.1.2. Measurements of the Optical Properties and SPM

Rrs (Figure 2A) was measured by using an analytical spectral device, i.e., the FieldSpec
spectroradiometer (350–1050 nm with the sampling interval of 1 nm). Each element (reference
panel, water and sky) was measured after instrument optimization and calibrating for dark current.
The radiances of reference panel (Lp(λ,0+)), water (Lsw(λ,0+)), sky (Lsky(λ,0+)) and the panel again were
measured ten times with the abnormal spectra being removed [22]. The rest of spectra were used to
calculate Rrs according to the following formula:

Rrs(λ) = (Lsw(λ, 0+)− r ∗ Lsky(λ, 0+))/(Lp(λ, 0+) ∗ π/ρp(λ)) (1)

where r refers to the air–water surface reflectance (with a value of 2.45%), and ρp(λ) refers to the
reflectance of the standard reflectance panel.

Downwelling irradiance (Ed(λ,z)) was measured by TriOS RAMSES-ARC (Ramses, Germany)
with a spectral resolution of 3.3 nm (sampling interval of 1 nm) for each depth (from 0.2 to 1.4 m
with the interval of 0.2 m). Each depth was measured for ten times with the abnormal spectra being
removed, by using a method which is similar to the estimation process of Rrs. Kd (see Figure 2B) using
a non-linear fit between Ed(λ,z) and depth (z):

Ed(λ, z) = Ed(λ, 0−)× exp(−Kd(λ)× z) (2)

Kd is acceptable when R2 of non-linear fit regressions ≥0.99 and the number of depths in
regressions ≥4.
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Figure 2. In-situ measurement of the remote-sensing reflectance (A) and the diffuse attenuation
coefficient (B). The 25%, 50% and 75% lines respectively indicated the quarter, median and three-quarter
levels of Rrs and Kd datasets, and Min and Max respectively refer to the minimum and maximum
values of datasets.

SPM was obtained by measuring the mass differences between the pre-combusted (550 ◦C for 4 h)
and dried (105 ◦C for 4 h) 07-µm Whatman GF/F glass fiber filters both before and after filtration of
whole water field samples.

2.2. Satellite Data and Preprocessing

GOCI is the first geostationary ocean-color satellite sensor, with the spatial resolution of 500 m
and the temporal resolution for one hour (eight times per day, i.e., from local time 8:30 to 15:30).
The matching GOCI images (level-1b, from 8 June 2013 to 8 September 2013) were downloaded from
Korea Ocean Satellite Center (http://kosc.kiost.ac/eng/). The data and processes of geometry and
atmosphere corrections were the same as the study of Huang et al. [23].

MODIS images from 8 June 2013 to 8 September 2013 were downloaded from the US NASA
Goddard Space Flight Center (GSFC, http://oceancolor.gsfc.nasa.gov). The radiometric and geometric
correction of the acquired MODIS Aqua Level 0 data was processed by SeaDAS 6.4. The parameters
(satellite angle information, ozone and water vapor) from SeaDAS 6.4 were used as the input
parameters in the atmospheric correction. The land target-based atmospheric correction method [24,25]
was selected to derive reflectance from the MODIS-Aqua data over Lake Taihu.

2.3. Accuracy Assessment

The root mean square percentage error (RMSP) and the mean absolute relative error (MAPE) were
used to assess accuracy of the model performance:

MAPE = ∑
∣∣∣∣Kestimated − Kmeasured

Kmeasured

∣∣∣∣/N × 100% (3a)

RMSP =

√
n

∑
i=1

(
Kestimated − Kmeasured

Kmeasured
)

2
/N × 100% (3b)

3. Model Kd(490)

3.1. Calibration

The relationship between Kd and the inherent optical properties (a and bb) was used by Lee et al.,
to estimate Kd semi-analytically [3]:

