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Abstract: To apply satellite-retrieved soil moisture to a short-range weather prediction, we review
a stochastic approach for reducing foot print scale biases and estimating its uncertainties. First,
we discuss a challenge of representativeness errors. Before describing retrieval errors in more
detail, we clarify a conceptual difference between error and uncertainty in basic metrological terms
of the International Organization for Standardization (ISO), and briefly summarize how current
retrieval algorithms deal with a challenge of land surface heterogeneity. As compared to relative
approaches such as Triple Collocation, or cumulative distribution function (CDF) matching that aim
for climatology stationary errors at time-scale of years, we address a stochastic approach for reducing
instantaneous retrieval errors at time-scale of several hours to days. The stochastic approach has a
potential as a global scheme to resolve systematic errors introducing from instrumental measurements,
geo-physical parameters, and surface heterogeneity across the globe, because it does not rely on the
ground measurements or reference data to be compared with.

Keywords: satellite bias correction for short-range weather forecast; footprint scale satellite
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1. Introduction

1.1. Representativeness Errors

1.1.1. Scale Issue

Anderson [1] stated the whole is not only more than but also disparate from the sum of its parts.
For the hierarchical structure, he previously stated that the behavior of aggregated elements is not
understood by a simple linear extrapolation of each element so that a different understanding of
the new behavior is required at a higher level of complexity and scale. Similarly, the footprint scale
behavior of satellite soil moisture products is not captured by an extrapolation or other statistical
synthesis of several point measurements at local scale [2,3]. Space borne sensors at low resolution
do not very delicately detect the point-scale details from land surface. Instead, the satellite retrievals
usually deal with a mixed pixel as a single uniform entity (e.g., SMOS retrieval algorithms read
sub-pixel land cover information at 4 km by 4 km but finally make the pixels uniform by aggregation).
When matching local measurements with satellite retrievals, representativeness error arises from a
difference in scale between field measurements and satellite observations.

Let us take some example for a spatial scale issue. It may sound simple to measure the height
of three or more trees in our backyard. However, it becomes an entirely challenging task at a
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global scale. First, we would need an instrument to scan the globe with consistency. However,
the instrument, in practice, contains calibration errors, instrumental errors, or other errors arising from
environmental factors. In addition, as land surface is globally heterogeneous, the interpretation
of satellite measurements is very complicated. Retrieval models should be flexible enough to
accommodate the complexities such as climate conditions, surface heterogeneity at global scale,
and any auxiliary information used to convert the raw signal to geo-physical variables of our interest.
However, current retrieval algorithms often rely on the empirical models originated from a few
validation sites at a local scale, due to a lack of ancillary and heterogeneity information. For example,
several retrieval algorithms usually use vegetation models formulated and calibrated from limited
validation sites [4,5]. A change detection method makes an assumption that the effects of vegetation
on backscattering is minimal at cross-over angle, based upon the empirical relations established for
correcting the vegetation effects [3,6,7]. Similarly, as in the tree example described above, remotely
sensed vegetation index such as Leaf Area Index (LAI) may be used for globally characterizing the
height of vegetation, although vegetation reflects a remote sensor’s signals. The rationale valid at
a local scale is not valid any more at footprint scale, as the LAI measured in the field is different
from the LAI retrieved from remote sensors. Thus, it is needed to directly assess the footprint scale
measurements and retrievals rather than converting a spatial scale between local point and satellite.

In addition to spatial scale, there is an issue with time scale. Relative comparisons such
Triple Collocation (TC) or cumulative distribution function (CDF) matching that re-scale or compare
satellite products to other types of datasets aim for climatology errors at a time-scale of years rather
than retrieval errors at several hours to day time-scale as in a short-range weather prediction for
storm or flooding. Thus, we review the instantaneous error dynamics supportive of a short-range
weather prediction.

1.1.2. Issues with Current Retrieval Goal

Despite the scale issue, the unbiased Root Mean Square Error (RMSE) goal of 0.04 m3/m3 is
imposed for the SMOS and SMAP retrieval qualities. It is the most commonly used standard validation
method to measure a deviation of the satellite products from the ground measurements. Although the
upscaling of several local point field measurements is required for the validation of coarse resolution
satellite soil moisture products at several kilometers, it should be clarified that upscaling errors are
actually independent from retrieval errors in remotely sensed products [8]. Following discussions
further develop upscaling issues.

