
remote sensing  

Article

An Improved Vegetation Adjusted Nighttime Light
Urban Index and Its Application in Quantifying
Spatiotemporal Dynamics of Carbon Emissions
in China

Xing Meng 1, Ji Han 2,* ID and Cheng Huang 1

1 School of Geographical Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241,
China; mx9191@163.com (X.M.); hc707371140@gmail.com (C.H.)

2 Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and
Environmental Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China

* Correspondence: jhan@re.ecnu.edu.cn; Tel.: +86-021-5434-1142

Received: 30 May 2017; Accepted: 9 August 2017; Published: 11 August 2017

Abstract: Nighttime Light (NTL) has been widely used as a proxy of many socio-environmental
issues. However, the limited range of sensor radiance of NTL prevents its further application and
estimation accuracy. To improve the performance, we developed an improved Vegetation Adjusted
Nighttime light Urban Index (VANUI) through fusing multi-year NTL with population density, the
Normalized Difference Vegetation Index and water body data and applied it to fine-scaled carbon
emission analysis in China. The results proved that our proposed index could reflect more spatial
variation of human activities. It is also prominent in reducing the carbon modeling error at the
inter-city level and distinguishing the emission heterogeneity at the intra-city level. Between 1995
and 2013, CO2 emissions increased significantly in China, but were distributed unevenly in space
with high density emissions mainly located in metropolitan areas and provincial capitals. In addition
to Beijing-Tianjin-Hebei, the Yangzi River Delta and the Pearl River Delta, the Shandong Peninsula
has become a new emission hotspot that needs special attention in carbon mitigation. The improved
VANUI and its application to the carbon emission issue not only broadened our understanding of the
spatiotemporal dynamics of fine-scaled CO2 emission, but also provided implications for low-carbon
and sustainable development plans.

Keywords: nighttime light; Vegetation Adjust NTL Urban Index (VANUI); spatiotemporal pattern;
CO2 emissions; China

1. Introduction

Nighttime Light (NTL), derived from the Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP/OLS), has become one of the most widely-used data for interpreting some
socio-environmental issues that are difficult to understand at a relatively high spatial resolution, such
as economic output [1,2], urbanization [3–5], poverty [6–8], energy consumption and greenhouse
gas emissions [9–11]. Methods and indicators based on NTL are usually labor saving and unbiased
compared to those grounded on statistical data. It is especially crucial for increasing our understanding
of the spatiotemporal dynamics of the aforementioned issues and thus helping us to make proper and
timely decisions toward sustainability [12].

On the one hand, despite the endeavors made by previous studies to improve NTL data, some
defects still exist, which may constrain the further application and estimation accuracy. First, because
of the limited radiance range of the OLS sensor, pixels with weak radiance (<10−10 watts/cm2/sr/mm),
which often exist in developing countries or hamlets, cannot be detected and are often given the value
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of zero [13]. Consequently, the estimations in these unlit pixels might be missing [14,15]. Second, the
saturation problem in the downtown area and the blooming effect in the suburbs of DMSP/OLS NTL
may cause the estimation to deviate from the reality [16–18]. To deal with these problems, various
methods and indices have been developed generally through fusing NTL with other data sources.
For example, some used population density to increase the variation of NTL in urban cores and
supplemented information of human activities for unlit pixels [14,19]. Assuming that vegetation cover
and human activities are inversely correlated, some combined Normalized Difference Vegetation Index
(NDVI) with NTL to reduce the saturation effect of NTL [20–22]. Specifically, the Vegetation Adjusted
NTL Urban Index (VANUI), which is defined as (1 − NDVI) × NTL, was a simple and effective index
for reducing the saturation effect in urban areas [23]. It has been employed as a better proxy than
the original NTL in studying urban impervious surfaces [24]. However, some research also argued
that VANUI might result in estimation error in some regions with a diverse natural environment
and vegetation cover, such as western cities in China [24,25]. Additionally, the investigations using
long-term time series VANUI are still not fully addressed. The development of improved methods
and indicators that have high accuracy and can effectively address the spatiotemporal dynamics of
socio-environmental issues are increasingly needed.

On the other hand, CO2 emissions and their mitigation have become one of the most crucial
challenges for sustainable development faced by all of the countries in the world. Fossil fuel-related
CO2 emissions contributed to more than 70% of the total greenhouse gas emissions, which cause
profound impacts on physical, biological and socioeconomic systems, such as global warming, sea
level rise, biodiversity loss, agricultural productivity decline and urban heat islands [26–28]. However,
the lack of authentic and reliable statistical data on energy consumption prevents a better investigation
of the spatiotemporal dynamics of CO2 emissions at a finer scale, which is crucial for local governments
to adapt to and mitigate climate change efficiently [29–31]. Taking China, the largest carbon emitter
since 2006 [32], as an example, it has set a 60~65% reduction target of CO2 emissions intensity by 2030
below its 2005 level [33]. In order to decompose the mitigation target to local administrative units
(for example, cities), it is important to understand the spatial distribution of CO2 emissions and its
change at various scales [34]. Many studies have explored the spatiotemporal dynamics at the country
or province level based on statistics [35,36]. However, the biggest challenge faced by policy makers
and researchers is the data availability at the prefectural city or even finer levels since the detailed
information on the amount and structures of energy consumption at those levels is not open to the
public or fragmented. Luckily, NTL provides a possible solution to fill this gap. Previous studies have
proven that it was feasible to estimate CO2 emissions at the 1-km spatial level using NTL [37]. Yet, few
studies focused on the potential estimation errors caused by NTL at a fine scale. For example, CO2