Kd(λ0) = m0a(λ0) + m1(1 − m2 exp(−m3a(λ0)))bb(λ0) (4a)

http://kosc.kiost.ac/eng/
http://oceancolor.gsfc.nasa.gov
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The four model parameters (m0, m1, m2 and m3) were estimated by curve fitting from the simulated
data of radiation transfer (values of m0, m1, m2 and m3 are listed in [3]). At first, in order for the accurate
estimation of Kd(λ0), the inherent optical properties (a(λ0) and bb(λ0)) should be derived precisely by
Equation (4a). According to Doron et al. [20] and Wang et al. [9], an empirical relationship between
bb(λ0) and Rrs based on red wavelength in turbid water (Equation (4b)) was established. However, due
to the uncertainty in measurement of bb in the highly turbid inland waters [21], the model parameters
(A0 and A1) are hard to estimate via the in-situ measurement of bb(λ0) and Rrs. Thus, this relationship
was used to model Kd(λ0) combined with Equation (4a–e).

ln(bbp(λ0)) = A0 × ln(
Rrs(λi)

Rrs(λj)
) + A1 (4b)

a(λ0) =
(1 − U(λ0))

U(λ0)
bb(λ0) (4c)

U(λ0) =
bb(λ0)

a(λ0) + bb(λ0)
=

−0.084 + (0.084 + 4 × 0.17 × rrs(λ0))
1/2

2 × 0.17
(4d)

Rrs(λ0) = 0.52rrs(λ0)/(1 − 1.7rrs(λ0)) (4e)

where rrs(λ) refers to the remote-sensing reflectance just beneath the water surface and U(λ) refers to
the intermediate variable. The modeled Kd(λ0) (noted as Kd(λ0)modeled) and the in-situ measured Kd(λ0)
(noted as Kd(λ0)measured) were used to estimate A0 and A1 via the optimal computation according to
the following objective equation:

Fobj = −
√

n

∑
i=1

(Kd(λ0)measured − Kd(λ0)modeled)
2/n (5)

Finally, the model parameters (A0 and A1) and the optimal bands (λj and λj in Equation (2)) were
obtained when Fobj met the minimum value.

Three bands (λ0, λi and λj) are necessary in this semi-analytical model. However, due to the
ambiguous extrapolation index of the aerosol model [6,9,26], it’s very difficult to accurately estimate
Rrs from satellite images at short wavelengths (such as Rrs(490) ) in the highly turbid inland water.
There are two methods which can be used to deal with such problem. One is to calculate Rrs(490) by
taking use of the satellite-derived Rrs(λ0) and its in-situ relationship with Rrs(490). The other is to
firstly estimate Kd(λ0) when Rrs(λ0) can be derived well, and then calculate Kd(490) by taking use of
the in-situ relationship between Kd(490) and Kd(λ0). The comparison of relationship between Kd(λ)
and Rrs(λ) suggests that the relationship between Kd(490) and Kd(λ0) (see Figure 3A) is much stronger
than the relationship between Rrs(490) and Rrs(λ0) (see Figure 3B). Thus, we chose to estimate Kd(490)
by retrieving Kd(λ0).

The calibration dataset, with Kd(490) ranging from 1.82 to 19.45 m−1, was used to calibrate
the semi-analytical model of Kd(490). The optimal band ratio in Equation (4b) was confirmed as
Rrs(660)/Rrs(555) via the iterative computation of Rrs(λi) and Rrs(λj) within the range of the GOCI
band (λ0 was set as 660 nm). Consequently, two bands (Rrs(660), Rrs(660)/Rrs(555)) were used to
estimate Kd(660) from which Kd(490) can be calculated. The optimal model parameters of A0 and A1

are 2.7714 and 0.8134, respectively. The RMSP and MAPE between Kd(490)modeled and Kd(490)measured
are respectively 24.80% and 19.38 ± 14.47% (Figure 4A). The intermediate variable and backscatter
coefficient at 660 nm, bbp(660), are highly positively correlated to the suspended particulate matter
(bbp(660) = 0.4068*SPM0.3409, R2 = 0.71) (Figure 4B). The parameters of Kd(490) algorithm for MODIS
were confirmed by using a method similar to the one used for GOCI [27].
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Figure 4. (A) Comparison of the in-situ measured Kd(490) and the modeled Kd(490) by using retrieval
algorithm in this study. (B) The relationship between the estimated bbp(660) and the measured
suspended particulate matter (SPM).

