
remote sensing  

Article

Estimating Subpixel Surface Heat Fluxes through
Applying Temperature-Sharpening Methods to
MODIS Data

Xiaojun Li 1,2 ID , Xiaozhou Xin 1,*, Jingjun Jiao 1,2, Zhiqing Peng 1,2, Hailong Zhang 1,
Shanshan Shao 3 and Qinhuo Liu 1,4 ID

1 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Beijing 100101, China; kdxiaojun@126.com (X.L.);
jiaojingjun1989@163.com (J.J.); pengzhiqing1991@126.com (Z.P.); zhlnjnu@163.com (H.Z.);
liuqh@radi.ac.cn (Q.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Educational Science, Anhui Normal University, Wuhu 241000, China; shanshao_edu@126.com
4 Joint Center for Global Change Studies (JCGCS), Beijing 100875, China
* Correspondence: xin_xzh@163.com; Tel.: +86-10-6487-9382

Received: 26 May 2017; Accepted: 11 August 2017; Published: 12 August 2017

Abstract: Using high-resolution satellite data to perform routine (i.e., daily to weekly) monitoring
of surface evapotranspiration, evapotranspiration (ET) (or LE, i.e., latent heat flux) has not been
feasible because of the low frequency of satellite coverage over regions of interest (i.e., approximately
every two weeks). Cloud cover further reduces the number of useable observations, and the utility
of these data for routine ET or LE monitoring is limited. Moderate-resolution satellite imagery is
available multiple times per day; however, the spatial resolution of these data is too coarse to enable
the estimation of ET from individual agricultural fields or variations in ET or LE. The objective of this
study is to combine high-resolution satellite data collected in the visible and near-infrared (VNIR)
bands with data from the MODIS thermal-infrared (TIR) bands to estimate subpixel surface LE. Two
temperature-sharpening methods, the disaggregation procedure for radiometric surface temperature
(DisTrad) and the geographically-weighted regression (GWR)-based downscaling algorithm, were
used to obtain accurate subpixel land surface temperature (LST) within the Zhangye oasis in China,
where the surface is heterogeneous. The downscaled LSTs were validated using observations collected
during the HiWATER-MUSOEXE (Multi-Scale Observation Experiment on Evapotranspiration)
project. In addition, a remote sensing-based energy balance model was used to compare subpixel
MODIS LST-based turbulent heat fluxes estimates with those obtained using the two LST downscaling
approaches. The footprint validation results showed that the direct use of the MODIS LST approach
does not consider LST heterogeneity at all, leading to significant errors (i.e., the root mean square
error is 73.15 W·m−2) in LE, whereas the errors in the LE estimates obtained using DisTrad and GWR
were 45.84 W·m−2 and 47.38 W·m−2, respectively. Furthermore, additional analysis showed that the
ability of DisTrad and GWR to capture subpixel LST variations depends on the value of Shannon’s
diversity index (SHDI) and the surface type within the flux contribution source area.

Keywords: temperature sharpening; energy balance; heterogeneous surface; evapotranspiration;
MODIS; Shannon’s diversity index (SHDI)

1. Introduction

As a major component of the surface energy balance and the water budget, evapotranspiration
(ET) has substantial effects on global climate change, water management and crop yields [1–3]. ET is
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the water transferred from the land surface to the atmosphere, and the latent heat accompanying ET
is LE, where L is the latent heat of vaporization. Satellite-based remote sensing has been identified
as a more suitable mean of mapping the spatial distribution of ET or LE [4]. Nevertheless, the land
surface is highly heterogeneous in terms of its geometric and physical aspects, and the transfer or
exchange processes between the land surface and the atmosphere are likely to be nonlinear. Models
and methods developed assuming a homogeneous land surface may confront serious problems in the
estimation of ET or LE using medium- or coarse-resolution data [5]. Moderate Resolution Imaging
Spectrometer (MODIS) data have a daily return time (one overpass per day at varying view angles).
At present, such data are ideal for the simulative monitoring of regional-scale changes in surface
energy and water fluxes. Studies have shown that a pixel resolution of 500 m or less is necessary
for accurate assessment of surface energy balance and ET or LE changes [1,6]. However, the spatial
resolution of the MODIS thermal-infrared sensor (i.e., ~1000 m) is low, and the influence of the spatial
scale (mixed-pixel) effect is substantial, especially where complex patterns of land use exist. Due to
differences in the geometry of the underlying surface and land cover, it is difficult to use the mean
or a single parameter to represent entire pixels. Moreover, farms and fields in many regions of the
world are significantly smaller than individual pixels; in particular, in developing countries, fields
may be less than 0.1 ha (30 m × 30 m) in size [6]. Hence, coarse-resolution data cannot be used to
estimate ET or LE from individual fields. Developing a model of heat fluxes for use with mixed
pixels and using the spatial information of the study area to get more reliable results may represent
a solution to this problem. Middle- or high-resolution data (e.g., from the Land remote-sensing
satellite Thematic Mapper (Landsat TM/ETM+), the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), and the Environment and Disaster Monitoring and Forecasting
Satellite Constellation (Chinese HJ-1A/HJ-1B)) have high resolution but a low frequency of satellite
coverage over regions of interest (e.g., approximately every 2 weeks for Landsat TM and ASTER;
4 days for the Chinese HJ-1A/HJ-1B). Moreover, cloud cover further reduces the number of useable
observations of surface conditions resulting in high-resolution satellite imagery of a region typically
being available once a month, which is not very useful for routine ET or LE monitoring [7].

To estimate ET or LE using surface energy balance models (e.g., the two-source model (TSM) [8]
or the Surface Energy BALance (SEBAL) model [9]) and remote sensing data, the sensible heat flux
(H) is the most important component, and it is also complex to calculate [10]. H is the transfer of
turbulent heat between the surface and the atmosphere. It is driven by temperature differences and
controlled by resistances that depend on local atmospheric conditions and land cover properties.
In particular, the land surface temperature (LST) and the dynamic parameters (i.e., the zero plane
displacement height and the roughness length) are more influential than other input parameters,
because the LST provides an indication of the net effect of land-atmosphere interactions, which results
in the process of evapotranspiration [2]. Sensitivity analysis has shown that uncertainty in LST has a
significant impact on the estimation of H, and a 3 K change in LST yielded a change in H of up to 75%
in TSM. A similar change in the difference between surface and air temperatures led to changes in H
of up to 45% in SEBAL [11]. However, middle- or coarse-resolution satellite cannot provide accurate
subpixel LST estimates. Furthermore, in order to drive a model with remote sensing data, the zero
plane displacement height and the roughness length are often calculated using a vegetation index [12].
The vegetation index is directly related to the dynamic parameters. Hence, it is a promising scientific
theme, both theoretically and practically, to model and monitor heat fluxes using high temporal
resolution LST estimates derived from middle- or coarse-resolution data (e.g., MODIS) and high spatial
resolution vegetation index values derived from middle- or high-resolution data (e.g., that obtained
by the, Chinese HJ-1A/HJ-1B satellites). It is also significant in expanding the scope of application of
satellite data and improving the utilization of the data.

Within the last two decades, an alternative technique, called LST downscaling, has been developed
to derive high-resolution LST data using the high-resolution visible/NIR bands that are available
from either the same or different satellite systems [7,13]. The most widely used LST downscaling
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approaches are the disaggregation procedure for radiometric surface temperature (the DisTrad
algorithm) [1] and its descendant, the algorithm for sharpening thermal imagery (the TsHARP
model) [14]. These two approaches are classified as statistical models, and they are based on the
assumption that the relationship between the normalized difference vegetation index (NDVI) and
LST is scale invariant. The performance of these algorithms has been evaluated over different land
cover types, including agricultural areas [15], urban areas [16], and other areas, some of which display
high heterogeneity [17,18]. Recently, many improvements have been made to DisTrad and TsHARP
so that they include a greater number of independent variables (e.g., the normalized difference
built-up index (NDBI), the surface albedo, and the surface reflectance) [19–21]. Moreover, many
studies have questioned the hypothesis that the relationship between LST and NDVI is stationary
in space [19,22,23]. In fact, the relationship between LST and other land surface parameters is
geographically variable. Geographically weighted regression (GWR) is an extension of traditional
standard regression techniques that permits local rather than global parameter estimation. It can be
used to investigate nonstationary relationships between the dependent variable and the independent
variables using geographically varying regression coefficients. Duan et al. [23] proposed a GWR-based
LST downscaling algorithm that is based on the assumption that the relationship between LST and
other land surface parameters and the digital elevation model (DEM) is geographically variable. They
also find that the GWR-based algorithm outperforms the TsHARP algorithm, and the newly added
parameters can effectively describe the variation in LST. The DisTrad model, which is based on NDVI
segmentation, is generally considered to be more accurate [24], but the effectiveness of the GWR-based
algorithm and the DisTrad model have not been compared. The purpose of this work is to investigate
the reliability of downscaling algorithms for use with MODIS LST and the estimation of subpixel LE
based on downscaled LST values for use in watershed studies. We downscale the MODIS LST products
by using the GWR-based algorithm and the DisTrad model, and the performance of the two models is
compared with ground-based observations of surface temperature. In addition, a remote sensing-based
energy balance model is used to study the effect of the disaggregation of LSTs on the estimation of LE.
Moreover, the relative ability of the two downscaling methods to describe the spatial heterogeneity of
mixed pixels is assessed by comparing the turbulent heat fluxes estimated from the MODIS LST to the
turbulent heat fluxes estimated from the disaggregated temperatures. The differences in the heat flux
estimates obtained using the two downscaling methods are analyzed and discussed.

