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Abstract: Image segmentation is a key prerequisite for object-based classification. However, it is often
difficult, or even impossible, to determine a unique optimal segmentation scale due to the fact
that various geo-objects, and even an identical geo-object, present at multiple scales in very high
resolution (VHR) satellite images. To address this problem, this paper presents a novel unsupervised
object-based classification for VHR panchromatic satellite images using multiple segmentations via
the latent Dirichlet allocation (LDA) model. Firstly, multiple segmentation maps of the original
satellite image are produced by means of a common multiscale segmentation technique. Then,
the LDA model is utilized to learn the grayscale histogram distribution for each geo-object and
the mixture distribution of geo-objects within each segment. Thirdly, the histogram distribution of
each segment is compared with that of each geo-object using the Kullback-Leibler (KL) divergence
measure, which is weighted with a constraint specified by the mixture distribution of geo-objects.
Each segment is allocated a geo-object category label with the minimum KL divergence. Finally,
the final classification map is achieved by integrating the multiple classification results at different
scales. Extensive experimental evaluations are designed to compare the performance of our method
with those of some state-of-the-art methods for three different types of images. The experimental
results over three different types of VHR panchromatic satellite images demonstrate the proposed
method is able to achieve scale-adaptive classification results, and improve the ability to differentiate
the geo-objects with spectral overlap, such as water and grass, and water and shadow, in terms of
both spatial consistency and semantic consistency.

Keywords: very high resolution (VHR) satellite image; topic modelling; object-based image analysis;
image segmentation; unsupervised classification; multiscale representation

1. Introduction

Recent advances in remote sensing technology, particularly those relating to spatial resolution,
are helping to make detailed observations of the Earth’s surface possible. However, the resulting vast
amounts of very high resolution (VHR) satellite images pose a challenge for automatic classification,
due to the large amount of information and with-class variance characteristics of this kind of images [1].

It is widely acknowledged that, compared to their pixel-based counterparts, object-based
classification methods, which can take advantage of both spectral and spatial information, are probably
more appropriate for VHR satellite images [2–4]. In a typical object-based classification framework,
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image segmentation is usually an initial and vital step. The goal of segmentation is to partition
an original image into a set of non-overlapping homogeneous segments, which are regarded
as higher-level units that are more meaningful and efficient for subsequent processing. Thus,
the classification accuracy of object-based classification is dependent, to a large extent, on the quality
of image segmentation [5]. In order to characterize image structures at different scales, multiscale
segmentation (MS) is often used to conduct a series of segmentation maps at multiple scales from fine
to coarse ones, sequentially, by varying the scale parameter (SP) [6]. As pointed out by Dragut et al. [6],
the SP controls the average segment size, i.e., a smaller value of the SP produces segmentations with
small regions and detailed structures, and a larger value allows for more merges, thus preserving only
large segments and coarse features. Therefore, the SP needs to be appropriately determined in order to
create segments that can match the actual boundaries of landscape features of various sizes as much as
possible [7]. However, there exist several problems in practical applications: (1) the determination of
the optimal SP, in many cases, still relies on a trial-and-error optimization, which is time-consuming
when it applies to complex image scenes [8]; (2) it is often impossible to determine a unique optimal
SP for a whole scene or each geo-object, due to the fact that different geo-objects and even an identical
geo-object may appear at different scales in the same image. Any specific SP is likely to cause
over-segmentation of some parts of the image, but under-segmentation of other parts.

To overcome these shortcomings, many approaches that attempt to directly model multiple
segmentations have been proposed instead of seeking and using an optimal one from multiple
candidate segmentation maps [9–12]. In this direction, Russel et al. [10] used multiple segmentations
to discover objects in natural image collections. The authors assumed while none of the SP settings
can achieve the optimal image segmentation, some segments in some of the segmentations appear
to be correct. Therefore, instead of selecting any particular optimal SP, they utilized multiple
segmentation results to identify objects of various sizes by the learning machine. In a similar
framework, Akcay et al. [13] proposed automatic detection of geospatial objects using multiple
hierarchical segmentations. Afterwards, Santos et al. [14] presented a kind of boost-classifier adapted
to MS for supervised classification, in which a sequential strategy of training for weak classifiers was
adopted based on a hierarchy of image segmentations from fine to coarse. However, both [13] and [14]
are built on hierarchical image segmentation [15], which cannot be directly obtained in many cases
due to the reason that most image segmentation methods do not consider the hierarchical structures.
These observations motive us to develop a novel object-based unsupervised classification based on MS,
in which multiple segmentation maps are jointly utilized by means of topic modelling. In the proposed
framework, the original image does not require to be hierarchically partitioned to form multiple
segmentation maps.