emissions in unlit pixels might be missing; emissions in urban core areas might be underestimated,
caused by the saturation problem; while emissions in suburban areas might be overestimated because
of the blooming effect. Again, it is quite necessary to develop improved methods and indicators based
on NTL to expand our knowledge of carbon emissions.

To this end, we developed an improved VANUI, which combines NTL with time series NDVI,
population density and water body data to calibrate the saturation and blooming problems and to
reduce the estimation error in the urban core and rural areas and, then, applied it to the carbon emission
issue in China, so that the performance of the proposed index can be tested and our understandings
of a fine-scaled CO2 emission dynamics can also be increased. This paper is organized as follows:
Section 2 describes the study area, as well as the data we used. Section 3 introduces the methods for
developing an improved VANUI, downscaling statistically accounted CO2 emissions to fine spatial
scales, verifying the model accuracy and analyzing the spatiotemporal dynamics of CO2 emissions.
Section 4 analyzes the results. Section 5 discusses the performance of the proposed new index and
provides potential uses for further studies, followed by conclusions in Section 6.
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2. Study Area and Data Description

2.1. Study Area

The jurisdiction units in China are organized under a country-province/municipality-prefectural
city-county hierarchy. As shown in Figure 1, detailed energy statistical data for accounting for CO2

emissions are only available for the whole country, 30 provinces/municipalities (Tibet lacks data) and
30 prefectural cities from 1995. Table 1 provides a summary of the socioeconomic conditions for those
30 cities having detailed energy statistics. However, the same energy inventories for most cities and
counties are not available, thus they cannot facilitate a long-term CO2 emissions study at those scales.

Table 1. A summary of administrative area, population, population density and gross domestic product
(GDP) for the prefectural cities with detailed energy statistics in 2013.

City Administrative
Area (km2)

Population
(Million)

Population Density
(Persons/km2)

Gross Domestic Product
(Billion RMB)

Changde 18,176 5.80 319 2264.94
Changsha 11,816 7.22 611 7153.13
Chenzhou 19,342 4.67 241 1685.52

Guangzhou 7436 8.32 1119 15,420.14
Hechi 33,494 3.43 102 528.62

Hengyang 15,300 7.25 474 2169.44
Hohhot 17,344 3.00 173 2705.39
Huaihua 27,573 4.83 175 1117.67

Jinan 8177 7.00 856 5230.19
Jincheng 9425 2.30 244 1028.05
Jingzhou 14,104 5.74 407 1334.93

Laibin 13,386 2.15 161 515.57
Loudi 8110 3.83 473 1118.17

Luoyang 15,492 6.62 427 3140.76
Qiqihar 44,287 5.57 126 1230.40
Quzhou 8837 2.54 288 1056.57

Shaoyang 20,822 7.20 346 1130.04
Shenyang 12,980 7.27 560 7158.57
Tangshan 13,829 7.71 557 6121.21
Weifang 16,138 9.23 572 4420.70
Xiangtan 5005 2.80 559 1443.06
Xiangxi 15,470 2.60 168 418.94
Xinyu 3178 1.16 364 845.07

Yichang 21,081 4.10 194 2818.07
Yiyang 12,320 4.37 355 1123.13

Yongzhou 22,259 5.33 239 1175.45
Yueyang 14,858 5.56 374 2435.51

Zhangjiajie 9534 1.51 159 365.65
Zhangjiakou 36,303 4.41 122 1317.02

Zhuzhou 11,248 3.93 350 1949.43
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Figure 1. Study area and cities with detailed energy statistics. 
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Figure 1. Study area and cities with detailed energy statistics.

2.2. Data Description

Table 2 gives a summary of data used for analysis, which generally include energy statistics and
seven kinds of geospatial data.

In order to calculate CO2 emissions from energy consumption in China at provincial and some
specific prefectural city level, the amounts of 11 types of energy were collected based on provincial and
local energy balance tables from China’s Energy Statistical Yearbook [38] and relevant City Statistical
Yearbooks of 30 prefecture-level cities as shown in Figure 1. In addition, heat and electricity were also
included in the CO2 accounting scopes, which were obtained from the same sources.