Essentially, governing factors of the footprint scale measurements are different from those of
point-scale in-situ field measurements [9]. Satellite measurements are influenced by regional scale
meteorological events, topography or vegetation effects at a land scape-scale [10,11]. In contrast,
ground measurements represent a temporal variation of soil dielectric constant at a fine scale
of soil porosity, soil particle and water molecule levels, although they are also affected by
meteorological events.

Secondly, the ground measurements undersample land surface heterogeneity [4].
Satellite retrievals usually aggregate sub-pixel land surface heterogeneity in a different way
from the ground measurements upscaled to the same spatial extent [6,12–14]. Thus, there is an
essential discrepancy in terms of spatial representativeness. Thoma et al. [15] discussed that there
is a limitation in representing satellite surface soil moisture data with a combination of point scale
field data, due to the spatially distributed land surface features that affect satellite measurements
more complicatedly than in-situ point measurements. Verhoest et al. [16] also addressed that a
direct comparison with field measurements is not possible, because there is a scale dependency
of satellite data in terms of land surface characteristics such as roughness [17,18]. Talone et al. [7]
previously stated that land surface inhomogeneity ultimately limits the capability to compare single
point measurements with satellite measurements so that the ideal validation site should be spacious
and homogeneous. However, in the real world, land surface is usually spatially heterogeneous.
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Accordingly, upscaling increases uncertainty (i.e., standard deviations) with the spatial extents and
heterogeneity, as shown in Figure 1 [19–21]. Although high standard deviation may decrease with the
increasing number of probes deployed in the field, there are still essential limitations. Such a high
density validation site is very limited to a few locations across the globe [22]. Upscaling function of
aggregation is difficult to determine [8].
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Thirdly, the field measurements are also exposed to several errors [23–26]. For example, the
time-domain reflectometry (TDR) measurement errors arise from a conversion of soil dielectric constant
measurements to soil water content, signal noise in saline soils, or the presence of organic matters
in soils [27]. Field measurements also need ancillary information or assumptions, which introduce
uncertainties. The gravimetric sampling that determines soil water weight after oven-drying also
involves reading or calibrating errors.

Fourthly, there is difference in a sampling depth between ground measurement and satellite
instrument. The field measurement or land surface model estimates soil moisture at the fixed depth
of a soil layer [8]. In contrast, the satellite penetration depth—the soil depth into which the radar or
radiometer transmits signal—changes. For example, for L-band instruments such as SMOS and SMAP,
a theoretical penetration depth is approximately 2–5 cm [17]. However, this usually varies by several
factors such as soil texture, and soil moisture as well as salinity [28,29]. Figure 2 shows an example
that the same microwave signal with a wavelength of 10 cm reaches a depth of 10 m in dry sandy
soil but penetrates only a few cm in wet soils [5,12,30,31]. This variable sampling depth of remote
sensors makes it difficult to directly compare the satellite instrument measurements with the field
measurements, even when they are upscaled.

Finally, it is difficult to make a global validation with the soil moisture international networks
connecting each local point measurement at different locations, due to inconsistency in operation.
Because different in-situ sensors are deployed in various ground stations registered to the soil moisture
international networks, there are inconsistences when evaluating satellite retrievals at the global scale
all together. In addition, there is a time-mismatch between sampling time of in-situ sensor and satellite
overpass time [3]. This different temporal resolution (e.g., in-situ at hourly level, and satellite at
several days level) will result in disagreements, particularly when satellite measurement is taken right
before sudden rain events, but in-situ sensors instantaneously respond to such meteorological events.
Additionally, the international networks still contain upscaling or representativeness errors, and have a
limited global coverage, as they are just a few pixels out of the whole at a hundred thousand pixels [22].
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On the other hand, downscaling that disaggregates the satellite products to a local scale is also
complicated [32,33]. The currently available downscaling techniques often employ machine learning or
proxies such as land surface temperature, or vegetation index for downscaling soil moisture products at
low resolution. However, a linear relationship between a proxy and soil moisture is uncertain, as being
usually based on the empirical interpretation of a limited range of land surface and meteorological
conditions, rather than an actual realization of sub-pixel heterogeneity or theoretical description [34].

Taken together, a core challenge of assessing and improving soil moisture satellite retrievals lies
within a difference in scale and heterogeneity, which can not be fully resolved by upscaling or relative
approaches. In addition to RMSE retrieval goal, more diverse perspective for defining errors directly
at footprint scale is needed. Thus, for a reduction of footprint scale instantaneous errors in satellite
retrievals, and its application to a short-range weather prediction, we review a stochastic approach to
address the instantaneous errors in retrieval product.