Attracted by the success of topic models, e.g., latent Dirichlet allocation (LDA) [16] and its
relatives [17,18], in text analysis community, there has been an increasing interest in applying such
models for semantically-driven understanding of satellite images, such as image annotation [19–21],
object detection [13,22], scene classification [23–25], and image classification or clustering [26–29].
Among various advantages provided by topic models is their ability to deal with polysemy [16].
For example, the word “bachelor” could refer to a kind of degree or an unmarried man. Based
on co-occurrence of words in the context, topic models are able to capture the polysemous use of
words. This characteristic offers a potential solution to cope with the perplexing, but so common,
phenomenon in VHR satellite image classification, i.e., different geo-objects with nearly identical
spectra. For image classification or clustering, the square image blocks with fixed-size or segments
with arbitrary shape are viewed as the documents [27,29], and the pixels or local patches extracted
from the images are regarded as the words in topic modeling. Using the probabilistic latent semantic
analysis (pLSA) model, Yi et al. [26] presented a novel semantic clustering algorithm for VHR
satellite images. The experiment results confirmed the advantage of topic modelling. However,
in the proposed framework, a pre-processing step was required to partition the original satellite
image into image documents, and an accompanying post-processing step was required to combine
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the allocated multiple labels of a pixel into a unique one using a certain voting rule. To address
this problem, Tang et al. [27] developed a msLDA model, which built an automatic framework that
combined a latent Dirichlet allocation with a multiscale image representation of a panchromatic satellite
image. The msLDA archived an adaptive smoothing on clustering results. Nevertheless, its application
usually introduces a computational bottleneck, due to the manner in which image documents are
generated, where each pixel and its surrounding pixels within the square neighborhood constitute
a document. Shu et al. [30] presented a nonparametric Bayesian hierarchical model to conduct
unsupervised classification of VHR panchromatic satellite images by considering over-segments as
documents. However, it also suffers from the same problems as the traditional object-based methods
mentioned previously, i.e., it is modelled based on single-scale segmentation.

In this paper, a novel object-based unsupervised classification for VHR panchromatic satellite
images using multiple image segmentation maps via the LDA model is presented. The proposed
approach consists of four components: (1) a multiscale image segmentation component that allows
characterizing of image structures at different scales; (2) a topic model component that learns the
grayscale histogram distribution for each geo-object and the mixture distribution of geo-objects in each
segment in an unsupervised manner; (3) a category label allocation component that classifies each
segment by the ranking of probability-based similarities; and (4) an automatic application framework
component that integrates multiple classification results at different scales into a unique one. It should
be noted that while the proposed method still needs to determine the range of scales for creating
a multiscale segmentation representation, the work has been greatly simplified compared to searching
for the optimal image segmentation. The main contribution of the proposed method is an automatic
framework of combining a topic model with a multiscale image segmentation representation to model
both the co-occurrence of various geo-objects and multiscale structures.

This paper extends and improves on a preliminary work [31], which presents our initial ideas
and results. In this paper: (1) a novel strategy of integrating multiple classification results at
different scales into a unique one is added, which can ensure an adaptive smoothing classification
result can be achieved; (2) a constraint specified by the mixture distribution of geo-objects, which
can characterize the co-occurrence relationships of various geo-objects, is incorporated to correct
the KL similarity between the histogram distribution of each segment and that of each geo-object;
and (3) a more thorough presentation of introduction, methodology, experimental analysis, and
discussion is conducted.

The remainder of this paper is organized as follows. In Section 2, the proposed methodology
is presented in detail. Experimental results and related discussion are given in Section 3. Finally,
the conclusion is drawn in Section 4.

2. Methodology

In this section, we present our approach for performing the object-based unsupervised
classification of panchromatic satellite images, using the LDA model.

For the proposed method, a key prerequisite is to create a MS representation of the original
satellite image with varied scales. Since the goal of MS is to produce enough segmentation maps of
the image so as to have a high probability of acquiring better segments that can correspond to potential
geo-objects, we do not need image segmentation at each scale to be exactly correct. Any method that
can create a reasonable MS of a satellite image may meet the requirement.