This paper is organized as follows. Section 2 describes the study area and datasets. Section 3
presents a methodology for estimating LE and the temperature-sharpening methods, which are
based on statistical relationships. The results and an error analysis are presented in Section 4.
The uncertainties associated with this study and further analysis are discussed in Section 5. Some
conclusions are drawn in Section 6.

2. Study Area and Datasets

2.1. Study Area

Our study was conducted within an agricultural oasis, the Zhangye oasis, which is located
in the central reaches of the Heihe River Basin (HRB) and in the arid region of Gansu Province in
northwestern China (100.10◦E–100.66◦E, 38.68◦N–39.15◦N). The Zhangye oasis has a semi-arid climate.
The annual precipitation is less than 200 mm, but the potential evapotranspiration is approximately
1200–1800 mm yearly, and the annual temperature is approximately 7 ◦C [23,25]. Its terrain is flat,
and its elevation is approximately 1480 m. A large portion of the Gobi Desert and the alpine vegetation
of the Qilian Mountains are located near the study area (Figure 1). Within the oasis, the land surface is
mainly covered by maize, and the growing season lasts from May to September. The artificial oasis
is highly heterogeneous, which impacts the thermal-dynamic and hydraulic features. Consequently,
monitoring and managing the water resources within the oasis during the crop growing season are
urgently needed [26,27]. The HRB has long served as a test bed for integrated watershed studies,
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as well as land surface and hydrological experiments [28]. One major objective of the Heihe Watershed
Allied Telemetry Experimental Research (HiWATER), namely the Multi-Scale Observation Experiment
on Evapotranspiration (HiWATER-MUSOEXE), is to capture the strong land surface heterogeneities
and associated uncertainties within a watershed [25,27,29]. Two nested observation matrices that
covered 30 km × 30 km and 5.5 km × 5.5 km were in place within the study area from May to
September 2012. Within the larger observation matrix, four eddy covariance (EC) systems and one
superstation (EC15) which is very high and equipped with a lot of observation system were installed
in the oasis-desert ecosystem [25]. Within the oasis, a total of 17 automatic meteorological stations
(AMSs) were distributed, including one in a vegetable field (EC01), one in a residential area (EC04),
one in an orchard (EC17), and 14 in maize fields (Figure 1).
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Figure 1. Location and maps of the study area. (a) Location of the study area in China; (b) False color
composite of an HJ-1B image of the Zhangye oasis acquired on 22 August 2012 (R/G/B = 4/3/2);
(c) Locations of ground sites (5.5 km × 5.5 km matrix).

2.2. Datasets

Various types of remote sensing and ancillary data were used in this study, including
high-resolution satellite data (HJ-1B images), low-resolution satellite data (Terra/MODIS images),
Digital Earth data (digital elevation models or DEMs), land use classification data [3], and in situ data
describing radiation, heat fluxes and meteorological measurements.

2.2.1. Remote Sensing Data

Three kinds of remote sensing data were used in this study, specifically high spatial resolution
data from the Chinese HJ-1B satellite, low spatial resolution MODIS data and the ASTER Global
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Digital Elevation Map (GDEM), which was used as auxiliary data. The HJ-1 A/B satellites, which
were launched in September 2008, carry a total of four CCD cameras (i.e., CCD1 and CCD2 for
HJ-1 A and similar for HJ-1 B). These satellites have quasi-sun-synchronous orbits, an altitude of
650 km, and a swath width of 700 km [30]. Apart from the first band of the HJ-1 CCDs (B1 = 475 nm),
which is ≈10 nm wider than that of Landsat TM/ETM+ (B1 = 485 nm), the other three bands are
identical (B2 = 560 nm, B3 = 660 nm and B4 = 830 nm). The spatial resolution of the four CCD sensors
matches the first four bands of Landsat TM/ETM+ (see Table 1). The side rotation (±30◦) feature of
the HJ-1 A/B CCDs confers an advantage over Landsat, in that the revisit time is shortened from
16 days to 48 h or less [31,32]. The images produced by the HJ-1 A/B CCDs are stable, and the
performances of each band are balanced [33]. After correction (i.e., geometric correction, radiometric
calibration and atmospheric correction), the quality of the images is very similar to that of Landsat-5
TM [34]. The potential for high-quality ET or LE monitoring using the fine spatial resolution of the
HJ-1 CCD sensors has already been demonstrated [24,35]. The data from the HJ-1 CCD sensors are
freely available from the China Center for Resources Satellite Data and Application (CRESDA) website
(http://218.247.138.121/DSSPlatform/index.html).

Table 1. Specifications of the main payloads of HJ-1B.

Sensor Band Spectral Range
(µm)

Spatial
Resolution (m) Swath Width (km) Revisit Time

(Days)

CCD

1 0.43–0.52

30
360 (single CCD)
700 (two CCDs) 42 0.52–0.60

3 0.63–0.69

4 0.76–0.90

IRS

5 0.75–1.10
150 720 46 1.55–1.75

7 3.50–3.90

8 10.5–12.5 300

We used the HJ-1B image data that cover the HRB region in 2012. Because many algorithms for
estimating evapotranspiration using surface parameters require clear-sky conditions, we combined
available information on data quality with visual interpretation to select satellite images without
clouds. The selected images made up eleven groups, where a group consists of the matching IRS
and CCD data covering the study area. The data making up these groups were collected on 19 June,
30 June, 8 July, 27 July, 3 August, 15 August, 22 August, 29 August, 2 September, 13 September,
and 14 September.

The HJ-1B satellite data covering the HRB were pre-processed using methods including geometric
correction, radiometric calibration, and atmospheric correction [24]. To estimate the regional LE,
various surface variables, including the downward shortwave radiation [36], the downward longwave
radiation [24], the surface albedo [37,38], the land surface temperature [24], the emissivity [39], the leaf
area index (LAI) and the fractional vegetation coverage (FVC), were retrieved by applying the lumped
method to the HJ-1B data (CCD/IRS) [24].

The MODIS sensor was launched on 18 December 1999 aboard the Terra satellite and has been
in operation for nearly 18 years. It provides global data that are used to monitor long-term regional
land surface heat and water vapor fluxes and changes in the Earth system [40–42]. The MODIS data
have high temporal resolution (i.e., at least once every day) and high spectral resolution (i.e., 36 bands
in total). The parameters used in the estimation of heat fluxes, such as NDVI, albedo, LSTs and
emissivity, can be freely downloaded (https://ladsweb.nascom.nasa.gov/data/search.html). The

http://218.247.138.121/DSSPlatform/index.html
https://ladsweb.nascom.nasa.gov/data/search.html
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MODIS products that cover the study area and contain LST-related parameters were downloaded and
corrected for geometry and projection effects.

The ASTER GDEM is a product generated from optical data collected by the ASTER instrument
onboard NASA’s Terra satellite. This dataset is the only DEM that covers ~99% of the entire land
surface at high resolution. In this paper, we mainly use the ASTER GDEM v2, which has an accuracy
of 17 m at the 95% confidence level [43]. The three kinds of satellite data were registered and matched
with each other in the same projection.

2.2.2. Data from the HiWATER Experiment

As mentioned above, HiWATER was designed as a comprehensive ecohydrological experiment,
and it was implemented in the HRB. MUSOEXE, a component of HiWATER, was implemented to
reveal the spatial heterogeneities of heat and water fluxes by constructing two flux matrices [44]. In this
study, EC data from 19 towers within the two matrices were used. The details of these EC systems
are shown in Table 2, and the distribution of the stations is shown in Figure 1. EC16 and HHZ were
excluded because they lacked surface net radiation (Rn) and soil heat flux observational data.

Table 2. The eddy covariance system matrix of HiWATER-MUSOEXE.

Station Latitude (◦N) Longitude (◦E) Elevation (m) EBR Sensor Height (m) Dominant Land Cover

EC01 38.89322 100.35813 1552.75 1.01 3.8 vegetables
EC02 38.88695 100.35406 1559.09 0.90 3.7 maize
EC03 38.89053 100.37634 1543.05 0.94 3.8 maize
EC04 38.87752 100.35753 1561.87 0.84 4.2 (6.2 after 19 August) buildings
EC05 38.87574 100.35068 1567.65 0.82 3.0 maize
EC06 38.87116 100.35970 1562.97 1.02 4.6 maize
EC07 38.87676 100.36521 1556.39 0.93 3.8 maize
EC08 38.87254 100.37649 1550.06 0.88 3.2 maize
EC09 38.87239 100.38546 1543.34 0.81 3.9 maize
EC10 38.87567 100.39572 1534.73 0.94 4.8 maize
EC11 38.86991 100.34197 1575.65 0.92 3.5 maize
EC12 38.86515 100.36631 1559.25 0.90 3.5 maize
EC13 38.86074 100.37852 1550.73 0.99 5.0 maize
EC14 38.85867 100.35310 1570.23 1.04 4.6 maize
EC15 38.85551 100.37223 1556.06 0.89 4.5 maize
EC17 38.84510 100.36972 1559.63 0.78 7.0 orchard

SD 38.97514 100.44640 1460.00 1.03 5.2 swampland
SSW 38.78917 100.49330 1594.00 0.81 4.6 uncultivated land-desert
GB 38.91496 100.30420 1562.00 0.90 4.6 uncultivated land-Gobi

Note: EBR represents energy balance closure, and the calculation method can be found in [28].