1.2. Errors and Uncertainties

For the reasons discussed in Section 1.1, it is actually difficult to acquire “absolute true values”of
soil moisture satellite product. It is important to recognize that it is more difficult to determine them
operationally in practice. The observations are traditionally deemed as objective information, but
they are actually complicated syntheses, based upon subjective evaluation, several ideal assumptions,
imperfect retrieval model and erroneous auxiliary information. Thus, the satellite products are affected
by instrumental errors, or errors coming from operators, environmental factors, or simplified retrieval
algorithms. Then, what is now important is to be aware of the presence of errors across the scale
to keep the quality of systems to an acceptable level, and to appropriately monitor their behaviors
in operations.

1.2.1. Errors

Systematic Errors

In Metrology, measurement errors consist of systematic errors (also called “biases”) and random
errors (also called “noise”). By the International Organization for Standardization (ISO) International
Vocabulary of basic and general terms in Metrology (VIM) 3.14 [35], systematic errors are defined as
a difference between true values of the measurand and the average values that would ensue from
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an infinite number of replicated measurements of the same measurand carried out under repeatable
conditions. Systematic errors can be expressed, as follows:

∆x = x − xctv (1)

where ∆x is systematic errors, xctv is the conventional true value, and x is the arithmetic mean of n
time repeated reading data xi, as follows:

x =
1
n

n

∑
i=1

xi i = 1 . . . . . . n (2)

Systematic errors include multiplicative and additive errors. Additive errors such as offset errors
do not change with the measured values. In contrast, multiplicative errors such as gain errors linearly
change with the measured values, depending on the input values [35]. By the error sources, systematic
errors can be classified into instrumental errors (e.g., calibration errors), assumption errors (e.g., model
errors), environmental errors (e.g., RFI), dynamic errors (e.g., rain events or vegetation effects), or
static errors (e.g., soil texture information).

There are several ways to quantify systematic errors. Based upon the analysis of measuring or
retrieval processes, instrumental information (e.g., calibration error), or operational issues, a partial
derivative based error propagation can be used [36].

Random Errors

Random errors are different from systematic errors in that they have no consistent impacts on
the measurement. They have negative errors as many as positive errors (i.e., add up to 0 in their error
distributions) so that they have no impact on the average [35]. Systematic errors can be predicted,
characterized and even corrected, while random errors cannot. Although it is not possible to eliminate
random errors, we may be able to describe their stochastic behaviors with a probability distribution of
random errors such as the normal (Gauss, or bell-shape), uniform, bimodal, and Laplace distributions.

1.2.2. Uncertainties

Uncertainty is considered as the “state of knowledge” on the system quality [36]. According
to the Guide to the expression of Uncertainty in Measurement (GUM), uncertainty is defined as a
parameter characterizing the dispersion of the values attributed to the measurand. Thus, uncertainty is
conceptually distinct from errors, as it does not assume the presence of symbolic and ideal true values.
It is evaluated by two approaches: type A is based upon statistical analysis of repeated measurements
or multiple model realizations (e.g., standard deviation, variance, covariance etc.), while type B is on
the basis of a priori knowledge (e.g., the observer’s personal experience or literature) [36]. The GUM
standard uncertainty in the case of type A is computed as the standard deviation, as follows:

SD =

√
1

n − 1

n

∑
i=1

(xi − x)2 (3)

1.3. Current Soil Moisture Retrieval Algorithms

This section introduces how the recent soil moisture retrieval algorithms deal with land surface
heterogeneity briefly discussed above in Section 1.1. In contrast to previous soil moisture satellite
retrievals that use global constant values for land surface parameters or assume a linear relationship
between the raw signals of satellite instrument and the soil moisture retrievals, the recent soil
moisture retrievals has started to retrieve geo-physical parameters in the light of sub-pixel land
surface heterogeneity. For example, the SMOS retrieval algorithm employs sub-pixel land cover
information to select a retrieval model optimal to dominant land cover in a given pixel [12], in contrast
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to previous retrievals assuming a time-invariance of vegetation dynamics or roughness over the land
surface [6]. In addition, recent soil moisture mission such as SMOS and SMAP use the sensors operated
at L-band frequency. It is optimal for soil moisture observations [17], when considering several aspects
such as spatial resolution and protected spectrum. In comparison with other frequencies, an L-band
better penetrates atmosphere, cloud and vegetation, showing a high sensitivity to soil moisture. Thus,
it is expected that it relatively better detects surface soil moisture in densely vegetated areas with
Vegetation Water Content of 6 kg/m2 or less [4,37]. Consequently, it might be said that the recent
soil moisture missions have a better potential to handle and characterize time-varying land surface
conditions. However, there is an instrumental difference between SMOS and SMAP. In contrast to
the SMOS that produces brightness temperature measurement from multiple incidence angles at full
polarizations over the same target on the ground, the SMAP radiometer uses brightness temperature
at a single incidence angle.