The Version 4 DMSP/OLS NTL series record lights on the Earth’s surface generated from
persistent light in cities, towns and other human settlements and other light from gas flares, fires and
illuminated marine vessels. The annual average brightness was presented as six-bit digital numbers
(DN) from 0–63 after compositing the highest quality data avoiding interference from sunlit, glare,
moonlit, clouds and features from the aurora in a whole year. They spanned −180–180 degrees in
longitude and −65–75 degrees in latitude, with 30 arc second grids.

The maximum Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI time series were
calculated based on the MOD09GA images from EOS/MODIS using Maximum Value Composites
(MVC), after splicing, cutting, projection conversion and unit conversion. The space resolution of
the dataset was 500 m × 500 m, and the temporal resolution was a month. Images from January
2000–December 2013 were used in this study. Besides, the Global Inventory Monitoring and Modeling
System (GIMMS) NDVI dataset was generated based on the NOAA/AVHRR land dataset after
radiometric calibration, geometric correction and cloud elimination, with a spatial resolution of 8 km
× 8 km and a temporal resolution of 15 days. Images from January 1995–December 1999 were used as
a supplement to fill the data gap between 1995 and 1999. In addition, in order to obtain consistent and
comparable NDVI, images from January 2000–December 2006 were employed as samples to capture
the relationship between NDVIs from two sensors. In order to match the temporal resolution of MODIS
NDVI, monthly GIMMS NDVI data were compiled by the MVC method.

Gridded population density data in China of 1995, 2000, 2005 and 2010 were obtained from the
Resources and Environmental Sciences Data Center, Chinese Academy of Sciences (RESDC). The
multivariate statistical population spatial model was used for these data based on demographic
statistics at a county level and land use/cover data at a spatial resolution of 1 km × 1 km. Besides,
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urban population density, DEM and the total population were used to ensure that the model results
were accurate and reasonable [39].

Moreover, the water body distribution map was used as a mask to eliminate the potential
interference caused by low NDVI in water bodies in this paper. All images were projected into the
Lambert Azimuthal Equal Area Projection with reference to World Geodetic System 1984 (WGS 84),
resampled to a spatial resolution of 1 km × 1 km by the nearest neighbor resampling algorithm and
extracted by the multilevel administrative boundaries of China. Besides, four Landsat 8 Operation
Land Imager (OLI) images in 2013 covering Beijing, Shanghai, Guangzhou and Urumqi were selected
as references to assess the estimation accuracy.

Table 2. Description of data used in this study.

Category Data Description Year Data Source

Statistical
data

Energy
consumption

Annual consumption of raw
coal, clean coal, coke, coke oven
gas, crude oil, gasoline,
kerosene, diesel oil, fuel oil,
liquefied petroleum gases,
natural gas, heat and electricity
for 30 provinces and 30
prefectural-level cities

1995–2013

China Statistical Yearbooks
Database (http:
//tongji.cnki.net/overseas/
engnavi/navidefault.aspx)

Geospatial
data DMSP/OLS

Annual composite nighttime
stable light data with 30 arc
second grids

1995–2013

National Oceanic and
Atmospheric Administration’s
National Centers for
Environmental Information
(former National Geophysical
Data Center) (https:
//ngdc.noaa.gov/eog/dmsp/
downloadV4composites.html)

GIMMS NDVI GIMMS 15-day composite NDVI
data of China at 8-km resolution 1995–2006

Environmental and Ecological
Science Data Center for West
China
(http://westdc.westgis.ac.cn/)

MODIS NDVI
MODIS monthly composite
NDVI data of China with 1-km
resolution

2000–2013

International Scientific &
Technical Data Mirror Site,
Computer Network Information
Center
(http://www.gscloud.cn)

Population
density

Population density per 1 km
of China

1995, 2000,
2005, and 2010

Resources and Environmental
Sciences Data Center
(http://www.resdc.cn)

Water-masked
map

A shapefile of water bodies
in China 2013

ESRI Baruch Geoportal
(https://www.baruch.cuny.
edu/confluence/display/
geoportal/Datasets)

Administrative
boundaries

Shapefiles of province and
prefectural-level cities in China 2012

Resources and Environmental
Sciences Data Center
(http://www.resdc.cn)

Landsat 8
OLI-TIRS

Four images covering Beijing,
Shanghai, Guangzhou and
Urumqi at 30-m resolution

2013

International Scientific &
Technical Data Mirror Site,
Computer Network Information
Center
(http://www.gscloud.cn)

3. Methods

Figure 2 presents the methodological framework, which includes three major steps. Firstly,
an improved VANUI was developed based on the integration of NTL, NDVI, population density
and water body data. Secondly, statistically accounted CO2 emissions at the provincial level were
downscaled to a 1-km spatial resolution based on the improved VANUI. Additionally, the accuracy of

http://tongji.cnki.net/overseas/engnavi/navidefault.aspx
http://tongji.cnki.net/overseas/engnavi/navidefault.aspx
http://tongji.cnki.net/overseas/engnavi/navidefault.aspx
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://westdc.westgis.ac.cn/
http://www.gscloud.cn
http://www.resdc.cn
https://www.baruch.cuny.edu/confluence/display/geoportal/Datasets
https://www.baruch.cuny.edu/confluence/display/geoportal/Datasets
https://www.baruch.cuny.edu/confluence/display/geoportal/Datasets
http://www.resdc.cn
http://www.gscloud.cn
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the prosed new index was validated. Thirdly, the spatiotemporal dynamics of CO2 emissions at the
pixel and prefecture-city level were explored.Remote Sens. 2017, 9, 829  6 of 20 
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Figure 2. Methodological framework of this study.