Given the MS representation, the proposed method is composed of the following three steps:
Firstly, the LDA model is utilized to learn the grayscale histogram distribution for each geo-object
and the mixture distribution of geo-objects within each segment in an unsupervised manner.
Then, the histogram distribution of each segment is compared with that of each geo-object using
the Kullback-Leibler (KL) divergence measure [10], which is further weighted with a constraint
specified by the mixture distribution of geo-objects. Each segment is allocated a geo-object category
label with the minimum KL divergence. Finally, the scale-adaptive unsupervised classification map
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is achieved by integrating the multiple classification results at different scales. The general scheme
is shown in Figure 1.

Remote Sens. 2017, 9, 840  4 of 18 

 

is achieved by integrating the multiple classification results at different scales. The general scheme 
is shown in Figure 1. 

 
Figure 1. Flowchart of the proposed method. 

2.1. Topic Modelling 

2.1.1. Latent Dirichlet Allocation 

The LDA is a generative hierarchical Bayesian probabilistic model, which is originally 
proposed to model collections of discrete data, such as text documents and natural images [32]. In 
this model, each document is viewed as a finite mixture of various latent topics. Each topic, in turn, 
is a probability distribution over words. For a corpus of M documents, the LDA assumes the 
following generative process for the m-th document of length N: 

• For the k-th element of K topics, sample the topic-specific term distribution f


k  according to 

the Dirichlet distribution, i.e., f b
 
Dirchlet( )k , where b


 is the hyperparameter. 

• Sample the topic mixture q


m  according to the Dirichlet distribution, i.e., Dirchlet( )mq a
  , 

where a  is the hyperparameter. 
• For each word Î 1 2{ , ,..., }mn m m mNw w w w , sample a topic mnz  according to the multinomial 

distribution, i.e., q


Multinomial( )mn mz , and sample a word mnw  according to the 

multinomial distribution , i.e., f


Multinomial( )mnmn zw . 

Both variational inference and Gibbs sampling have been used to infer and estimate the 
parameters of the LDA. To solve the inferential problem, we need to calculate the posterior 
probability of the hidden variables given a corpus, i.e., a b

  ( | , , )P z w . The general formulation of a 
Gibbs sampler for such latent-variable models becomes: 

Figure 1. Flowchart of the proposed method.

2.1. Topic Modelling

2.1.1. Latent Dirichlet Allocation

The LDA is a generative hierarchical Bayesian probabilistic model, which is originally proposed
to model collections of discrete data, such as text documents and natural images [32]. In this model,
each document is viewed as a finite mixture of various latent topics. Each topic, in turn, is a probability
distribution over words. For a corpus of M documents, the LDA assumes the following generative
process for the m-th document of length N:

• For the k-th element of K topics, sample the topic-specific term distribution
→
φ k according to

the Dirichlet distribution, i.e.,
→
φ k ∼ Dirchlet(

→
β ), where

→
β is the hyperparameter.

• Sample the topic mixture
→
θ m according to the Dirichlet distribution, i.e.,

→
θ m ∼ Dirchlet(

→
α ),

where
→
α is the hyperparameter.

• For each word wmn ∈ {wm1, wm2, . . . , wmN}, sample a topic zmn according to the multinomial

distribution, i.e., zmn ∼ Multinomial(
→
θ m), and sample a word wmn according to the multinomial

distribution , i.e., wmn ∼ Multinomial(
→
φ zmn

).

Both variational inference and Gibbs sampling have been used to infer and estimate the parameters
of the LDA. To solve the inferential problem, we need to calculate the posterior probability of the
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hidden variables given a corpus, i.e., P(
→
z |→w,

→
α ,
→
β ). The general formulation of a Gibbs sampler for

such latent-variable models becomes:

P(zi|
→
z −i,

→
w,
→
α ,
→
β ) =

P(
→
z ,
→
w|→α ,

→
β )∫

Z
P(
→
z ,
→
w|→α ,

→
β )dzi

, (1)

which can be approximated by interactively sampling each of the K topics using the chain rule and
noting that

→
w =

{→
w−i, wi = v

}
and

→
z =

{→
z −i, zi = k

}
:

P(zi|
→
z −i,

→
w,
→
α ,
→
β ) = P(

→
z ,
→
w|→α ,

→
β )

P(
→
z −i ,

→
w|→α ,

→
β )

∝
n(v)

k,−i+βt
V
∑

v′=1
(n(v′)

k +βv′ )−1
∗ n(k)

m,−i+αk
K
∑

k′=1
(n(k′)

m +αk′ )

, (2)

where the counts n(.)
.,−i represents the number of the words or topics with exception of index i.