The soil moisture retrieval algorithms are mainly classified into two groups: (1) a change detection
method that assumes a time-invariance of land surface condition and detects a relative change of
backscattering signals between extreme conditions (e.g., European Remote-sensing Satellite (ERS)-2
(1995 to present) and Metop-A Advanced SCATterometer (ASCAT) (2006 to present) at C-band); and
(2) an inversion algorithm to invert geo-physical parameters from measurements (e.g., Advanced
Microwave Scanning Radiometer—Earth Observing System (AMSR-E, 2002 to 2011) at C-, X- and
Ku-band, and SMOS (2010 to present) and SMAP (launched in 2015 January) at L-band). Both passive
and active microwave sensor retrievals are susceptible to the Radio Frequency Interference (RFI).
The soil moisture products from those instruments have their own merits as well as demerits. Passive
microwave sensors have a low-resolution problem, while active microwave sensors are more vulnerable
to geometric factors such as topography, roughness or vegetation effects and to speckle.

1.3.1. Change Detection Method

A change detection method reads a relative change between the highest and lowest values
recorded during a limited time span and converts the normalized magnitude to soil moisture. de
Since a change detection method is suggested for time-series SSM/I measurements, Wagner et al. [38]
retrieved soil moisture by measuring a relative change of ERS-2 or Metop-A ASCAT backscattering
ranging from 0 (most dry) to 100 (most wet). Their relative approach is based on their findings that the
quantitative validation of soil moisture product with field measurements is, in practice, infeasible due
to land surface heterogeneity, a lack of ground measurements across the globe, variable penetration
depth of remote sensors, temporal difference and high costs of field surveys, as discussed in Section 1.1.
For this reason, they stated that a quantitative comparison directly with other variables such as rainfall
and temperature data is not possible [39].

However, a change detection method may have some limitations in retrieving surface soil
moisture under extreme conditions such as permanently dry or wet soils with no dynamics. When
any single data point is overestimated or underestimated as an outlier, then the entire estimation
may also be affected by those misleading upper or lower limits. This approach may have errors
arising from land surface heterogeneity, as not characterizing land surface parameters or making a
complicated calculation of vegetation dynamics. Instead, they assume a time-invariance of roughness
and vegetation, and a land surface homogeneity within the scatterometer footprint [6]. Based upon
the empirical interpretation that the effects of vegetation dynamics are minimized at 40 degrees, all
backscattering values are extrapolated to a common incidence angle of 40 degrees. This method
also assumes a linear relationship between surface and deep soil moisture, a vertical and spatial
homogeneity of soil property such as soil hydraulic conductivity, and no evapotranspiration activity in
the water balance established for calculating soil water index. More detailed description is available at
http://www.eumetsat.int/website/home/Data/Products/Land/index.html.

http://www.eumetsat.int/website/home/Data/Products/Land/index.html
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1.3.2. Inversion Method

Due to significant impacts of land surface variability on soil moisture retrievals, it was previously
suggested that operational models need an adjustment for time-varying and spatially heterogeneous
input parameters [40]. Recently, some passive microwave retrievals consider land surface heterogeneity
from sub-pixel scale land cover information. For example, AMSR-E Land Parameter Retrieval
Model (LPRM) minimizes a mismatch between simulated and measured brightness temperature
with two-channel iterations to simultaneously retrieve land surface temperature, vegetation optical
depth and the soil dielectric constant [13]. On the other hand, they use global constant values for
surface roughness, cross polarization, and single scattering albedo [36]. SMOS also uses a nonlinear
iterative Bayesian approach. To retrieve soil moisture, it needs a broader range of time-varying
geo-physical parameters such as vegetation optical depth, surface roughness, dielectric constant, and
surface temperature, scattering albedo [12]. Geophysical parameters are updated and adjusted by
iterations to optimize a cost function. However, the SMOS retrieval algorithm does not operationally
retrieve all the geo physical parameters at the same time. For example, it always retrieves soil moisture,
but retrieves optical density or roughness, if appropriate (e.g., if satisfying the quality index [14]).
On the other hand, the SMAP soil moisture algorithm uses the alternate aggregation procedures of
Zhan et al. [41] to use the vegetation water contents (VWC) for vegetation heterogeneity, in addition to
1 km land cover information. SMAP soil moisture brings input parameters (e.g., surface temperature,
surface roughness, vegetation optical depth, and single scattering albedo) externally from ancillary
database or land cover look-up table [37,42], instead of retrieving them.