3.1. An Improved Time-Series VANUI

Because the original time series NTL were obtained from different satellite sensors (F12, F14, F15,
F16 and F18), they lack continuity and cannot be used directly for long-term analysis. A systematic
calibration approach, which was developed by Liu et al. [40] and included inter-calibration,
intra-annual composition and inter-annual series correction processes, was employed in this study to
calibrate the original NTL data in China. Besides, the following model proposed by Meng et al. [14]
was used to adjust NTL in the lit and unlit areas:

NTLpop =

{
NTLcali × ln(POP + 1) if NTLcali > 0

0.34× ln(POP + 1) if NTLcali = 0
, (1)

where NTLpop is the NTL adjusted by population density; NTLcali is the original night time images
after a series of calibration processes proposed by Liu et al. [40]; POP is the population density; 0.34 is
the weight for the unlit areas based on the detected electricity access in lit and unlit areas of NTL [41].
Specifically, the gridded population density of 1995, 2000, 2005 and 2010 was used to calibrate NTL for
the years of 1995~1998, 1999~2003, 2004~2008 and 2009~2013, respectively.

We used two datasets of NDVI to satisfy the research period in this paper because MODIS NDVI
images are unavailable before 2000. However, the monthly NDVI data from different sensor systems
could not be calculated directly because they lack consistency and comparability. Early studies have
proven that NDVI from one instrument can be inter-calibrated against another by linear regression
models [42]. To ensure the consistency of NDVI data from two sensors, we built a linear regression
model based on monthly 1-km GIMMS NDVI and MODIS NDVI in China from 2000–2006 (Figure 3)
and finally obtained the following model.

NDVI =

{
1.21×NDVIGIMMS + 0.059 if year < 2000

NDVIMODIS otherwise
, (2)
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where NDVIMODIS and NDVIGIMMS represent monthly 1-km MODIS NDVI and GIMMS NDVI
datasets, respectively.Remote Sens. 2017, 9, 829  7 of 20 
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Figure 3. Monthly GIMMS NDVI and MODIS NDVI in China from 2000–2006.

The annual mean NDVI time series from 1995–2013 were then calculated. However, unlike MVC,
which could reduce the impacts of cloud and shadow of NDVI, the mean NDVI can reduce seasonal
sensitivity and fluctuation and, thus, is more stable than the max NDVI [23]. Negative NDVI values
were removed because they indicate deserts, glaciers and other areas with few human activities [43,44].

The improved VANUI in China from 1995–2013 was then computed using the following
model [23]:

VANUIadj= (1−NDVI)×NTLnor, (3)

where NDVI is the annual mean NDVI; NTLnor is the normalized value of the NTL adjusted by
population density ranging from 0–1, which can be calculated by:

NTLnor =
NTLpop −NTLmin

NTLmax −NTLmin
, (4)

where NTLmax and NTLmin are the maximum and minimum values of NTLpop from 1995–2013.
Similar to Liu’s approach to improve the annual consistence of DMSP/OLS NTL during a long

time period [40], the annual improved VANUI should be calibrated by Equation (5) on the basis of the
following assumptions: (1) the pixel level adjusted VANUI grew continuously in China during the
last 19 years, and the value in a later year should be equal to or greater than that in the previous year;
(2) the adjusted VANUI in 2013 was the largest and closest to reality in the time series. We chose the
adjusted VANUI in 2013 instead of VANUI in 1995 as the reference data because VANUI in 2013 was
calculated based on MODIS NDVI, which have higher quality than those in 1995.

VANUIT−t
cali =


VANUIT−t

adj if VANUIT−t
adj < ANUIT−t+1

adj and VANUIT−t+1
adj > 0

VANUIT−t+1
adj if VANUIT−t

adj ≥ VANUIT−t+1
adj and VANUIT−t+1

adj > 0
0 otherwise

. (5)

where t = 1, 2, . . . , 18; T is the latest year of the study period (that is 2013 in this research); VANUIT−t
cali

is the VANUI that needs to be calibrated in the year of T − t (i.e., from 2012–1995); VANUIT−t
adj is the

improved VANUI from 2012–1995 calculated before; VANUIT−t+1
adj is the improved VANUI in the next

year of VANUIT−t
adj .
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3.2. Estimating CO2 Emissions Using Improved VANUI

First, CO2 emissions from 30 provinces are accounted so as to provide training samples for further
downscaling analysis. The guideline proposed by the Intergovernmental Panel on Climate Change
(IPCC) was adopted as a standard method for carbon accounting [45]:

SCEpro = ∑
k

FCk × EFk = ∑
k

FCk × LCk ×CCk ×CRk ×
44
12

. (6)

where SCEpro represents the statistical CO2 emissions of the sample province; the subscript k denotes
the energy type; FC is total fuel consumption; EF is the effective CO2 emission factor; LC is the low
calorific value of each fuel; CC represents carbon content; CR is the carbon oxidation ratio; 44/12 is
the molecular weight ratio of carbon dioxide to carbon. The EF of electricity was the mean annual EF
of seven power sub-grids in China from 2007–2013, provided by National Development and Reform
Commission (NDRC) [46]. Others were compiled from the Provincial Greenhouse Gas List published
by NDRC [47]. Table 3 provides the parameters for emissions accounting.

Table 3. Parameters for accounting CO2 emissions from energy consumption in China. CR, carbon
oxidation ratio.

Energy Type (k) Low Calorific Value
(LC, kJ/kg; kJ/m3)

Carbon Content
(CC, kg/GJ)

Carbon Oxidation
Factor (CR, %)

CO2 Emission Factor
(EF, t/t; t/104 m3)

Raw coal 20,908 26.37 94% 1.90
Clean coal 26,344 27.40 94% 2.49

Coke 28,435 29.50 93% 2.86
Coke oven gas 16,726 12.10 98% 0.73

Crude oil 41,816 20.10 98% 3.02
Gasoline 43,070 18.90 98% 2.93
Kerosene 43,070 19.60 98% 3.03
Diesel oil 42,652 20.20 98% 3.10
Fuel oil 41,816 21.10 98% 3.17

Liquefied petroleum gases 50,179 17.20 99% 3.13
Natural gas 38,931 15.30 99% 2.16

Heat \ \ \ 0.12 (t/GJ)
Electricity \ \ \ 1.01 (t/MWh)

Second, a linear regression model, as shown in Equation (7), was employed to capture
the relationship between statistically accounted CO2 emissions from sample provinces and
improved VANUI:

SCEpro = α+ β×VANUIpro, (7)

where VANUIpro denotes the total improved VANUI value in corresponding provinces; α and β are
the intercept and coefficient, which need to be estimated.

In this study, 19 regression models from 1995–2013 were built to reduce the temporal bias in
estimating CO2 emissions. As shown in Table 4, all parameters were significant at the 5% or 1% level
based on the t-test, with reasonable values of the coefficient of determination R2 (R2 > 0.75), suggesting
that the improved VANUI is an appropriate proxy of CO2 emissions. One possible reason for the
increasing R2 after 2000 might be that the quality of VANUI calculated by MODIS NDVI after 2000 is
higher than those calculated by GIMMS NDVI because of the higher spatial resolution of the original
MODIS NDVI (500 m).
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Table 4. Results of statistical CO2 emissions and improved VANUI linear regressions.

Year α T-Value of α β T-Value of β R2

1995 39.3528 ** 4.4998 0.0612 ** 8.9893 0.7566
1996 42.2589 ** 4.9570 0.0599 ** 9.1793 0.7642
1997 45.2605 ** 5.4585 0.0590 ** 9.2259 0.7525
1998 44.2361 ** 5.3296 0.0602 ** 9.5906 0.7666
1999 43.9072 ** 5.3252 0.0603 ** 9.9401 0.7792
2000 44.9229 ** 5.1266 0.0635 ** 10.1248 0.7855
2001 40.2911 ** 4.8998 0.0700 ** 12.8600 0.8552
2002 46.8830 ** 5.1477 0.0680 ** 11.8764 0.8344
2003 48.9646 ** 4.5677 0.0718 ** 11.6740 0.8296
2004 51.8829 ** 4.4405 0.0790 ** 12.6101 0.8503
2005 39.9260 ** 2.8469 0.0989 ** 14.1337 0.8771
2006 43.8580 ** 2.8240 0.1061 ** 14.3041 0.8796
2007 45.4787 * 2.5905 0.1176 ** 14.2543 0.8789
2008 48.8460 * 2.4972 0.1225 ** 13.6811 0.8699
2009 55.0179 * 2.4996 0.1259 ** 12.7556 0.8532
2010 50.0169 * 2.1165 0.1353 ** 12.5029 0.8481
2011 55.1558 * 2.0569 0.1431 ** 12.3903 0.8457
2012 55.8876 * 2.1275 0.1402 ** 12.7299 0.8527
2013 65.4914 * 2.3874 0.1333 ** 11.5752 0.8271

Note: * and ** indicate significant at the 5% and 1% level, respectively.

Assuming the relationship between CO2 emissions and improved VANUI at the pixel level
was consistent with that at the sample province level, the following model was used to downscale
provincial CO2 emissions to the pixel level:

ĈEpix =

{
α

Npro
+ β×VANUIpix if VANUIpix > 0

0 otherwise
, (8)

where ĈEpix represents the CO2 emissions estimated by the improved VANUI at the pixel level; Npro

is the total lit pixels in the province; VANUIpix is the value of improved VANUI in the pixel; others are
the same as for Equation (7).