For a new topic-word pair (z̃ = k, w̃ = v) that is observed in a document d(w̃) = d(z̃) = m, given
the state (z̃, w̃), the multinomial parameters can be determined by:

φk,v =
n(v)

k + βv
V
∑

v′=1
(n(v′)

k + βv′)

, (3)

θm,k =
n(k)

m + αk
K
∑

k′=1
(n(k′)

m + αk′)

, (4)

where V is the number of words in the vocabulary, αk and βv stand for the k-th element and v-th

element of hyperparameter
→
α and

→
β , respectively. For details regarding the derivation, please refer

to [33].

2.1.2. Build an Analogue of Text-Related Terms in the Image Domain

To borrow techniques used in the text domain to satellite images, the first issue that needs to be
addressed is how to build an analogue of text terms in the image domain. For the proposed method,
we follow the definition in [27,29]

• Word: a unique grayscale value of a pixel is defined as a word;
• Vocabulary: the unique grayscale values of the satellite image form the vocabulary;
• Document: each segment is regarded as a document, thus, all segments of multiple segmentation

maps at different scales constitute the corpus;
• Topic: each topic corresponds to a specific geo-object category.

Given multiple segmentation maps at different scales, we can use the LDA model to learn K

grayscale histogram distributions for K geo-objects, i.e., {
→
φ k}

K

k=1, and M mixture distributions of

geo-objects within M segments, i.e., {
→
θ m}

M

m=1. Furthermore, M grayscale histogram distributions

within M segments, i.e.,
{→

πm

}M

m=1
, can also be easily obtained just by counting the frequencies of

different grayscale values.
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2.2. Label Allocation for Each Segment

Although there may be some differences in size due to the scale effect, the segments that
correspond to the identical geo-object should have similar grayscale histogram distributions.
As a consequence, the category label allocation for each segment is determined according to
the following rule: the histogram distribution of each segment is compared with those of K geo-objects,
respectively. The similarity between two types of distributions is measured using the KL divergence,
which has been proved to be effective in measuring the probability-based similarity. The category label
of the geo-object, which has the minimum KL divergence with the segment, is allocated as the label of
the segment. Given the segment dm, its category label cdm is mathematically given by:

cdm = arg min
1≤k≤K

KL(
→
πm,

→
φ k), (5)

where KL(
→
πm,

→
φ k) denotes the symmetrical KL divergence between two discrete distributions, i.e.,

→
πm

and
→
φ k. To be specific, the symmetrical KL divergence in the discrete form can be represented as the

following:

KL(
→
πm,

→
φ k) =

V
∑

v=1
{πv

m In(πv
m

φv
k
) + φv

k In( φv
k

πv
m
)}

2
, (6)

where πv
m refers to the v-th element of

→
πm, which describes the histogram distribution within

the segment m. Likewise, φv
k refers to the v-th element of

→
φ k, which describes the histogram distribution

for the geo-object k.
Furthermore, it is easy to understand: with the increase of the mixture proportion of a certain

geo-object within the segment, the probability of classifying the segment as the corresponding
geo-object should be improved accordingly. The mixture distribution of geo-objects within each

segment, i.e., {
→
θ m}

M

m=1, learned by topic modelling, exactly provides the mixture proportion features.
Thus, Equation (5) can be further weighted with a constraint specified by the mixture distribution of
geo-objects:

cdm = arg min
1≤k≤K

KL(
→
πm,

→
φ k) · u

k
m, (7)

where
→
u m is empirically set to −In(

→
θ m), and uk

m denotes the weight with the geo-object k.
Overall, by means of Equation (7), the category label of each segment is determined jointly

by both the grayscale distribution and mixture distribution of geo-objects, which can characterize
the co-occurrence relationships of various geo-objects.