The ground observation data include the H and latent heat flux (LE). The consistency of all of the
EC systems and the quality of the data were ensured using the following steps. First, the consistency
of the EC instruments was tested during an inter-comparison campaign in the flat, open Gobi desert,
over a surface covered by coarse grain sand and small pebbles with withered sparse scrub vegetation.
This campaign was completed before HiWATER-MUSOEXE was conducted [29]. Second, all of the raw
data were acquired at 10 Hz and processed. The processing included spike removal and corrections
for density (WPL correction) [45,46]. Third, a four-step procedure was performed to control the quality
of the EC data; for more details, see [24,29]. The soil heat flux (G) was measured by using three soil
heat plates at a depth of 6 cm at each site, and the surface G was calculated based the soil temperature
and moisture above the plates [47]. Energy imbalances are common in ground flux observations.
To force the energy balance, the conserving Bowen ratio (H/LE) and the residual closure technique are
often used. Computing the LE as a residual variable may be a better method for producing energy
balance closure under conditions with large LE [48]. Thus, the residual closure method was applied
because the “oasis effect” was distinctly observed in the desert-oasis system on clear days during the
summer [24]. The data obtained during the HiWATER experiment can be freely obtained from the
Heihe Plan Data Management Center (http://www.heihedata.org/).

http://www.heihedata.org/
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3. Methodology

3.1. Model of Remote Sensing-Based LE Estimation

The surface energy balance describes the transfer of energy between the land surface and the
atmosphere. The land surface energy balance equation is the basis of remote sensing-based LE
estimation, and it is commonly expressed as follows:

Rn = G + H + LE (1)

H is the flux caused by the temperature gradient between the land surface and the air, whereas LE
is the change in energy due to evapotranspiration or condensation. Atmospheric turbulence at the
boundary layer is the motivation for the heat transfer between the land surface and the atmosphere.
LE can be derived as the residual of the energy balance equation after Rn, G and H are known. The
models that permit estimation of Rn, G and H using remote sensing data are introduced below.

Rn is the main energy source of land surface heat and mass transfer and exchange, such as
evaporation. The estimation of Rn is of great importance in the remote sensing-based estimation
of land surface heat fluxes. It is the difference between incoming and outgoing radiation, and it is
calculated as follows:

Rn = Rs ↓ −Rs ↑ +RL ↓ −RL ↑= (1− α)Rs ↓ +εsRL ↓ −εsσT4
s (2)

where Rn is the surface net radiation (W·m−2), Rs ↓ is the downward shortwave radiation (W·m−2),
Rs ↑ is the shortwave radiation reflected by the surface (W·m−2), RL ↓ is the downward atmospheric
longwave radiation (W·m−2), and RL ↑ is the upward longwave radiation emitted by the surface
(W·m−2). α is the surface albedo, εs is the emissivity of the land surface, RL ↓= εaσT4

a , εa is the
effective emissivity of the atmosphere, σ = 5.67× 10−8 W·m−2·K−4 is the Stefan-Boltzmann constant,
Ta is the air temperature, and Ts is the surface radiation temperature.

G is the heat exchange between the surface and the soil deeper underground, and it is related
to the exchanges of water and heat within the soil. Generally, heat is transferred from depth to the
surface at night. Studies have found that soil heat flux is correlated with Rn and can be derived using
land surface parameters [24,49]. Because canopies exert a significant influence on G, the fractional
canopy coverage fc is used to determine the ratio of G to Rn as follows [24]:

G = Rn × [Γc + (1− fc)× (Γs − Γc)] (3)

where Γc = 0.05 and Γs = 0.315 represent the ratio of G to Rn for full canopy coverage and bare soil.
H is the turbulent heat transfer between the surface and the atmosphere that is derived using the

temperature gradient between them. According to gradient diffusion theory:

H = ρCp
Taero − Ta

rac
(4)

where ρ is the air density (kg·m−3), Cp is the specific heat of air at a constant pressure (J·kg−1·K−1),
Taero is the radiative surface temperature (K), Ta is the air temperature at a reference height (K), and
rac is the aerodynamic resistance (s−1·m), which is determined using the zero plane displacement
height and the roughness length. rac was calculated based on the Monin-Obukhov similarity theory
(MOST) using a stability correction function [12,50,51]. Because remote sensing-based methods cannot
obtain Taero, the value of Taero is usually replaced by the radiative surface temperature (Ts). It should
be noted that Ts is not strictly equal to Taero in Equation (4). The difference between these terms for
homogeneous and full-coverage vegetation is approximately 1–2 K [52], and it can reach 10 K in
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sparsely vegetative areas [53]. The method of Chen that corrects for this discrepancy by adding an
“excess resistance” rbh was used in this study [54]. The modified H can be specified as follows:

H = ρCp
Ts − Ta

rac + rbh
(5)

3.2. Temperature-Sharpening Methods Based on Statistical Relationships

The estimation of H is the most important and difficult step in the remote sensing-based
assessment of the surface energy balance, in which radiative surface temperature and dynamic
parameters play important roles. In this study, high-resolution vegetation index values from the
HJ-1B data were used to downscale the coarser MODIS LST values. Hence, we can correct the errors in
the heat flux caused by mixing by obtaining an “effective surface temperature” for use in the sensible
heat flux. Two different LST downscaling methods are introduced in the following sections.

3.2.1. The DisTrad Downscaling Method

The DisTrad method is a statistical temperature-sharpening method that assumes that the negative
correlation between NDVI and LST is invariant [1]. This method can combine high spatial resolution
HJ-1B data and high temporal resolution MODIS data to estimate ET or LE on regional scales and
over long periods [55]. The flow chart describing this method is shown in Figure 2 and is summarized
as follows:

(1) The HJ-1B NDVI data with a resolution of 30 m were aggregated to the 990 m resolution
of the NDVI data. We first selected a subset of pixels from the scene where NDVI is most
uniform at a pixel resolution of 990 m. Using the original NDVI data (NDVI30), the coefficient of
variation (CV; the standard deviation divided by the mean) is calculated among the 33 × 33 pixels
(1089 pixels in total) that make up each 990 m NDVI pixel (NDVI990).

(2) Next, the NDVI990 is divided into several classes (0 ≤ NDVI990 < 0.2, 0.2 ≤ NDVI990 < 0.5 and
0.5 ≤ NDVI990). A fraction (25%) of the pixels having the lowest CV were then selected from each
class. Lower CV values correspond to more homogeneous land surface values.

(3) The relationship between NDVI990 and T990 can be established using the selected pixels.
Theoretically, T990 can be calculated by NDVI990 via regression (Equation (6)).

T̂990(NDVI990) = a + b× NDVI990 + c× NDVI2
990 (6)

where T̂990(NDVI990) represents the LST value estimated using NDVI on the 990 m scale.
(4) The surface temperatures calculated using Equation (6) differ from the MODIS LST values

(T990) due to the influence of soil moisture and cannot be ignored. Based on the correlation
between NDVI and LST is invariant, the simulated high-resolution LST data (T̂30(NDVI30)) can
be calculated according to Equation (7) as follows:

T̂30(NDVI30) = a + b× NDVI30 + c× NDVI2
30 + ∆T̂990 (7)

where ∆T̂990 = T990 − T̂990 is the spatial variability due to the effects of soil moisture.
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3.2.2. GWR-based LST Downscaling Algorithm

GWR is an extension of traditional standard regression techniques, such as ordinary least squares,
that permits local (rather than global) parameter estimation [56]. It can be used to investigate
nonstationary relationships between the dependent variable and the independent variables using
geographically varying regression coefficients. The main objective of the GWR-based downscaling
algorithm is to address the spatially heterogeneous relationships between LST and the other land
surface parameters. According to the surface characteristics of the HRB and previous studies of this
area [19,23], NDVI, albedo and the digital elevation model (DEM) data were selected as auxiliary
variables for use in LST downscaling. DEM is recognized as an important factor in characterizing
variations in LST [23]. The surface albedo was selected because it influences the surface radiation
balance and is mostly negatively related to soil moisture over barren agricultural areas [19]. Because
longitude and latitude were the input parameters in the GWR model, these two parameters were not
explicitly selected as auxiliary variables in the LST downscaling process. The specific steps followed in
the GWR-based LST downscaling algorithm are shown in Figure 3. They are summarized as follows:

(1) Perform spatial aggregation of the NDVI, DEM and albedo values through pixel averaging.
NDVI30, DEM30 and albedo30 denote these variables at the pixel resolution of HJ-1B, whereas
NDVI990, DEM990 and albedo990 represent the aggregated variables at the pixel resolution
of MODIS.
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(2) Use GWR to establish a nonstationary relationship between T990 and NDVI990, albedo990, and
DEM990, which can be expressed as:

LST990
i = β990

0 (µi, vi) + β990
1 (µi, vi)NDVI990

i + β990
2 (µi, vi)albedo990

i + β990
3 (µi, vi)DEM990

i + ε990
i
(8)

where β990
0 (µi, vi), β990

1 (µi, vi) and β990
2 (µi, vi) represent the regression coefficients, and ε990

i
represents the residual.

(3) Use weighted least squares estimation to obtain the regression coefficients and the residuals
at a resolution of 990 m. The ordinary kriging interpolation method is used to interpolate the
regression coefficients and residuals to a resolution of 30 m. Ordinary kriging has been shown to
be reasonably accurate in LST downscaling [23].