Furthermore, to limit the estimation residuals within a province, the estimated pixel-level CO2

emissions by Equation (8) were corrected by the following equation:

CEpix = ĈEpix ×
SCEpro

ĈEpro
. (9)

where CEpix is the modeled pixel-level CO2 emissions after correction. ĈEpro is the sum of pixel-level
estimated CO2 emissions (ĈEpix) within each provincial boundary. It was noted that since Tibet
Province lacks energy statistical data, pixel-level CO2 emissions within Tibet could not be corrected
through Equation (9), but directly use the estimations by Equation (8).

3.3. Assessing the Accuracy of Improved VANUI in Modeling CO2 Emissions

Due to the lack of high-resolution CO2 emissions for a reference, we used two assessments to
evaluate the performance of improved VANUI in modeling CO2 emissions. First, the root mean
square error (RMSE) and mean relative error (MRE) were used to describe the difference between
the modeled CO2 emissions and statistically accounted emissions from 30 prefecture cities that have
detailed energy statistics (the accounting method was the same as that at the provincial level). Second,
since CO2 emissions from impervious areas are usually higher than those from dense vegetation
covered areas [36], Landsat 8 OLI-TIRS images of four selected cities in China, including Beijing
and Shanghai (typical mega cities that usually have the NTL saturation phenomenon), Guangzhou
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and Urumqi (typical cities with distinct natural environment and vegetation covers) were used as
references to assess whether the improved VANUI could reflect this emission difference within the
same city.

3.4. Analyzing Spatiotemporal Patterns of Prefecture-City Level CO2 Emissions

Indicators including Global Moran’s I, and Anselin Local Moran’s I (Local indicators of spatial
association, LISA) were used to explore the spatiotemporal patterns of prefecture-city level CO2

emissions. Specifically, Global Moran’s I measures the spatial autocorrelation of prefectural CO2

emissions nationwide [48].

Global Moran′s I =
n ∑n

i=1 ∑n
j=1 wij(CEi −CE)(CEj −CE)

(∑n
i=1 ∑n

j=1 wij)∑n
i=1 (CEi −CE)2 , (10)

where n is the total number of prefectural cities; i and j are two different cities; wij is the spatial weights
matrix, which was decided by the criteria of the first-order queen contiguity in this study; CEi and
CEj are the modeled CO2 emissions for city i and j, respectively; CE is the average emissions of the
whole study area. With the value ranging from −1–1, Global Moran’s I evaluates whether the spatial
distribution of CO2 emissions is random (=0), clustered (>0) or dispersed (<0).

LISA shows the spatial dependence and heterogeneity among prefectural cities [33].

Local Moran′s Ii =
Zi

∑n
i=1 Zi

× Zo
i =

Zi

∑n
i=1 Zi

×
n

∑
j=1

wijZj, (11)

where Zi is the deviation of modeled emissions for city i from the average and Zo
i is the spatial lag for

city i, which reflects the weighted average of CO2 emissions from the neighboring city j, and can be

calculated by
n
∑

j=1
wijZj.

Based on whether both Zi and Zo
i are higher than 0 or not, cities could be classified into four

cluster types. They are high-high clusters (Zi > 0 and Zo
i > 0), high-low clusters (Zi > 0 and Zo

i < 0),
low-high clusters (Zi < 0 and Zo

i > 0) and low-low clusters (Zi < 0 and Zo
i < 0). The LISA results can be

used to provide visual information of local instability in spatial autocorrelation [49].

4. Results

4.1. Performance Test of the Improved VANUI

To evaluate the capability of the improved VANUI in tackling the saturation and blooming
problems, we compared the normalized value of original NTL, population-adjusted NTL (calculated
by Equations (1) and (4)), original VANUI and improved VANUI in a line transect in the
Beijing-Tianjin-Tangshan metropolitan area. It was found that the values of the original NTL were
obviously saturated in the urban center of Beijing (Figure 4b). Although population-adjusted NTL
could help to reduce the saturation, the improvements in some urbanized areas were still not as much
as expected. For instance, the pixel range of population-adjusted NTL in Figure 4c was still close to one.
Notably, both the original and improved VANUI captured more spatial details in urban center areas
with their values much lower than other two indices. In suburban areas, the capability of original NTL
and original VANUI in describing the human activity variation was weak. For example, the values
in the 0–20 pixel range in Figure 4b,d were close to zero and had little change. Large fluctuations in
population-adjusted NTL and improved VANUI values could be detected (for example, the pixel range
of 12–13 in Figure 4c,e), which suggested that they could supplement more information of the human
activity differences. In sum, the improved VANUI can reflect human activities more accurately, which
is crucial for interpreting socio-environmental issues.
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Figure 4. Performance test of improved VANUI. (a) A false color composite of normalized NTL, NDVI
and improved VANUI in red, green and blue; normalized values of (b) NTL, (c) population-adjusted
NTL, (d) original VANUI and (e) improved VANUI in a line transect in the Beijing-Tianjin-Tangshan
metropolitan area in 2013.