2.3. Fusion of Multiple Classification Maps

After finishing step 2.2, multiple unsupervised classification maps at different scales are achieved.
However, due to the existence of multiscale effects in VHR satellite images, any classification map based
the single-scale segmentation cannot take into account the various granularities of the geo-objects,
e.g., the narrow roads may be suitable to be extracted at a fine scale, while the large-area field should be
classified at a coarse scale. Therefore, the final classification map is achieved by integrating the multiple
classification maps at different scales, in order to achieve a scale-adaptive unsupervised classification.

Given the scale range {1, 2, . . . , S}, S classification maps at multiple scales can be obtained by
the means of topic modelling presented above. In other words, each pixel i in the original satellite
image will be allocated S category labels. Let di,s(s ∈ {1, 2, . . . S}) denote the segment covering the
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pixel i at the scale s, and k(di,s) denote the category label of the segment di,s, the category label of the
pixel i is given by:  s∗ = arg min

1≤s≤S
KL(

→
πdi,s

,
→
φ k(di,s)

),

ci = k(di,s∗).
, (8)

where
→
πdi,s

denotes the grayscale histogram distribution within the segment di,s,
→
φ k(di,s)

denotes
the grayscale histogram distribution for the geo-object k(di,s), and s∗ denotes the optimal scale for
the pixel i.

3. Results and Discussion

In this section, we firstly describe the experimental images. Then, we introduce the quantitative
evaluation methods for the experimental results and the state-of-art methods for comparison, and
the parameter settings are also given in detail. Thirdly, we compare the performance of different
approaches for three typical of geographical scenes in terms of both qualitative and quantitative
aspects. The computational efficiency for different approaches is also discussed. Finally, we analyze
the effects of scale setting in the proposed method on the classification results.

3.1. Experiment Data

In order to assess the effectiveness of the proposed approach, three panchromatic satellite
images with different scenes and spatial resolutions are used. The first data is a panchromatic
Mapping Satellite-1 image with 1600 × 1600 pixels and 2 m spatial resolution, which was acquired on
13 August 2012 and covers an area of Miyun District, Beijing, China. As shown in Figure 2a, five major
types of geo-objects, i.e., building, road, water, grass, and ground, occur in this image. The second
data is a panchromatic QuickBird image with 900 × 900 pixels and 0.6 m spatial resolution, as shown
in Figure 2c. It was acquired on 22 April 2006 and located in Tong Zhou district of Beijing, China.
There are six major types of geo-objects distributed in the image, including building, road, water,
shadow, tree, and field. The third data is a panchromatic ZiYuan-3 (ZY-3) image that was acquired over
an area of Tanggu District, Tianjin, China, on 15 August 2015. The image size is 3500 × 3500 pixels,
and the spatial resolution is 2.1 m. As shown in Figure 2e, the image is made up of five major types of
geo-objects, including building, road, water, grass, and field. We manually annotated all the original
images at the pixel level as ground truth label data through visual interpretation. The corresponding
ground truth maps for three satellite images are shown in Figure 2b,d,f, respectively.

3.2. Experiment Setup

3.2.1. Methods for Comparison with the Proposed Approach

To evaluate the effectiveness on three aspects of classification accuracy, spatial smoothness,
and semantic consistency, the performance of the proposed approach is compared with that
of four state-of-the-art unsupervised classification methods based on image segmentation:
(1) the spectral-spatial ISODATA, where the pixel-based ISODATA classification is followed by
a majority voting within the adaptive neighborhoods defined by the over-segmentation (termed
as O_ISODATA) [34]; (2) the spectral-spatial LDA, similar to O_ISODATA, where the same
over-segmentation is applied to the classification result of the LDA model using just the single-scale
image segmentation map as corpus [30] (termed as O_LDA); (3) the msLDA proposed in [27];
and (4) the HDP_IBP proposed in [30].

For convenience, the proposed approach is referred to as the mSegLDA.
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3.2.2. Evaluation Criteria

In our experiments, two quantitative criteria, as well as visual inspection, are utilized to evaluate
the unsupervised classification results, i.e., overall accuracy (OA) and overall entropy (OE).

• Overall accuracy (OA): OA, which serves as a quantitative measurement of the agreement
between the classification result and the ground truth map, is one of the most widely used
statistics for evaluating the classification accuracy. OA can be calculated by dividing the total
correctly-classified pixels by the total number of pixels checked by the ground truth map, and
is given as OA = Ncorrect/Ntotal , where Ncorrect is the total number of correct pixels, and Ntotal
is total number of pixels.