(4) The final downscaled LST values at a resolution of 30 m can be calculated using the auxiliary
variables at a resolution of 30 m, i.e.,

LST30
i = β30

0 (µi, vi) + β30
1 (µi, vi)NDVI30

i + β30
2 (µi, vi)albedo30

i + β30
3 (µi, vi)DEM30

i + ε30
i (9)
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4. Results and Analysis

4.1. Accuracy Assessment of the LST Downscaling Results

The performance of the DisTrad downscaling method and the GWR-based LST downscaling
algorithm can be evaluated from qualitative and quantitative perspectives. The qualitative analysis
was performed by visual examination of the results. The quantitative analyses were performed using
the root mean square error (RMSE), the mean bias error (MBE), and the coefficient of determination (R2).
Figure 4 displays the spatial pattern of the LST data downscaled using DisTrad and GWR on 19 June
2012. For comparison, the spatial distribution of the MODIS LST is also shown. In comparison with
the MODIS LST, both the DisTrad- and GWR—downscaled LST data effectively enhance the spatial
resolution while preserving the characteristics and spatial distribution of the MODIS LST. Moreover,
the results of the two models provide a more detailed description of the spatial variability of the
thermal characteristics of the surface. However, a smoothing effect is observed in the LST downscaled
using GWR when compared to the DisTrad-estimated LST because the regression process is based on
the minimum mean square error (MMSE). Methods based on the MMSE tend to underestimate high
values and overestimate low values; thus, the predicted parameters are frequently smoothed [23,57].Remote Sens. 2017, 9, 836  11 of 29 
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Figure 4. Spatial distribution of (a) the MODIS LST; (b) the DisTrad downscaled LST; and (c) the GWR
downscaled LST on 19 June 2012.

The ground-based land surface temperature (TS) was calculated using the Stefan-Boltzmann law
from the AMS measurements of the longwave radiation fluxes [58]:

Ts =

[
L↑ − (1− εs)·L↓

εs·σ

] 1
4

(10)

where L↑ and L↓ are the in situ surface upwelling and atmospheric downwelling longwave radiation,
respectively, and εS is the surface broadband emissivity, which is regarded as the value of the HJ-1B
pixel corresponding to the AMS. Figure 5 shows the comparison of the LSTs obtained using the two
downscaling methods with the ground-based measurements of land surface temperatures. As seen
in Figure 5l, the R2, MBE and RMSE of the DisTrad downscaled LSTs are 0.83, 0.62 K and 2.59 K,
respectively, and these values reflect better results than those associated with the GWR downscaled
LSTs (0.82, 0.75 K, 2.66 K). On the whole, the differences between the two methods are not remarkable.
However, the method that displays better performance varies depending on the date examined. For
example, the GWR downscaled LSTs are better than the DisTrad downscaled LSTs on 19 June, 30 June,
13 September and 14 September, whereas DisTrad is superior to GWR on 8 July, 27 July, 3 August,
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15 August, 22 August, 29 August and 2 September. The reason for these differences between the two
techniques may be related to changes in land surface parameters (i.e., NDVI and albedo); the study
period covers the entire life cycle of plants, extending from when they begin to grow to when they
grow rapidly and eventually wither. The MBE difference between the DisTrad downscaled LSTs and
the GWR downscaled LSTs ranges from −0.49 K~0.2 K, and the RMSE difference is −0.47 K~0.42 K.
The results of the two methods vary substantially on 8 July and 29 August.
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To determine the reasons for the above phenomenon, we calculated the contributions of the
different independent variables to the LSTs on each date separately by calculating the normalized
regression coefficients [19]. The results are shown in Figure 6. The ability of the individual independent
variables to explain the LSTs determines the accuracy of the two methods. NDVI explains only 49.39%
and 47.09% of the LSTs on 19 June and 30 June, respectively, which is lower than the combination
of albedo and DEM. Therefore, the method of joining albedo and DEM used in GWR is better than
the DisTrad method. However, as the vegetation grows (see Figure 6 where the mean FVC starts to
increase), NDVI plays an increasingly important role. NDVI explains over 53.67% of the LSTs on 8 July,
27 July, 3 August, 15 August, 22 August and 29 August, whereas the total contribution from albedo and
DEM is only 15.20% to 46.33%. Thus, on these days, the downscaled LSTs produced by the DisTrad
method are more accurate. Afterwards, while the mature crops (in our study area, maize is the main
crop) gradually wither, the albedo and DEM explain over 66.61% of the LSTs. Therefore, the accuracy
of the GWR downscaled LSTs is better at this time. As seen in Figure 6, the percentage contribution of
albedo is higher on 3 August and 22 August (i.e., 26.03% and 26.89%, respectively) because irrigation
occurred on these two days. Irrigation increases soil moisture and cools the land surface. Because
albedo is mostly negatively related with soil moisture within barren agricultural areas [19], it displays
a larger influence over the results.Remote Sens. 2017, 9, 836  13 of 29 
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Figure 6. Percentage contribution of different independent variables. 
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Here, we use the stations SSW and GB to validate the downscaling results for bare land; station EC04 
was used to validate the downscaling results for buildings; station SD was used to validate the 
downscaling results for swampland; and the other stations were used to validate the downscaling 
results for vegetated areas. The assessments for the different land cover types are shown in Table 3. 

Table 3. Statistical measures of downscaling result of different land cover. 
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the opposite. The reason may be that NDVI is most suitable for vegetation monitoring within areas 
with moderate vegetation coverage [59], and it is considered unsuitable for studying areas with low 
vegetation coverage, such as urban build-up areas, where the detection capacity is only 30% [60]. The 
DisTrad downscaling results represent overestimates in areas covered with swampland (MBE > 0), 
whereas they are underestimates (MBE < 0) in areas covered by buildings and bare land. On the other 
hand, GWR displays higher accuracy (|MBE| < 0.1 K) in both regions. Two possible reasons can 
explain this phenomenon. First, swampland contain water bodies. However, the DisTrad 
downscaling model eliminates water bodies when constructing the regression function, and the 
presence of the secondary term can cause considerable interference in the downscaling results for 
areas covered by water, buildings and bare land [14]. Furthermore, the GWR-based algorithm 
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(NDVI, albedo and DEM) that is based on geographically varying regression coefficients [24]. 
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To further compare the downscaling results of these two methods for different objects, the
downscaling results were verified separately according to the dominant surface type at each site.
Here, we use the stations SSW and GB to validate the downscaling results for bare land; station
EC04 was used to validate the downscaling results for buildings; station SD was used to validate the
downscaling results for swampland; and the other stations were used to validate the downscaling
results for vegetated areas. The assessments for the different land cover types are shown in Table 3.

Table 3. Statistical measures of downscaling result of different land cover.

Land Cover
GWR DisTrad

R2 RMSE (K) MBE (K) R2 RMSE (K) MBE (K)

Swampland 0.81 2.62 −0.08 0.80 2.70 0.77
Buildings 0.85 1.91 0.08 0.78 2.43 −0.56
Bare land 0.88 1.95 0.06 0.87 2.11 −0.26

Vegetated areas 0.84 2.05 1.44 0.86 2.05 1.03
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Overall, the results of the DisTrad downscaling method for areas covered with swampland,
buildings and bare land are inferior to those of GWR, whereas the results in the vegetated areas are
the opposite. The reason may be that NDVI is most suitable for vegetation monitoring within areas
with moderate vegetation coverage [59], and it is considered unsuitable for studying areas with low
vegetation coverage, such as urban build-up areas, where the detection capacity is only 30% [60]. The
DisTrad downscaling results represent overestimates in areas covered with swampland (MBE > 0),
whereas they are underestimates (MBE < 0) in areas covered by buildings and bare land. On the other
hand, GWR displays higher accuracy (|MBE| < 0.1 K) in both regions. Two possible reasons can
explain this phenomenon. First, swampland contain water bodies. However, the DisTrad downscaling
model eliminates water bodies when constructing the regression function, and the presence of the
secondary term can cause considerable interference in the downscaling results for areas covered by
water, buildings and bare land [14]. Furthermore, the GWR-based algorithm includes a spatially
nonstationary relationship between LST and the other land surface parameters (NDVI, albedo and
DEM) that is based on geographically varying regression coefficients [24].

4.2. Validation of Heat Fluxes Calculated Using MODIS LSTs

Before comparing the two downscaled LSTs in calculating surface heat fluxes, we must verify the
LE model by comparing the remote sensing-estimated fluxes with the ground-based measurements. In
this section, the MODIS LSTs, which have a resolution of 990 m, are resampled to a spacing of 30 m
using the nearest neighbor method. The resampled LSTs and the surface VNIR variable, which have
resolutions of 30 m, are applied to the LE algorithm. Figure 7 provides the turbulent heat flux results
(which are termed the MODIS-LST heat fluxes) calculated using the MODIS LST data on 19 June 2012.
The spatial distribution of the turbulent heat fluxes is related to the underlying land cover. The LE
values are lower in areas covered by buildings and uncultivated land, including land patches in the
desert areas, barren areas, and Gobi regions, and they are higher in the water-covered and agricultural
areas within the oasis. Comparing Figure 7c,d, we see that the LE values (H values) of the barren
areas in the southwest are higher (lower) than those of the desert areas in the southeast. Because the
barren areas in the southwest border the Qilian Mountains, this result is due to snow melt and the
downward movement of water. Comparing the four maps, we see that Figure 7c,d display obvious
“boxy” anomalies, which are due to our direct use of the MODIS LSTs.