3.2. Model Validation by the In-Situ and Match-Up Measurements

The validation dataset (having 70 samples) and the match-up points (having 60 samples) were
used to validate the semi-analytical algorithm of Kd(490). The RMSP and MAPE of validation
results between the measured and the derived Kd(490) were 27.44% and 22.60 ± 15.57%, respectively
(see Figure 5A). GOCI-derived Kd(490) was selected from satellite images according to the latitude and
longitude of the match-up points. The RMSP and MAPE of the match-up points between the measured
and the derived Kd(490) were respectively 34.29% and 27.57 ± 20.56% (see Figure 5B). The validation
results indicated that the performance of the semi-analytical Kd(490) algorithm is acceptable which can
be used to estimate Kd(490) from GOCI satellite images.
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3.3. Comparison with the Exist Kd(490) Model for GOCI

The previous studies proposed several semi-analytical algorithms for estimating Kd(490) in
the turbid water [9,11,15]. These semi-analytical algorithms were selected to compare the models
(see Figure 6 and Table 1). The calibration dataset (282 points) was used to recalibrate the model
parameters for Models 1, 2 and 3. Model 4 is an optimization algorithm which doesn’t need calibration
dataset. Thus, the validation results for Models 1, 2, 3 and 4 are getting from 70 points (validation
dataset) and 372 points (validation and calibration dataset). Models 2 and 3 work well for the relatively
low Kd(490), but are slightly weak for the high Kd(490). The performance of Model 4 in the high Kd(490)
is much better than Models 2 and 3, which is consistent with the previous studies in the turbid coastal
water [9,11,15]. However, Model 4 will significantly overestimate Kd(490) in the algal dominant water
(see the red hollow circle in Figure 6), which indicates that, although the semi-analytical algorithm can
be used to estimate Kd(490) in the high turbid eutrophication water, but its performance is affected by
the local parameters and parameterization of the inherent optical properties.
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Figure 6. Comparison of the in situ measured Kd(490) and the estimated Kd(490) of Models 2, 3 and 4
in the model set (see Table 1), Models 2 and 3 are from Huang [27].

Table 1. Comparison of the semi-analytical model sets for Kd(490). The validation results for
Models 1, 2 and 3 are from validation dataset (having 70 points). Models 2 and 3 are from Huang [27].
The validation result for Model 4 is from 372 points (validation and calibration dataset) as it doesn’t
need calibration dataset.

Models Variables R2 RMSP |RE|Max MAPE

Model 1 (This study) Rrs(660)/Rrs(555) 0.57 27.44% 76.11% 22.60 ± 15.57%
Model 2 [15] Rrs(667), Rrs(490) 0.55 29.07% 115.38% 24.59 ± 16.03%
Model 3 [9] Rrs(488), Rrs(645)/Rrs(488) 0.41 29.60% 140.09% 24.28 ± 18.54%
Model 4 [11] (400–800 nm with 10 nm interval) 0.44 33.23% 175.27% 31.24 ± 24.16%
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4. Results and Discussion

4.1. Short-Term Observation of Kd(490) from GOCI

The hourly scale maps of GOCI-derived Kd(490) in Lake Taihu were obtained by using the
semi-analytical algorithm (see Figure 7). The retrieval results of Kd(490) in East Lake and East Bay
(see the aquatic plant in Figure 1) were invalidated due to the effect of the submerged plants and bottom
reflectance [28] and thus weren’t shown in the retrieval results. The hourly scale maps of Kd(490)
can show the consecutive dynamic characteristics of Kd(490) at both the spatial and the temporal
scales. The high Kd(490) values were mainly distributed in the northwestern and southwestern areas of
Lake Taihu as affected by sediment resuspension and algal blooms in summer [22,29]. The low Kd(490)
values were distributed beyond the algal bloom area, such as the center area of the lake, where sediment
resuspension is rare (8 June 2013 in Figure 7). The dynamic characteristics of Kd(490) are consistent with
the diffusion and migration of algae where sediment resuspension is weak (8 June 2013 in Figure 6).
Sediment resuspension significantly regulates the distribution of Kd(490) in Lake Taihu as a result of the
high Kd(490) values coupled with the high wind speed, as observed on 8 August 2013 (see Figure 7).
The high Kd(490) value of 8.67 m−1 appears when wind has reached 5.26 ± 1.88 m s−1 for a duration of
four hours. In conclusion, both algae and sediment resuspension can impact the distribution of Kd(490)
in summer, and the algae or sediment resuspension is affected by wind speed. Thus, to derive the
highly dynamic characteristics of Kd(490) requires the high temporal-resolution satellite data.
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Figure 7. The spatial variations of Kd(490) mapped by GOCI data during daytime hours from August 6
to August 9. The retrieval results of Kd(490) in East Lake and East Bay (see the aquatic plant in Figure 1)
are not shown.