4.2. Accuracy Assessment of Improved VANUI in Modeling CO2 Emissions

Using the same methods described in Section 3.2, CO2 emissions were additionally modeled
based on the original NTL, the population-adjusted NTL and the original VANUI and compared to that
based on the improved VANUI so that the accuracy of improved VANUI in modeling CO2 emissions
can be assessed. The comparisons were conducted at the following two levels.

First, at the inter-city level, as shown in Figure 5, statistically accounted CO2 emissions from
30 prefecture cities that have detailed energy statistics between 1995 and 2013 (in total, 170 samples)
were accounted as references by the same method described in Section 3.2. It was found that the R2 in
the correlation between statistical CO2 emissions and modeled emissions derived from the improved
VANUI was the same as that in the original VANUI’s case (R2 = 0.64), but was higher than that in the
original NTL’s case (R2 = 0.59) and the population-adjusted NTL’s case (R2 = 0.52). More importantly,
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the modeled CO2 emissions using the improved VANUI owned the lowest RMSE and MAE compared
to the others, which suggested that improved VANUI was more accurate in modeling CO2 emissions
at the inter-city level.
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Figure 5. Correlation analysis between modeled CO2 emissions and statistical CO2 emissions for 30
prefecture cities in 1995–2013. (a) Original NTL; (b) population-adjusted NTL; (c) original VANUI; (d)
improved VANUI. RMSE and MRE are the root mean square error and mean relative error, respectively.
Mt = million tons.

Second, at the intra-city level, Figure 6 shows the modeled CO2 emissions (CE) in Beijing,
Shanghai, Guangzhou and Urumqi based on four indices. Landsat 8 OLI images in 2013 were
used for visual references. The modeled results varied significantly in the four cases. Obviously,
the variation of emission density using improved VANUI was the largest with the maximum value
around 0.30 million tons/km2, which was 4.2-, 1.8- and 2.2-times larger than that in the original NTL,
population-adjusted NTL and original VANUI, respectively. This result implied that improved VANUI
could strengthen the heterogeneity at the intra-city level. In addition, it was found that CO2 emissions
modeled by improved VANUI could reduce the saturation effect and estimation deviation significantly.
Due to the blooming problem, emissions based on the original NTL in urban parks and suburbs were
usually overestimated, while being underestimated in sub-centers. In the population-adjusted NTL’s
case, emissions in suburban regions were much lower than those in urban cores, but the saturation
phenomenon at the center area of mega cities was still serious. As for the original VANUI-based
emissions, though VANUI can capture more details in urban cores, its performance in suburban areas
with less vegetation cover (for example, suburban Urumqi) was not satisfactory. Moreover, emissions
in urbanized areas with low NDVI, but high NTL might be overestimated (for example, river zones in
Shanghai and Guangzhou). By contrast, the relatively low emissions in urban parks and high emissions
in urban cores and sub-centers have been successfully distinguished through improved VANUI.
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Figure 6. Comparison of modeled CO2 emissions (CE) based on four indices in urban areas of selected
cities with the Landsat 8 images in 2013 as references.

4.3. Spatiotemporal Dynamics CO2 Emissions in China

Figure 7 shows the spatial pattern of the modeled pixel-level CO2 emissions in China from
1995–2013. It is found that CO2 emissions mainly concentrated in Eastern and Southeastern regions.
Visually, the CO2 emission density in metropolitan areas and provincial capital cities was much higher
than that in small cities and rural areas. The highly urbanized areas including Beijing-Tianjin-Hebei
(BTH), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) witnessed a sharp increase
in emissions, where the emission density has more than doubled from 0.14–0.30 million tons/km2

between 1995 and 2013.
By aggregating the pixel level CO2 emissions to prefecture cities and analyzing the spatiotemporal

characteristics, it was noted that the results of Global Moran’s I were significantly positive during the
study period, which indicated the existence of spatial agglomeration of CO2 emissions in Chinese
cities (Figure 8). In other words, cities with similar emissions tended to cluster in space. However,
the degree of agglomeration underwent a decrease from 0.31 in 1995 to 0.20 in 1999, then an increase
to 0.36 in 2007 and, finally, became relatively stable around 0.35 from 2008–2013. The differences in
regional development strategy and socioeconomic conditions might be one of the main reasons for the
changing level of agglomeration. For example, the quick catching up of the economy in inland regions
of China due to a series of favorable development strategies and plans, such as the “Grand Western
Development Program” since 2000 and the “Rise of Central China Plan” since 2004, may explain the
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growth of the agglomeration degree in the beginning of the 2000s. Moreover, great efforts were made
by the Chinese government to encourage energy conservation and emissions reduction at the country
level, such as the implementation of the “Medium and Long-Term Energy Conservation Plan” launched
in 2004, the “11th Five Year Plan (2006–2010)” and the “12th Five Year Plan (2011–2015)”, which could
be the important reasons why agglomeration of CO2 emissions kept stable after 2007 [50,51].
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Figure 8. Global Moran’s I of CO2 emissions in China’s prefectural cities from 1995–2013.