In recent years, many researchers have employed the footprint model in validating remote
sensing-based LE estimates. When combined with the flux contribution source areas, this model
solves the problems associated with mismatches between observed values and remote sensing-based
estimates and leads to better results [61–63]. In this study, we employ a user-friendly tool that is based
on the Eulerian analysis flux footprint model proposed by Kormann and Meixner (2001) to calculate
the footprints of the function parameters [63,64]. Based on the relative weights of the pixels in which
the source area is located, we determine the remote sensing-based estimates with the same spatial
representation range as the observed values. The results of the footprint validation are shown in
Figure 8 and Table 4. The R2, MBE, and RMSE values of LE are 0.75, −59.78 W·m−2, and 73.15 W·m−2,
respectively, and those of H are 0.63, 38.90 W·m−2, and 77.26 W·m−2, respectively. The accuracy of
LE is impacted by Rn, surface G, and H, because it is calculated as a residual term. All of the input
parameters may contribute to the error in LE; these errors are discussed in Section 4.4.
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Table 4. Validation results of MODIS-LST heat fluxes.

Date
MODIS-LST-H (W·m−2) MODIS-LST-LE (W·m−2)

R2 MBE RMSE R2 MBE RMSE

19 June 0.29 57.71 59.86 0.67 −57.65 55.40
30 June 0.60 31.49 55.14 0.79 −52.16 84.54
8 July 0.59 51.23 84.16 0.81 −55.83 92.02
27 July 0.65 53.20 78.70 0.85 −70.41 95.93

3 August 0.44 62.78 80.48 0.70 −83.98 61.39
15 August 0.36 32.10 75.84 0.76 −54.16 95.90
22 August 0.36 57.55 84.52 0.71 −68.77 55.43
29 August 0.58 54.11 74.01 0.79 −87.93 60.29

2 September 0.36 −35.55 75.72 0.57 14.75 71.48
13 September 0.35 −41.93 92.41 0.37 −21.24 55.42
14 September 0.37 28.81 79.29 0.36 −46.34 61.40

overall 0.63 38.90 77.26 0.75 −59.78 73.15

As shown in Figure 8, the majority of the LE values are large because June, July, August,
and September constitute the growing season, when soil moisture is adequate and ET is strong.
ET leads to substantial reductions in air temperature; thus, the surface and air temperature gradient
is small, leading to low values of H. The points with small LE values are influenced by uncultivated
land. Within our study area, the barren areas, desert areas and Gobi regions make up the uncultivated
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land. The points in the scatterplot with large H values represent desert areas [24], where the H values
reach approximately 300 W·m−2. We also note that some points in the H scatterplot are less than zero,
possibly due to the oasis effect or irrigation.
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4.3. Compare of Heat Fluxes Calculated Using Different LST Datasets

To determine which of the LST downscaling methods is more suitable for calculating the subpixel
surface heat fluxes, the downscaled LSTs obtained using the DisTrad and GWR methods were used
to calculate the surface heat fluxes (here, we call these heat fluxes the DisTrad-LST and GWR-LST
heat fluxes, respectively). These three methods were evaluated using (1) validation of the heat
fluxes calculated with different LST downscaling methods using ground-based observational data
and (2) quantitative analysis based on the spatial distribution and scatterplots of the energy balance
components (i.e., H and LE).

4.3.1. Validation of the DisTrad-LST and GWR-LST Heat Fluxes

Table 5 provides the in situ validation results of H and LE calculated using the DisTrad downscaled
LSTs and the GWR downscaled LSTs. Compared to the validation results of the MODIS-LST heat fluxes
in Table 4 and Figure 8, the DisTrad-LST heat fluxes display better retrieval accuracy than the GWR-LST
heat flux, and the GWR-LST heat fluxes are generally better than the MODIS-LST heat fluxes. Also,
the GWR-LST heat fluxes and the DisTrad-LST heat fluxes are both better than the MODIS-LST heat
fluxes on all of the days examined; moreover, the MBE and RMSE values decreased and the R2 values
increased on most days. Using the data collected on 19 June as an example, the spatial distributions of
H and LE calculated using the GWR-LST and DisTrad-LST are shown in Figure 9. Based on Figure 9,
Figure 7c,d, the results obtained using the GWR-LSTs and DisTrad-LSTs are synoptically smoother than
the MODIS-LST results; no “boxy” anomalies like those shown in Figure 7c,d are present. Because the
GWR-LST heat fluxes and DisTrad-LST heat fluxes consider the heterogeneity of surface temperatures
that could be a significant source of error in the LE models, the differences among the three heat
fluxes result mainly from the differences between the sharpened LSTs and resampled LSTs of the
subpixels at a resolution of 30 m. For example, the boundary between the oasis and uncultivated
land becomes a belt of intermediate H and LE values because these mixed pixels include uncultivated
land and vegetation. However, the temperatures of the mixed pixels in the coarse-resolution image
(which shows the MODIS LSTs) are replaced by a single value. This result neglects the significant
differences in the subpixel temperatures.
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Table 5. Validation results for the DisTrad-LST and GWR-LST heat fluxes.

Date
GWR-LST-H (W·m−2) GWR-LST-LE (W·m−2) DisTrad-LST-H (W·m−2) DisTrad-LST-LE (W·m−2)

R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE

19 June 0.48 42.25 50.73 0.77 −52.60 46.05 0.44 44.48 54.26 0.75 −55.32 50.24
30 June 0.68 21.57 47.84 0.79 −40.65 81.01 0.67 23.22 48.69 0.79 −42.71 82.20
8 July 0.65 40.22 76.59 0.81 −44.22 91.87 0.67 26.57 72.65 0.81 −27.89 92.50
27 July 0.68 34.22 65.88 0.86 −50.86 81.81 0.67 33.71 66.13 0.84 −49.54 84.35

3 August 0.42 48.83 64.82 0.67 −68.88 49.11 0.44 45.30 61.60 0.71 −65.03 44.42
15 August 0.41 21.48 70.59 0.76 −42.67 91.76 0.41 18.82 68.20 0.76 −39.74 90.18
22 August 0.42 40.85 70.82 0.73 −50.27 43.15 0.43 35.74 68.32 0.72 −44.76 43.53
29 August 0.65 42.69 65.61 0.80 −75.42 53.66 0.70 30.44 57.71 0.80 −61.00 45.45

2 September 0.39 −27.66 68.57 0.59 8.12 54.35 0.40 −26.16 66.25 0.59 6.36 52.04
13 September 0.37 −36.46 77.01 0.42 −5.14 49.67 0.38 −37.90 86.83 0.34 −3.57 61.06
14 September 0.38 16.01 68.17 0.41 −33.41 52.40 0.38 23.00 79.91 0.33 −40.64 62.01

Overall 0.66 6.69 51.32 0.75 −26.52 47.38 0.68 3.66 49.03 0.76 −23.17 45.84Remote Sens. 2017, 9, 836  17 of 29 
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Inhomogeneity is an inherent property of the Earth’s surface parameters. Because of its complexity,
this heterogeneity can seriously affect the accurate acquisition of land surface heat fluxes, and it is
one of the main factors that cause various surface parameters to change with scale [65,66]. Landscape
inhomogeneity can be classified using two conditions: nonlinear vegetation density variations between
subpixels (e.g., different types of vegetation mixed with each other) and coarse pixels containing
different landscapes (e.g., vegetation or bare soil mixed with areas covered by buildings or water).
To evaluate the effects of LST, stations EC04, EC15, and EC11, which display a typical severely
heterogeneous surface, a uniform surface, and a weakly heterogeneous surface, respectively, were
selected to analyze the heat fluxes calculated using the results of different LST downscaling methods.
EC04 is used as an example because its land cover displays a complex pattern. Table 6 compares the
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turbulent heat fluxes calculated using the MODIS-LST, GWR-LST and DisTrad-LST methods. For
EC04, the LE calculated using the GWR-LST is more consistent with the in situ measurements than the
LE calculated using the MODIS-LST; the MBE and RMSE are much smaller, the R2 is larger, and the
MBE improves by 30.67 W·m−2. However, the LE calculated using the DisTrad-LST is more accurate
than the LE calculated using the GWR-LST. For EC15, the differences between the three methods were
small; however, the LE calculated using the GWR-LST is more accurate than the LE calculated using
the MODIS-LST and DisTrad-LST for EC11. The reason is related to the land cover types within the
flux contribution source area, which we discuss in Section 4.3.2.

Table 6. Comparison of the turbulent heat flux results at EC04, EC15 and EC11.

Variable
MODIS-LST (W·m−2) GWR-LST (W·m−2) DisTrad_LST (W·m−2)

R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE

EC04-H 0.17 −93.54 96.64 0.28 −74.57 78.18 0.29 −70.01 74.23
EC04-LE 0.47 68.74 77.05 0.56 38.07 48.98 0.55 28.77 45.86

EC15-H 0.53 57.17 75.43 0.76 55.51 71.96 0.66 48.73 69.50
EC15-LE 0.93 −51.86 70.99 0.95 −48.82 68.60 0.92 −48.28 65.10

EC11-H 0.11 34.10 82.28 0.25 −6.36 57.61 0.21 7.11 57.11
EC11-LE 0.39 −50.12 86.96 0.53 −15.23 76.88 0.46 −31.52 51.64

We also note that the difference in MBE between the heat fluxes determined from the downscaled
LSTs and the MODIS-LSTs is larger at EC04 and EC11 than EC15. Figure 10 shows that the classes
and temperatures of 10 × 10 subpixels at 30 m correspond to the pixels within the MODIS pixels,
which have a resolution of 990 m, at the EC tower. After temperature sharpening, the distribution
of temperatures at a resolution of 30 m agrees with the classification. EC04 shows the temperature
sharpening resulting from different methods on 19 June. The temperature retrieved at the MODIS
resolution was 305.24 K. Compared with the in situ measurement of 314.04 K, the temperature was
underestimated at a resolution of 990 m. The mean value of LE calculated using the MODIS-LST of the
10 × 10 subpixels was 342.22 W·m−2, and the H was 158.96 W·m−2. However, when substituting the
downscaled LST into the LE model, the DisTrad-LST LE was 364.79 W·m−2, and the GWR-LST LE was
372.08 W·m−2, respectively, indicating that the errors caused by surface temperature nonuniformity
cannot be ignored in the second landscape inhomogeneity condition.