4.2. Comparison of MODIS-Derived and GOCI-Derived Kd(490)

The transit time of MODIS satellite is similar to that of GOCI satellite; both of which pass over
the territory at 13:30 (the local time). The comparison of the results retrievad from GOCI and MODIS
satllite images shows that there were some inconsistencies between GOCI- and MODIS-derived Kd(490)
(marked by ellipses in Figure 8). The largest inconsistence was found in the central area of Lake Taihu,
which has more than 100% difference between GOCI- and MODIS-derived Kd(490) (8 June 2013 in
Figure 8). Some relatively high inconsistencies were also found in the central area of the lake on
8 August 2013. The aforesaid inconsistences may be caused by the quick sediment resuspension in
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the central area of the lake according to the high dynamic characteristics (see the high wind speed
at sites 3, 4 and 5 in Figure 1). However, the general patterns of Kd(490) distribution are consistent
with each other, which indicates that models and satellite images are suitable for Kd(490) estimation
from MODIS and GOCI. The mean differences ((Kd(490)-MODIS − Kd(490)-GOCI)/Kd(490)-GOCI) between
GOCI- and MODIS-derived Kd(490) in 8 June 2013, 8 July 2013, 8 August 2013 and 8 September 2013 are
respectively 28.56 ± 30.40% (the mean value ± standard deviation), −6.3 ± 23.59%, 7.24 ± 60.21% and
−4.04 ± 20.47%. The mean absolute differences (abs ((Kd(490)-MODIS − Kd(490)-GOCI)/Kd(490)-GOCI))
are respectively 30.80 ± 28.20%, 11.73 ± 21.42%, 15.72 ± 59.62% and 13.53 ± 15.88%.
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Figure 8. The above figures are the spatial variations of Kd(490) mapped by MODIS data from
August 6 to August 9. The figures below are the spatial differences (%) between GOCI- and
MODIS-derived Kd(490).

The MODIS-derived Kd(490) was re-sampled to the spatial resolution of 500 m, which is same as
that of GOCI. To further evaluate the consistency between GOCI- and MODIS-derived Kd(490) pixel
by pixel, a scatterplot of the estimated Kd(490) from GOCI and MODIS data is shown in Figure 9.
MODIS-derived Kd(490) was slightly higher than GOCI-derived Kd(490) on 8 June 2013, especially in
the low value range (see Figure 9). It is clear that most of the pixels of Kd(490) are consistently between
the results from MODIS and GOCI (see 8 July 2013, 8 August 2013 and 8 September 2013 in Figure 9).
The mean values of the linear-determined coefficient and RMSE of GOCI- and MODIS-derived Kd(490)
are 0.44 ± 0.13 and 1.51 ± 0.31 m−1, respectively. Given the discrepancies in the satellite image process
and the Kd(490) algorithm and the signal/noise ratio from MODIS and GOCI, a comparison between
MODIS- and GOCI-derived Kd(490) indicates that the combination of MODIS and GOCI satellite data
can provide the long-term observation of Kd(490) with the detailed short-term dynamic information.
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4.3. Wind-Driven Variation of Kd(490) from GOCI-Derived Kd(490)