• Overall entropy (OE): entropy is an information theoretical criterion that is able to measure
the homogeneity of the classification results. OE is defined as a linear combination of the class
entropy, which describes how the pixels of the same geo-object are presented by the various
clusters created, and the cluster entropy, which reflects the quality of the individual clusters
in terms of the homogeneity of the pixels in a cluster. Generally speaking, a smaller overall
entropy value corresponds to the classification map with a higher homogeneity. For details
regarding, please refer to [27,35].

3.2.3. Parameter Setting

In order to produce multiple segmentation maps at different scales, this paper uses the entropy
rate superpixel segmentation (ERSS) algorithm [36], which has been proven to be both effective and
efficient. It should be noted that any method that can create a reasonable MS of satellite image may
meet the requirement of the proposed approach. The ERSS algorithm utilizes the number of segments
to control the scale size of image segmentation, i.e., a large number of segments may result in fine-scale
segmentation, and conversely, a small number of segments will generate coarse-scale segmentation.
For the Mapping Satellite-1 image, the QuickBird image and the ZY-3 image, the number of scales S is
set to 6, 9, and 11, respectively, and the corresponding numbers of segments include {100, 200, 500, 800,
1000, 1500}, {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000}, and {2000, 3500, 5000, 6500, 8000, 9500,
11,000, 12,500, 14,000, 15,500, 17,000}.The range of scales, reflected by the numbers of segments, should
be able to characterize multiscale structures in the images as much as possible. For both O_ISODATA
and O_LDA, the over-segmentation map with 1500 segments, 2500 segments, and 17,000 segments
are used in the three images.

Furthermore, topic model based methods initializes the Dirichlet priors as symmetric priors
empirically, i.e., α = 0.1, β = 0.01 for the Mapping Satellite-1 image, α = 0.01, β = 0.8 for the QuickBird
image, and α = 50/K, β = 0.01 for the ZY-3 image. The number of geo-objects K is set to 6, 7, and 6
according to the distributions of geo-object classes, respectively.

3.3. Comparison of Classification Results

The classification results of various methods for three satellite images are shown in Figures 3–5,
where each geo-object is represented by a different color.

3.3.1. Mapping Satellite-1 and QuickBird Images

From visual inspection, all the unsupervised classification results seem to be compact. The obvious
speckle noise or the isolated pixel patches which are often found in the results of pixel-based
classification approaches are greatly eliminated. Thus, the advantages of enforcing spatial consistency
over the classification by means of performing image segmentation are confirmed. On the other
hand, obvious misclassification between water and grass in Figure 3b,g, and water and shadow
in Figure 4b,g can be observed in the classification results of the ISODATA. Two types of geo-objects,
i.e., grass and shadow, are entirely incorrectly identified as water. This phenomenon can be explained
by the fact that there exist obvious spectral overlaps between water and grass in Figure 2a, and water
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and shadow in Figure 2c. For this reason, the ISODATA which groups image pixels merely according
to their grayscale values and, thus, are not able to differentiate various geo-objects with similar spectra
well. While the O_ISODATA that conducts pixel-based ISODATA classification, followed by spatial
regularization using the segmentation map can ensure spatial continuity within segments, it does not
change the essential mechanism of the ISODATA.
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However, benefitting from topic modelling, for the topic model-based approaches,
the co-occurrence information, characterized by the mixture distribution of various geo-objects within
each segment, can be utilized to correctly recognize different objects with similar spectra. As illustrated
in Figures 3c–g and 4c–g, two types of geo-objects, i.e., grass and shadow, are well separated from
water in the classification results of the topic model based approaches.

Furthermore, because the O_LDA is built on a single-scale over-segmentation map, it lacks
a mechanism to model multiscale features of various-objects and, thus, cannot realize an adaptive
smoothing on classification results. As shown in Figure 4c, the smoothing effect on the fine-scale road
is proper, but is not sufficient for the large-scale field. Additionally, the majority voting scheme adopted
by the O_LDA within the adaptive neighborhoods defined by the over-segmentation also results
in the relatively fragmented classification map. In order to encode the scale-adaptive classification
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ability, the msLDA combines the topic model with a multiscale image representation derived by
convoluting a given image with a variable-scale Gaussian into an automatic framework by embedding
both image block and scale selections, and the HDP_IBP introduces the hierarchical spatial information,
particularly the high-level scene cues, into the classification. As shown in Figures 3d–e and 4d–e,
both the HDP_IBP and msLDA improve the adaptive smoothing effect on the classification results to
a certain extent compared with the O_LDA. However, the improvement is still limited. As a contrast,
as shown in Figure 3f,g and Figure 4f,g the proposed mSegLDA could realized a more significant
self-adaptive spatial regularization on classification results according to various geo-object types at
different scales, i.e., the large-scale geo-object (e.g., field) is heavily smoothed, resulting in a more
homogenous classification, and the fine-scale geo-object (e.g., road) accepts a slight smoothing, thus
preserving detailed structures and edge patterns.