The land surface of EC15 is uniform and consists of pure pixels covering maize fields.
Consequently, the temperature distribution at a resolution of 30 m was very homogeneous, and
the ranges of the LST obtained using both downscaling methods displayed a range of 1.5 K. The
temperature observed through in situ measurements was 301.99 K. For comparison, the temperature
retrieved at the MODIS resolution was 302.94 K. The mean LE calculated using the MODIS-LST,
DisTrad-LST and GWR-LST were 281.14 W·m−2, 287.05 W·m−2 and 287.95 W·m−2, respectively. For
homogeneous areas, the differences among the three methods were not large (within 8 W·m−2).
The weakly heterogeneous land surface at EC11 contained barley and maize, and it displays the
first condition of heterogeneity (i.e., nonlinear vegetation density variations among subpixels). The
mean LE values calculated using the MODIS-LST, DisTrad-LST and GWR-LST were 585.45 W·m−2,
602.82 W·m−2 and 605.41 W·m−2, respectively. The improvements in H and LE by the temperature
sharpening were not obvious as the improvements at EC04, which contains a totally different landscape.
At EC11, the range of temperature-sharpening results is 1.6 K. The mean temperatures retrieved using
the MODIS-LST, DisTrad-LST and GWR-LST were 300.66 K, 299.40 K and 299.69 K, respectively, and the
observed ground-based temperature was 297.83 K. Hence, the LE differences between the DisTrad-LST
LE and GWR-LST LE are small. However, compared to MODIS-LST, temperature sharpening can still
decrease the heterogeneity that results from thermal dynamics.
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4.3.2. Comparison of the DisTrad-LST and GWR-LST Heat Fluxes

Based on Table 5, the MBE ranges of H and LE associated with the DisTrad-LST method and the
GWR-LST method are −13.65 W·m−2~6.99 W·m−2 and −7.23 W·m−2~16.32 W·m−2, respectively. The
GWR-LST heat fluxes are better than the DisTrad-LST heat fluxes on 19 June, 30 June, 13 September and
14 September, whereas the DisTrad-LST heat fluxes are superior to the GWR-LST heat fluxes on 8 July,
27 July, 3 August, 15 August, 22 August, 29 August and 2 September. The results obtained here are
consistent with the results of the LST comparison because LST is the only difference between the two
methods used to calculate the flux. To achieve an improved understanding of the spatial distribution
of the differences between the three heat fluxes, we performed a scatterplot analysis by selecting
1000 × 1000 subpixels on 19 June as an example. The results are shown in Figure 11. Comparing the
downscaled LST heat fluxes with those obtained from the MODIS-LST, it can be seen that the bias of LE
estimation inside the oasis, Gobi, and desert areas is relatively small (pixels with a relatively large bias
are covered with a red triangle on the left side of Figure 11, and the corresponding spatial distributions
are marked in red on the right side of Figure 11). In those areas, the surface structure is very similar,
resulting in a more uniform temperature distribution. However, where substantial discontinuities in
land cover type, surface structure, or soil moisture occur (dry and wet areas, as well as areas with
dense and sparse vegetation, appear together in many situations, such as at the boundaries between
the oasis, the desert and the Gobi areas), the errors could be significant because of discontinuities in the
LE model and its parameters. This phenomenon can be noted in Figure 11, where the pixels marked
in red are mainly located in the boundary areas. Thus, in complex areas, we cannot directly use the
MODIS-LST to calculate the regional LE, because the surface temperatures of these regions are either
ignored or exaggerated in the low-resolution MODIS mixed pixels; thus, we cannot use a single value
instead of the subpixel values. Comparing Figure 11b,d, we find that the red points obtained with
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the DisTrad-LST are much greater in number than those obtained with the GWR-LST (these points
mainly indicate building areas within the oasis). The reason is that the regression relationship used in
the DisTrad downscaling method is based on hierarchical pure pixels. Moreover, it assumes that the
LST-NDVI relationship is stationary in space, but that is not the case [19,22]. The DisTrad downscaling
method also tends to overestimate the LST of subpixels within cooler landscapes and to underestimate
the LST of subpixels for warmer areas [1].
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Figure 11. Comparison of LE values obtained using the three methods. (a) Scatterplot between GWR-
LST-LE and the MODIS-LST-LE (b) Spatial distributions are marked in red; (c) Scatterplot between 
DisTrad-LST-LE and the MODIS-LST-LE (d) Spatial distribution are marked in red; (e) Scatterplot 
between DisTrad-LST-LE and the GWR-LST-LE (f) Spatial distribution are marked in red. 
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occurred in SD on 14 September, and the DisTrad-LST are better than the GWR-LST. However, in 
Section 4.1, we verify that the LST of DisTrad in areas covered by swampland are higher than the 
observed values. The reason is that we use the footprint model to validate the heat fluxes, and the 
verification result is determined by the contribution source area. Even at the same station, which of 
the two methods is better changed over time. For example, at EC11, the GWR-LST LE are better than 
the DisTrad-LST LE on 19 June and 30 June, but the opposite pattern occurs on 13 September. The 
reason may be related to the underlying surface type of the flux contribution source area. According 
to the calculation principle of the footprint model [63,64], the flux contribution source area is closely 
related to the wind speed and wind direction, and the wind speed and wind direction at the same 
station on different dates are likely to be different. To confirm this, we calculated Shannon’s diversity 
index (SHDI) of the flux contribution source area (see Table 7). SHDI reflects the heterogeneity of a 
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Figure 11. Comparison of LE values obtained using the three methods. (a) Scatterplot between
GWR-LST-LE and the MODIS-LST-LE (b) Spatial distributions are marked in red; (c) Scatterplot
between DisTrad-LST-LE and the MODIS-LST-LE (d) Spatial distribution are marked in red;
(e) Scatterplot between DisTrad-LST-LE and the GWR-LST-LE (f) Spatial distribution are marked
in red.
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The differences between the GWR-LST LE and the DisTrad-LST LE occurred mainly at the
boundaries between oasis and water areas and uncultivated land (see Figure 11f). To analyze these
differences further, we calculated the differences between the two methods at each site. Table 7
shows the information for sites that display differences between the two methods that are greater
than 40 W·m−2. Table 8 shows the site information for small differences between the two methods.
The difference between GWR-LST LE and DisTrad-LST LE is −63.51 W·m−2~79.72 W·m−2. The
biggest difference occurred in SD on 14 September, and the DisTrad-LST are better than the GWR-LST.
However, in Section 4.1, we verify that the LST of DisTrad in areas covered by swampland are higher
than the observed values. The reason is that we use the footprint model to validate the heat fluxes, and
the verification result is determined by the contribution source area. Even at the same station, which
of the two methods is better changed over time. For example, at EC11, the GWR-LST LE are better
than the DisTrad-LST LE on 19 June and 30 June, but the opposite pattern occurs on 13 September. The
reason may be related to the underlying surface type of the flux contribution source area. According
to the calculation principle of the footprint model [63,64], the flux contribution source area is closely
related to the wind speed and wind direction, and the wind speed and wind direction at the same
station on different dates are likely to be different. To confirm this, we calculated Shannon’s diversity
index (SHDI) of the flux contribution source area (see Table 7). SHDI reflects the heterogeneity of a
landscape, and it is sensitive to unbalanced distributions of various patches. In our paper, patches
means different types of land use. SHDI also reflects the complexity and variability of each landscape
patch type [67]. It was calculated using the following formula:

SHDI = −
m

∑
i=1

(Pi × lnPi) (11)

where Pi is the area ratio of the i th patch type in the entire landscape, and m is the number of patch
types. SHDI = 0 indicates that the entire landscape consists of only one patch type. The main patch
type in our study area include maize, spring wheat, barley, other crop, buildings and uncultivated
land. The values of SHDI are shown in Tables 7 and 8.

Table 7. The site information for relatively large differences between the two methods.