2. Methods

2.1. Relative Approach (Inter-Comparison): Climatology Error

This section introduces relative approach. Triple Collocation in Section 2.1.1 compares three
different datasets for estimating uncertainty. Cumulative Distribution Function matching in
Section 2.1.2 addresses a bias correction prior to data assimilation. Data assimilation in Section 2.1.3
reduces random errors by comparing model estimates and satellite observations. The final analysis
may be used as neutral reference data to estimate errors so that the data assimilation is included here.

2.1.1. Triple Collocation (TC) Method

Triple collocation determines the relative errors by directly comparing three independent
estimations over the same variable, assuming that errors from different sources are not correlated [43].
It has been often applied to satellite-retrieved soil moisture error characterizations (Leroux et al.,
2013, Su et al., 2014). Scipal et al. [22] first introduced this method to circumvent a limitation of
the upscaling discussed in Section 1.1, as it was found that upscaling errors are often larger than
satellite retrieval errors per se, and field measurements are too scarce across the globe to apply that
method to operational services. Thus, without using ground-based field measurements, they compared
climatology of three independent and spatially distributed soil moisture datasets from the TRMM
Microwave Imager (TMI), the active microwave ERS-2 scatterometer and ERA-Interim re-analysis data.

Unlike the original aim of Scipal et al. [22], some other researchers applied a TC method for
the estimation of upscaling or aggregation errors by including local scale field measurements [24,44].
However, there are critical shortcomings for such applications. To assess upscaling errors, the method
should be able to estimate instantaneous (or at least seasonal) satellite retrieval biases nonlinearly
arising from several dynamic factors of vegetation, or rainfall conditions. However, a TC method
estimates a relative difference in stationary climatology, instead of absolute and instantaneous retrieval
errors as in RMSEs of field measurements. As it definds errors from inconsistency in datasets, error
estimation may change if using different reference data. It is considered as ‘relative errors’ [45].
Thus, if the assumption that three datasets are independent is violated, the underestimates actual
retrieval errors. In fact, satellite data and reference data to be compared with often have a positive
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error covariance. This may occur, because retrieval algorithms often share several input data sources,
similar cost function algorithms or similar error structure with the reference data (e.g., land surface
models). For example, in the event of rain, both model (if the model is used as reference data) and
satellite data are similarly prone to make significant overestimations. Land surface models are affected
by rainfall data vulnerable to errors, as the satellite retrievals are also influenced by the water film
suddenly formed on the surface, and the consequent change in a penetration depth. For the estimation
of dielectric constant, both satellite retrievals and models require a similar type of soil property
information. For example, if the clay fraction in soil maps used for both land surface model and
satellite retrievals is overestimated [5,46], then this is escalated to the overestimation of wilting point
or field capacity in the land surface models and adversely affects the satellite retrievals to convert
dielectric constant to soil moisture, resulting in the similar overestimation of soil moisture in both
satellite retrieval and land surface models [18,47,48].

Recently, Gruber et al. [49] introduced an extension of the existing TC. For example, they added
the correlation coefficient to the TC [50], or combined the TC with the statistical analysis of filtering
innovations in data assimilations [51].

2.1.2. CDF Matching

The CDF matching has been widely used for bias correction of satellite soil moisture data [52].
Fundamentally, it matches the cumulative distribution function of satellite data with a long record
of climatology from reference data. As it is effective in rescaling satellite data towards the model
estimates, it is employed as a bias correction prior to data assimilation. However, there are some
limitations as a bias correction [52]. For example, an instantaneously or seasonally dynamic variation
of rescaling parameters or retrieval errors is ignored [53]. This method is based on soil moisture
climatology, which do not take into account sub-pixel heterogeneity [33]. Thus, satellite observational
or retrieval errors often remain even after bias correction [54].