From quantitative evaluation, both OA and OE in different classification results for two experiment
images are calculated, as shown in Tables 1 and 2, respectively. The mSegLDA approach yields
the best classification accuracies and the lowest values of OE, compared to other methods, indicating
the proposed method can achieve a better classification performance on the whole.
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Table 1. OA and OE of various methods for the Mapping Satellite-1 image.

O_ISODATA O_LDA msLDA HDP_IBP mSegLDA

OA 48.6 69.3 68.4 70.1 72.0
OE 0.89 0.79 0.84 0.76 0.72

Table 2. OA and OE of various methods for the QuickBird image.

O_ISODATA O_LDA msLDA HDP_IBP mSegLDA

OA 49.8 65.1 68.2 65.5 74.3
OE 0.96 0.84 0.80 0.84 0.71

3.3.2. ZY-3 Image

In this subsection, a ZY-3 satellite image of a large scene covering over 50 km2 is used to evaluate
the effectiveness of the proposed mSegLDA. As shown in Figure 5, the complexity of the scene
significantly increases. For example, various geo-objects, and even an identical geo-object (e.g., building
or field), are present at different sizes in the image. However, the proposed mSegLDA is still able
to realize a more significant self-adaptive spatial regularization on classification maps according to
various geo-object types at different scales, compared to other methods. As shown in Table 3, the largest
value of OA and the lowest value OE are also obtained by the mSegLDA.
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3.4. Analysis of Computational Efficiency

The computational efficiency of the mSegLDA is also compared with that of other three topic
model-based methods using the QuickBird image as an example, i.e., the O_LDA, the msLDA and
the HDP_IBP. All the methods are coded using MATLAB R2013b (The MathWorks, Inc., Natick, MA,
USA), and have been performed on a PC with an Intel (R) Core (TM) i7-4710MQ 2.50 GHz CPU and
8.00 GB RAM. As can be seen in Table 4, the O_LDA and the HDP_IBP spend a relatively less amount
of running time compared to the msLDA and the mSegLDA due to their modelling mechanism,
i.e., utilizing only a single-scale segmentation map as a corpus. Instead, since the mSegLDA needs
to use multiple segmentation maps for the topic model inference and calculate a large number of
KL divergences between segments, it is less efficient than the O_LDA and the HDP_IBP. However,
the computation efficiency of the mSegLDA is better than that of the msLDA, because each pixel and
its surrounding pixels within the square neighborhood represent a document in the msLDA, resulting
in the significant increase in the number of documents and accompanying extensive computation.

Table 4. Running time of various methods for the QuickBird image.

Methods Running Time (in Seconds)

O_LDA 797
msLDA 5056

HDP_IBP 766
mSegLDA 2413

In order to speed up the execution of the proposed mSegLDA, the Gibbs sampling component
of the mSegLDA, which is computationally expensive, has been written using C++ MEX code.
The running time of the mSegLDA for the QuickBird image is approximately 65 s.

3.5. Analysis of Scale Setting

3.5.1. Influence of Different Settings on the Range of Scales

As the number of scales S may influence the classification results, we, therefore, analyze how
the performance of the proposed mSegLDA behaves with different settings on the range of scales
using the Mapping Satellite-1 and QuickBird images. Since the ERSS algorithm utilizes the number of
segments to control the scale size of image segmentation, the number of segments could be equivalent
to the size of scales. Given the candidate scale set {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000, 3500,
4000}, for both the Mapping Satellite-1 and QuickBird images, a set of experiments for two images
with different settings on the range of scales by adding one scale every time, i.e., {100, 200}, {100, 200,
500}, {100, 200, 500, 800} . . . , {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000}, are modelled
using the mSegLDA.