Station Date EC-LST
(K)

GWR-LST
(K)

DisTrad-LST
(K)

EC-LE
(W·m−2)

GWR-LST-LE
(W·m−2)

DisTrad-LST-LE
(W·m−2)

Better
Method

Difference
(W·m−2) SHDI

EC11 30 June 296.98 300.42 301.82 635.22 587.54 538.69 GWR-LST −48.85 1.13
EC11 19 June 295.00 303.12 304.69 531.46 459.71 396.21 GWR-LST −63.51 1.06

SD 8 July 306.55 302.32 301.57 533.51 565.06 609.94 GWR-LST 44.88 0.97
SD 27 July 297.14 300.72 301.20 564.5 526.47 482.10 GWR-LST −44.37 0.91

EC14 13 September 294.87 295.67 293.26 207.23 271.51 316.02 GWR-LST 44.51 0.81
EC09 8 July 302.79 300.22 298.89 564.90 601.46 644.33 GWR-LST 42.87 0.79
EC15 8 July 298.26 300.88 299.26 620.95 539.12 598.76 DisTrad-LST 59.64 0.75
EC03 3 August 304.06 304.24 305.91 590.97 599.10 554.51 GWR-LST −44.59 0.75

SD 15 August 301.37 302.18 301.42 477.30 413.73 462.44 DisTrad-LST 48.71 0.74
EC01 30 June 303.79 304.79 306.16 455.24 406.19 352.46 GWR-LST −53.73 0.74

SD 14 September 297.70 301.05 299.16 344.36 291.23 370.96 DisTrad-LST 79.73 0.68
EC11 13 September 294.85 291.77 293.47 160.29 259.60 215.54 DisTrad-LST −44.06 0.65
EC02 13 September 295.42 294.07 295.46 250.64 339.77 286.76 DisTrad-LST −53.01 0.61
EC13 13 September 294.90 293.30 294.68 257.45 344.47 300.82 DisTrad-LST −43.65 0.59
EC15 13 September 294.11 295.96 294.28 307.72 202.60 272.95 DisTrad-LST 70.35 0.00

Compared to the measured values, the GWR-LST LE is always better than the DisTrad-LST LE
when the SHDI value is high (>0.74). In such cases, the footprint area contains three or more different
types of objects. Combined with specific surface types, we find that this situation belongs to the
second condition of heterogeneity. At EC11 on 30 June, EC14 on 13 September, and EC09 on 8 July, the
footprint area contains buildings (the proportions of buildings were 7.34%, 2.56%, 1.52%, respectively)
and three types of vegetation. The SHDI values at EC03 on 3 August and EC01 on 30 June are lower
than those of the site described earlier, because the footprint area is composed of only two types
of vegetation and buildings (the proportions of buildings were 4.06% and 7.87%, respectively). At
EC11 on 19 June, SD on 8 July and SD on 27 July, SHDI is high, but its underlying surface did not
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contain buildings, and the GWR-LST LE is still better than the DisTrad-LST LE because the footprint
area at EC11 on 30 June contains bare land and SD on 8 July and 27 July contains water. When the
underlying surface is very complex (i.e., it contains buildings or bare land and water), the probability
that the DisTrad method will choose such a pixel to establish the regression equation is very small
or even zero. Thus, the downscaled LSTs obtained using the DisTrad method for these pixels are
unstable. However, the GWR-based algorithm includes a spatially nonstationary relationship between
the LST and other land surface parameters (NDVI, albedo and DEM) based on geographically varying
regression coefficients. In contrast, the GWR-based method takes into account a greater number of
independent variables that can effectively express the distribution of surface thermal dynamics. The
DisTrad-LST LE is better than GWR-LST LE when the SHDI value lies between 0.59 and 0.75. In
this case, the footprint area contains a mixture of three or fewer different types of vegetation, and
in vegetated areas, the LSTs obtained using the DisTrad downscaling method are superior to those
produced by the GWR downscaling method (see Table 3). At EC11 on 13 September, the footprint area
contains two types of vegetation which is maize and other crop. However, at EC15 on 13 September,
SHDI = 0 and the footprint area contains only one type of vegetation. In this case, the DisTrad-LST
LE is much better than the GWR-LST LE. Because the observation system at EC15 was a superstation
with a 40-m-tall tower, the sensor may receive radiation from the tower, resulting in an overestimated
albedo and eventually leading to the LSTs being overestimated. For example, at EC15 on 8 July
and 13 September, the GWR-LSTs are significantly overestimated compared to the EC-LSTs and the
DisTrad-LSTs. Based on Equations (2)–(4), Rn and G are underestimated, whereas H is overestimated.
Thus, in conjunction with Equation (1), the GWR-LST LE is significantly lower than the other two.
However, in most cases, when the SHDI value is low (less than 0.2) and the underlying surface of
the footprint area contains a single land cover type, the difference between the two methods is less
than 10 W·m−2.

Table 8. The site information for small differences between the two methods.

Station Date EC-LST
(K)

GWR-LST
(K)

DisTrad-LST
(K)

EC-LE
(W·m−2)

GWR-LST-LE
(W·m−2)

DisTrad-LST-LE
(W·m−2)

Better
Method

Difference
(W·m−2) SHDI

EC02 22 August 298.05 300.82 300.70 501.12 395.98 404.83 DisTrad-LST 8.85 0.19
EC12 27 July 300.53 300.47 300.26 587.07 572.50 580.31 DisTrad-LST 7.81 0.18
EC09 15 August 300.83 300.60 300.28 539.79 540.33 548.89 GWR-LST 8.56 0.15
EC02 19 June 301.40 304.69 304.59 502.00 372.76 380.41 DisTrad-LST 7.65 0.15
EC17 2 September 293.94 293.87 292.99 377.96 484.66 492.01 GWR-LST 7.35 0.15
EC18 30 June 310.05 310.68 310.16 192.94 161.38 169.03 DisTrad-LST 7.65 0.14
EC14 8 July 298.82 300.44 299.51 604.66 565.09 572.43 DisTrad-LST 7.34 0.14
EC05 14 September 297.53 298.87 297.07 260.87 278.14 270.8 DisTrad-LST −7.34 0.14
EC13 19 June 302.36 305.55 304.96 442.96 310.25 319.07 DisTrad-LST 8.82 0.13
EC18 8 July 311.35 314.64 314.63 146.48 140.93 148.20 DisTrad-LST 7.27 0.00
SSW 15 August 315.29 314.42 314.59 164.55 158.74 166.00 DisTrad-LST 7.26 0.00
SSW 30 June 316.89 314.71 314.20 184.81 192.14 199.33 GWR-LST 7.19 0.00
EC10 3 August 304.10 304.96 304.61 610.29 584.58 591.67 DisTrad-LST 7.09 0.00
SSW 22 August 314.85 315.02 315.70 196.74 55.15 48.04 GWR-LST −7.11 0.00
EC07 2 September 292.64 293.19 293.41 427.55 422.21 414.95 GWR-LST −7.26 0.00

4.4. Error Analysis

Many sources of error are unavoidable. Examples of these unavoidable sources of error include
the calibration coefficients of the CCDs onboard the HJ-1B satellite and drifts in the IRS because of
aging of the instruments; mismatches in the timescales of the EC data, which are averaged over time,
and the remotely sensed turbulent heat fluxes, which are instantaneous; and the geometric corrections
cause a half-pixel bias equal to or less than the deviation of the artificially subjective interpretation. LE
is calculated as a residual item in the energy balance equation, whereas the errors of other three energy
balance components accumulate in the LE term.

4.4.1. Errors from Rn and G

Since G is calculated from Rn, this paper mainly analyzes the errors associated with Rn. According
to a sensitivity analysis of Equation (2), Rn is highly sensitive to Rs ↓ and RL ↓ , whereas the albedo
and εs are less influential. The station validation results of Rs ↓ and RL ↓ are shown in Table 8. The R2,
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MBE and RMSE values of Rs ↓ were 0.81, 13.80 W·m−2, and 25.35 W·m−2, respectively. The accuracy
of SSW is low. Because cloudy conditions occurred briefly on 27 July, few ground observations were
obtained, and Rs ↓ was significantly overestimated. After removing these data, the R2, MBE and
RMSE values of Rs ↓ were 0.87, 10.90 W·m−2, and 21.13 W·m−2, respectively.

On overall, the R2, MBE and RMSE values of RL ↓ were 0.73, 0.28 W·m−2, and 21.24 W·m−2,
respectively. As seen in Table 9, the accuracies at SD and SSW were low. The low accuracies at the SD
station potentially resulted from high humidity, which resulted in low at-nadir brightness temperatures
and low retrieved RL ↓ . The models use surface temperature when estimating RL ↓ to approximate
or substitute the near-surface temperature [24], and the inaccuracy of the SSW LST may influence the
RL ↓ results.

Table 9. The station validation results of Rs ↓ and RL ↓ .

Date
Downward Shortwave Radiation Rs ↓ (W·m−2) Downward Longwave Radiation RL ↓ (W·m−2)

R2 MBE RMSE R2 MBE RMSE

EC01 0.97 25.23 27.73 0.85 4.16 17.21
EC02 0.84 28.29 33.57 0.88 0.11 14.23
EC03 0.97 17.56 19.25 0.91 −18.65 20.88
EC04 0.98 6.07 9.34 0.88 3.36 16.38
EC05 0.98 10.60 12.29 0.88 −0.79 15.02
EC06 0.93 27.68 30.71 0.84 2.55 15.43
EC07 0.89 −17.69 27.59 0.75 −5.90 19.72
EC08 0.83 15.63 25.50 0.80 −1.35 17.49
EC09 0.96 −2.27 9.96 0.86 10.44 17.99
EC10 0.94 −3.50 11.97 0.87 7.98 16.05
EC11 0.90 30.11 33.76 0.93 −2.72 10.55
EC12 0.96 24.35 26.43 0.87 −0.84 14.80
EC13 0.93 12.41 17.92 0.86 −7.28 15.98
EC14 0.98 32.40 33.49 0.82 4.07 16.42
EC15 0.94 26.71 29.71 0.85 17.67 23.06
EC17 0.94 −20.25 24.54 0.90 −1.11 12.87

SD 0.98 5.70 13.82 0.85 −26.54 34.08
SSW 0.63 18.51 34.93 0.85 25.33 34.50
GB 0.89 25.34 30.63 0.88 9.50 27.82

Overall 0.81 13.80 25.35 0.73 0.28 21.24

4.4.2. Errors from H

Based on Equations (1)~(4), it can be seen that the four energy balance components are related
to LST. Because LE is calculated as a residual term in the energy balance equations, the sensitivity of
Rn, G and H to LST was analyzed first. However, except for LST, land surface variables, including
canopy height, FVC, and LAI, and meteorological variables, including wind speed, air temperature,
and relative humidity, are also the important factors for a sensitivity analysis of H. Figure 12 presents a
sensitivity analysis for Rn, G and H. In this case, LST is 304 K, and it ranges from 297.5–311 K with
a step size of 0.5 K; moreover, LAI ranges from 0.1–2.5 with a step size of 0.1. The canopy height is
0.69 m, and it ranges from 0.1–1.3 m. The wind speed ranges from 0.34–4.25 m·s−1, the air temperature
Ta = 297.11 K, FVC = 0.54, and the relative humidity RH = 35.43%. In addition, the land cover is maize.