The strength and duration of wind govern the sediment resuspension and the formation of algal
blooms [29–32]. Floating algae will appear on the water surface when the wind speed is low, which
would suspend on the water if the wind speed increases [23,33–35]. Kd(490) will significantly increase
as a result of sediment resuspension caused by wind speed increase [36]. Consequently, wind drives
the variation of Kd(490) by distributing algae and causing sediment resuspension. However, wind’s
regulating effect on Kd(490) also varies with spaces due to the impact of the lacustrine morphology
and fetch length. The hourly values of wind speed and Kd(490) are presented in Figure 10 (the sites
correspond with the buoy sample sites in Figure 1). Variations of wind speed and Kd(490) in sites 1 and
6 are clearly different from the others as Kd(490) increases with a wind speed decrease (see the black
box in sites 1 and 6 of Figure 10) due to floating algae in sites 1 and 6 (algae dominant) [23]. Kd(490)
also decreases with a reduction in wind speed (see the green boxes in sites 1 and 6 of Figure 10) when
wind speed is higher than 5 m s−1. Due to the persistent high wind speed before this period, the
floating algae replaced the sediment resuspension. Kd(490) was highly and positively related to wind
speed in sites 3, 4 and 5 (r = 0.5, 0.7 and 0.8 respectively), which was caused by sediment resuspension
from 8 June to 8 September (sediment resuspension dominant type and floating algae are very rare).
The relationships between wind speed and Kd(490) in sites 2 and 7 were not validated, which may
be caused by the unstable wind directions in these two points due to the impact of land. Thus, wind
drove the variation of Kd(490) but were affected by the lacustrine morphology and wind directions.
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To further reveal the relationship between wind speed and Kd(490), Kd(490) was divided into
three types according to the strength of wind (0–3 m s−1, 3–4 m s−1 and >4 m s−1), corresponding to
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the critical wind speeds of algal blooms and sediment resuspension [23,33]. When the wind speed was
less than 3 m s−1, Kd(490) varied from 1.87 m−1 to 11.22 m−1 with a mean value of 4.92 ± 1.71 m−1.
Such wind speed can explain 19.14% of the variation of Kd(490) due to the dominant effect of algal
blooms (linear R2 = 0.19, p < 0.0001). When the wind speed was less than 3 m s−1, Kd(490) ranged from
3.84 to 10.78 m−1 with a mean value of 6.47 ± 1.67 m−1, and the relationship between the wind speed
and Kd(490) was relatively weak (linear R2 = 0.02, p < 0.28). When the wind speed was less than 3 m
s−1, Kd(490) ranged from 4.51 to 10.37 m−1 with a mean value of 6.95 ± 1.22 m−1. Such wind speed
can explain 35.57% of the variation of Kd(490) due to sediment resuspension, and the ratio of which
would increase to 59.58% when the black point in Figure 11 has been removed. The regression formula
for wind speed (W) and Kd(490) at the lowest value of each wind speed range (see the floor level of
Figure 11) is Kd(490) = 2.293 + 0.466*(exp (0.160*W) − 1)/0.160 (R2 = 0.89, p < 0.0001, N = 64), which
may be caused by the relationship between wind speed (W) and Kd(490) due to sediment resuspension.
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5. Conclusions

The knowledge in respect of the short-term variation of the diffuse attenuation coefficient can
help reveal its driving factors at the short time scales, such as wind speed. A semi-analytical algorithm
of Kd(490), which inserts an empirical model between the band-ratio (Rrs(660)/Rrs(555)) and bbp(660),
was developed based on the in-situ measurement of Rrs and Kd(490) for the high temporal-resolution
of the GOCI satellite. The performance of the aforesaid semi-analytical algorithm for validation dataset
shows that the RMSP and MAPE between the measured and the derived Kd(490) are respectively
27.44% and 22.60 ± 15.57%. The RMSP and MAPE between the measured and the derived Kd(490) are
respectively 34.29% and 27.57 ± 20.56%, which indicated the feasibility of applying such algorithm
in GOCI satellite images. The high temporal-resolution satellite data for monitoring the dynamic
characteristics of Kd(490) is necessary in the high dynamic-ratio lake. The comparison between GOCI-
and MODIS-derived Kd(490) manifested that GOCI-derived Kd(490) can capture the spatial variation
and the dynamic characteristics of Kd(490) in a good manner. It’s been found that wind is a primary
driving factor in the spatial and temporal variation of Kd(490), though its driving effect on Kd(490)
varied with the lacustrine morphometry (such as the effect in the center area of the lake is different
from that in bays and the lake shore).
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