Figures 6 and 7 show the values of OA and OE against the different settings on the range of scales.
As can be seen, as the number of scales S increases, there is an approximately monotonic increase
in OA and decrease in OE, and the classification performance remains relatively stable when S is
larger than 6 for the Mapping Satellite-1 and 9 for the QuickBird image. This is due to the reason that,
the mSegLDA approach needs to create a series of segmentation maps at multiple scales from fine to
coarse ones for modelling, and the ideal multiscale image segmentation representation is expected to
be able to represent all structural patterns at different scales as much as possible. Hence, a too small S,
e.g., {100, 200}, means that only large-scale structure information can be characterized. As the increase
of S, e.g., {100, 200, 500, 800, 1000, 1500} and {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000}, the fine
to coarse range of scales makes it possible to characterize multiscale features of various geo-objects.
On the other hand, although it can also ensure all structural patterns at different scales are presented,
a larger value of S increases the computational efficiency.
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Following the above rules, the range of scales for three experiment images are set to {100, 200,
500, 800, 1000, 1500}, {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000}, and {2000, 3500, 5000, 6500, 8000,
9500, 11,000, 12,500, 14,000, 15,500, 17,000}, respectively.

3.5.2. Special Cases of the mSegLDA

In this subsection, we analyze several special cases of the mSegLDA for the Mapping Satellite-1
and QuickBird images qualitatively and quantitatively to evaluate the effectiveness of modelling
multiple segmentations by setting the number of scales to 1, i.e.,

• Case #1: the mSegLDA based on a single-segmentation map with 100 segments;
• Case #2: the mSegLDA based on a single-segmentation map with 200 segments;
• Case #3: the mSegLDA based on a single-segmentation map with 500 segments;
• Case #4: the mSegLDA based on a single-segmentation map with 800 segments;
• Case #5: the mSegLDA based on a single-segmentation map with 1000 segments;
• Case #6: the mSegLDA based on a single-segmentation map with 1500 segments;
• Case #7: the mSegLDA based on a single-segmentation map with 2000 segments;
• Case #8: the mSegLDA based on a single-segmentation map with 2500 segments; and
• Case #9: the mSegLDA based on a single-segmentation map with 3000 segments.

As shown in Figures 8 and 9, a smaller number of segments results in a more heavily smoothed
classification result. However, it also filters the detailed patterns of certain geo-objects. On the contrary,
a larger number of segments produces a relatively fragmented result. The advantage of integrating
multiscale segmentation maps for modelling is further confirmed, as shown Tables 5 and 6.
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Figure 9. Classification results of nine special cases of the mSegLDA for the QuickBird image.
(a) Ground truth map; (b) Case #1; (c) Case #2; (d) Case #3; (e) Case #4; (f) Case #5; (g) Case #6;
(h) Case #7; (i) Case #8; (j) Case #9; and (k) mSegLDA.
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Table 5. OA and OE of six special cases of the mSegLDA for the Mapping Satellite-1 image.

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 mSegLDA

OA 64.1 62.6 66.2 66.1 68.1 66.0 72.0
OE 0.87 0.89 0.83 0.83 0.81 0.81 0.72

Table 6. OA and OE of nine special cases of the mSegLDA for the QuickBird image.

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 Case #8 Case #9 mSegLDA

OA 57.8 67.7 59.7 60.1 65.4 67.1 63.7 66.5 0.71 74.3
OE 0.87 0.87 0.76 0.75 0.85 0.74 0.74 0.79 0.78 0.72

4. Conclusions

This paper has presented a novel unsupervised object-based approach named mSegLDA for
the classification of VHR panchromatic satellite images. The approach addresses the issues that:
(1) various structural patterns at different scales are usually presented simultaneously in the same
scene of a VHR image; and (2) different geo-objects may have nearly identical spectra. Our major
contribution is to propose an automatic framework that combines the latent Dirichlet allocation with
a multiscale image segmentation representation to model both the co-occurrence of various geo-objects
and multiscale structures. Experimental results using VHR panchromatic satellite images with
different scenes and spatial resolutions indicate that the proposed approach can achieve scale-adaptive
classification results, and improve the ability to differentiate the geo-objects with spectral overlap, such
as water and grass, and water and shadow.

Furthermore, the proposed framework still needs to determine the range of scales for creating
multiscale segmentation empirically. In the future, we will develop an automatic strategy to obtain
the appropriate range.
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