The air pressure is stable over short periods and has little effect on the LE results. Although H
is sensitive to meteorological variables, such as wind speed (see Figure 12) and air temperature,
the meteorological data used in the LE model are derived from ground observations; thus,
the meteorological factors are relatively accurate. As shown in Figure 12, LAI, LST, and the canopy
height are influential variables. H is sensitive to LAI when it is less than 1. The momentum roughness
length increases as LAI increases, and the turbulent exchange is enhanced. However, when LAI is
greater than 1, the plant canopy is regarded as a continuum that is not a sensitive variable. Because
our study area is dominated by agriculture and the study period extended from June to September, the
crops in the middle reaches of the HRB grew quickly; thus, LAI was usually greater than 1. Hence,
LST and canopy height are the main sources of error.
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(1) Errors in LST. As shown in Figure 12, Rn and G are not very sensitive to LST, but H is more
sensitive to LST. A 1 K bias in LST would result in an error in H of 18.86%, whereas the corresponding
errors in Rn and G are both only −0.96%. Therefore, in this paper, the LST is mainly affected by
the impact of H on the role of LE. However, as we mentioned in Section 3.1, H depends on the
temperature gradient between the surface and the atmosphere. Hence, the sensitivity of the LST is
unstable and depends on the strength of the turbulence. The strength of the turbulence determines the
mass and energy transport and the resistance to heat transfer, which influences the sensitivity to the
LST. A weaker turbulence corresponds to a weaker LST sensitivity and vice versa.

(2) Errors in canopy height. The canopy height was obtained from a phenophase and classification
map. Thus, the accuracy of the canopy height depends mainly on the plant growth state and the
classification accuracy. Even within the same region, the canopy height of a crop can differ due to
differences in seeding times and soil attributes, such as soil moisture and fertilization. For example,
the orchard land use type was present at EC17; however, on our land use type classification map, the
land use at EC17 was other crops, which includes orchards and vegetables. Thus, it was difficult to
set the canopy height. In our study area, the canopy heights of orchards were approximately 4 m,
most of the other crops were vegetables, which had a canopy height of 0.2 m. Hence, a value of 0.2 m
would lead to an overestimate in LE. The LE estimates with incorrect canopy heights and the correct
orchard canopy heights at EC17 are shown in Table 10. The LE-I relative error indicates the relative
error between the LE obtained using the incorrect canopy height and the observed LE and is expressed
as ((LE obtained using the incorrect canopy height)-(EC-LE))/(EC-LE) × 100%. Moreover, the LE-C
relative error is the relative error between the LE from correct canopy height and the observed LE
and is expressed as ((LE obtained using the correct canopy height)-(EC-LE))/(EC-LE) × 100%. Days
with large LST biases were removed, and the bias between the model results and the ground-based
observations decreased.
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Figure 12. Sensitivity analysis of the surface variables for the energy balance components. 

Table 10. The results of the canopy height error analyses at EC17. 
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Table 10. The results of the canopy height error analyses at EC17.

Date EC-LE
(W·m−2)

LE Obtained Using the
Incorrect Canopy
Height (W·m−2)

LE-I
Relative
Error (%)

LE Obtained Using the
Correct Canopy Height

(W·m−2)

LE-C Relative
Error (%)

8 July 567.64 626.41 10.35 554.08 −2.39
27 July 541.33 614.41 13.50 529.03 −2.27

15 August 499.62 587.00 17.49 538.24 7.73
2 September 377.96 514.52 36.13 449.05 18.81

Notes: The correct orchard canopy heights are obtained from the actual measurement.

5. Discussion

Because HJ-1B has a single thermal channel, and single-channel LST retrievals may be unstable [1],
we have not used the LST retrieved by HJ-1B to perform comparisons. As shown in Section 4.3,
the direct use of MODIS-LST calculation results is ill-founded and causes obvious “boxy” anomalies in
estimates of LE. In contrast, the temperature-sharpening algorithms used to estimate the GWR-LSTs
and the DisTrad-LSTs are capable of decreasing the effects of the heterogeneity of the LST, which
is consistent with results from previous studies [1,24]. However, the following problems require
further analysis.

(1) In this paper, LST is derived from MODIS and NDVI uses 30 m information from the VNIR
bands of HJ-1B. When LST and NDVI are derived from different sensors, inter-sensor calibration
should be completed; the comparison of the thermal images across sensors is complex, due to the
differences in the instantaneous field of view, the swath width, the orbital geometry, the spectral
response functions and the overpass times [68].

(2) We use a one-source energy balance model when estimating LE. As discussed in Section 4.4.2,
the accuracy of the estimated canopy height greatly influences the estimated turbulent heat flux. The
canopy height is known a priori based on phenophase classifications and influences the accuracy of
the surface roughness calculation. Multi-source remote-sensing data, such as active microwave and
LiDAR data, could be used to obtain canopy heights [24], which would decrease the dependence on
the accuracy of the classification. In addition, to correct the discrepancies between the remotely sensed
radiative surface temperatures and the aerodynamic temperatures at the source of heat transport, a
brief and well-performed parameterization scheme (under a uniform and flat plant surface) including
excess resistance was used to calculate the aerodynamic resistance to heat transfer [24]. Since the
surface of the HRB is very heterogeneous, multiple parameterization methods should be compared to
select the optimum method.

(3) The energy balance closure has a significant influence on the evaluation of the model-estimated
heat flux values. In this paper, the EC energy balance closure ratio was greater than 0.75. Studies have
shown that extension of the averaging time [69], uncaptured low-frequency eddies [70], and the lack
of an accurate accounting of heat storage terms [71], among other potential causes, may lead to these
energy imbalances. The residual closure technique and the conserving Bowen ratio are often used to
force the energy balance. We chose the former method because the conserving Bowen ratio method
yields irrational sensible heat fluxes, due to the small or negative Bowen ratios that occur in oasis and
desert environments [24]. The energy balance closure is problematic at times for turbulent flux systems
and tends to be associated with significant discrepancies in LE [72].

6. Conclusions

In this paper, by using remote sensing data from multiple sources (i.e., MODIS and HJ-1B) and
combining the advantages of different data types in terms of their spatial and temporal resolution,
we enhance the accuracy of the estimated LE. The DisTrad downscaling method and the GWR-based
downscaling algorithm have been shown to be effective in obtaining the surface temperatures within
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MODIS subpixels. However, the two methods have different advantages that depend on the descriptive
ability of the independent variables at different times.

Compared to the turbulent heat fluxes calculated using different LST datasets, the direct use of
MODIS LST approach does not consider LST heterogeneity at all, which causes significant errors in the
latent heat flux (i.e., the mean bias error is −59.78 W·m−2), especially in the boundary areas and for
mixed pixels. The errors obtained using DisTrad-LST LE and GWR-LST LE were −23.17 W·m−2 and
−26.52 W·m−2, respectively, and are less than that of MODIS LST based on the footprint validation
results. However, this error is non-negligible. Additionally, it also shows that both LST downscaling
methods can decreases the thermodynamic uncertainty caused by the land surface. As we discussed,
although there are a lot of uncertainties in this paper, the differences between the turbulence heat
fluxes calculated using two downscaling methods is only LST. Compared to DisTrad-LST LE and
GWR-LST LE, the differences between the two methods occur in areas where the pattern of the surface
types within the flux contribution source area is complex. The SHDI value can reflect the landscape
heterogeneity, but in actual applications, the specific type of the underlying surface must be considered
to distinguish between the advantages and disadvantages of the two methods. That is, when the SHDI
value is high (>0.74) and the footprint area contains buildings or bare land and water, the GWR-LST LE
outperforms the DisTrad-LST LE. On the other hand, when the SHDI value is between 0.59–0.75 and
the footprint area contains three or fewer different types of vegetation, DisTrad-LST LE is better. When
the SHDI value is low (<0.2) and the underlying surface of the footprint area contains a single type of
vegetation, the difference between the two methods is less than 10 W·m−2. As a sensitive variable of
the ET model, canopy height is mainly determined by classification in this paper, and the application
of classification at a 30 m resolution can improve the accuracy of the canopy height.

The HJ-1B satellite data have considerable advantages because of their high spatial resolution,
and the MODIS data have fine temporal resolution. Because both satellites are still in operation and the
data can be freely accessed, the long-term data are promising for applications involving the monitoring
of energy budgets using a combination of data from the two satellites.
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