Figure 9 shows the results of LISA for 343 prefecture cities. Based on four types of clusters, the hot
spots of carbon emissions and spatially-heterogeneous areas can be identified. Most of the clusters are
spatially coherent. BTH, YRD and PRD belonged to the high-high clusters, suggesting that these areas
were hot emission spots that need special attention in carbon mitigation. Notably, because of the rapid
development of the Bohai Economic Rim in recent years, Shandong Peninsula has replaced the middle
south Liaoning, a traditional heavy industrial region in Northeastern China, and became a new cluster
with large emissions. The low-low clusters mainly located in the western region and have become
less extensive. Most of these clusters were located in Tibet, Qinghai and Gansu provinces, which have
less population and carbon-intensive industries. Chongqing and Nanning were labeled as high-low
clusters with more CO2 emissions than their neighboring cities. On the contrary, Chengde, a city next
to Beijing, emitted much less CO2 than its neighbors did.
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5. Discussion

5.1. Comparison with Previous Studies

By comparing our modeled CO2 emissions in some selected cities and years with those from
previous studies, most of which are based on statistical data and methods, the robustness and reliability
of our proposed methods can be validated. As shown in Figure 10, there were big differences in each
study even for the same city based on the same accounting framework. Taking Tianjin as an example,
our estimate results were smaller than those from Ref-1, but larger than those of Ref-5. The different
accounting scopes and methods might be the main reason for these differences, as Ref-1 accounted
the carbon emissions from industrial processes while we did not, and we considered the emissions
from electricity and heating, while Ref-5 ignored them. Regardless, the changing trend and scale of all
of the results are similar to each other, which suggested the validity of our estimation based on the
improved VANUI.
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Li et al. [56], respectively.

5.2. Limitations and Potential Uses

Though the proposed methods are proven to be effective and accurate in analyzing the carbon
emission issue, there remains several limitations that could be further improved in the future study.
First, we did not take into account the uncertainties from emission factors and energy consumption
data when accounting CO2 emissions based on statistics, which could vary from ±5–±10% [57,58].
It was also pointed out that the poor quality of energy statistics would cause significant discrepancy
between national and provincial emissions in China [59]. All of these will influence the model accuracy
since the statistically accounted CO2 emissions are among the fundamental bases of our methods.

Second, although the estimation error of improved VANUI was the smallest, there still exist big
gaps between modeled and statistically accounted emissions for some cities (as shown in Figure 5).
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More efforts in improving the data quality and integrating more variables in model algorithms should
be made. Specifically, since CO2 emissions are not only driven by demographic factors, economic level
and structure, local biophysical conditions such as temperature, elevation and urban form are also
reported as important determinants [60–62]. In the future, with the emergence and development of big
data science, it might be possible to obtain detailed spatial data of the aforementioned variables through
the Internet, social media, commercial data companies, and so on, for enhancing the performance
of NTL.

Owing to the global coverage of NTL and NDVI and the increasing availability of spatial
data for population and land use and cover in the world (for example, Landscan’s population
data with 1-km resolution [63] and Global Land Project’s land use and cover maps with 30-m
resolution [64], our proposed methods could also be applied to other countries and regions and
to other socio-environmental issues, such as steel stocks’ distribution in human society and residential
energy consumption.

6. Conclusions

By improving the original VANUI via the integration of NTL with NDVI, population density and
water body distribution, this paper proposed a new index to enhance the performance of DMSP/OLS
NTL, so that it can be better applied in analyzing socio-environmental issues. China was selected as
a case to validate the accuracy of improved VANUI in modeling fine-scaled CO2 emissions and to
increase our understandings of its spatiotemporal dynamics from 1995–2013.

The findings can be concluded as follows. First, the improved VANUI can supplement more
information of human activities in areas with weak radiance, which cannot be detected by the original
NTL. Second, it can reduce estimation errors in downtown areas and suburbs caused by the saturation
and blooming problems of NTL. Third, the improved VANUI shows great potential to be further
applied as a proxy of many socio-environmental and socioeconomic issues, especially in regions that
are lack of sufficient and reliable statistical data. Fourth, with the aid of improved VANUI, it is found
that carbon emission density in metropolitan areas and provincial capitals was much higher than in
small cities and rural areas. Global Moran’s I confirmed the existence of the spatially-agglomerated
distribution of CO2 emissions in China. In addition to the BTH, YRD and PRD regions, Shandong
Peninsula replaced the middle south Liaoning and became a new emission hotspot. These findings
may increase our understanding of the spatiotemporal dynamics of CO2 emissions and provide
decision-making support to design sustainable development plans and low-carbon policies.
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