2.1.3. Data Assimilation Analysis Increments

The data assimilation diagnostics such as innovation or analysis increment may be available from
the SMAP Level 4 data processing [55]. They may be used as the reference data to diagnose uncertainties
in satellite retrieval products. A consistency check of Desroziers et al. [56] may be relevant. They
suggested to estimate the satellite observational errors by a covariance between “analysis increment”
(observation-minus-analysis) and “background departure” (observation-minus-model). Dee [57] also
attempted to attribute the satellite observational error with data assimilation. He suggested considering
the “analysis increments” as the reference data to be compared with satellite data.

Data assimilation analyses have both merits and limitations on the diagnosis of uncertainty.
As compared to two relative approaches discussed in Sections 2.1.1 and 2.1.2, data assimilation
approach may be less sensitive to an integrity or a choice of reference data. That is because data
assimilation considers both observational and model errors. However, data assimilation aims for
mitigating the random errors so that it does not make a bias correction for the satellite observational
errors, in principle.

2.2. Stochastic Approach: Instantaneous Retrieval Errors

Retrieval error information is often provided by Quality Control (QC) flags, which include a
cost function information to be reached at the end of the retrieval process, retrieval errors of each
parameter product, confidence level on retrieved soil moisture, RFI, several node information of rain,
snow, frozen soils, forest or open water required to improve the quality of brightness temperature
data [12,55,58]. In general, QC science flags are very useful and informative, but often not sufficient to
interpret, use them as error information required for data assimilation. QC information only indicates
how the system treats a single step of several retrieval processing steps, not conferring the integrated
error information in the unit of soil moisture.
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Therefore, we discuss footprint-scale retrieval errors in this section, which are not dealt with
upscaling in Section 1.1.2 and relative climatology errors in Section 2.1. At a footprint scale, a
partial-derivative (or tangent space or Jacobian matrix) method may be employed for deterministically
quantifying retrieval errors [59]. However, in practice, there are several difficulties in operationally
implementing it. First, the accurate error of satellite products are often too complicated to
deterministically define, predict or assume with a priori knowledge. For example, Parinussa et al. [36]
employed a deterministically fixed single value for brightness temperature errors. It was emanated
from a priori knowledge based upon a global and long-term average of nominal pixels rather than
all the dynamic and real-world error conditions such as forest, RFI contamination, storm rainfall
event, frozen soil, snow cover, flooding, or complex topography. However, such trimmed values that
neglect all the outliers or extreme conditions are symbolic. They do not show the error dynamics in the
real world so that the error propagation may considerably underestimate the actual retrieval quality.
More importantly, the error propagation of satellite retrieval algorithms is nonlinear and chaotic so
that deterministically defined single error value has no representativeness of or balance with various
error scenarios [60]. A slight change in retrieval input can make large outliers in retrieval outcome,
if the input perturbations occur outside of the optimal range. In contrast, no significant differences
in retrieval products occur, when the same degree of perturbations occur within an optimal range
of retrieval input parameters. Such a chaotic nature of nonlinear systematic error propagations is
illustrated in Figure 3, where the outlier in black dot is largely deviated from other groups. If the
input errors deterministically defined in perturbation scheme are assumed too optimistically or still
within an optimal range (for example, schemes #1, 2, and 3 in Figure 3), then there is a possibility
that the retrieval errors can be largely underestimated. In fact, actual errors could be much larger as
in scheme #4 of outlier in Figure 3. Due to such a nonlinear error propagation of satellite retrieval
algorithm, and the unpredictability of retrieval input errors, deterministically defined single error
value has very limited representativenss of the whole system. Thus, there is need to take into account
the probability distribution of errors affecting radar backscatter or soil emission, instead of global
constant error determined by a priori knowledge.
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2.2.1. The Concept and Type of Retrieval Ensembles

The simple way to resolve the issues discussed above is to randomly repeat measurements or
retrievals. We consider it as the ensembles, which are defined as multiple idealizations of “virtual”
copies of the state, considering various possibilities at once [62]. If the ensembles being applied to
retrieval algorithms, then it may be called “retrieval ensembles”. The main idea of retrieval ensembles
is to integrate various retrievals in probability to find more optimal and certain sample. The rationale
is that a single retrieval model using a single input generally contains biases so that several constraints
in retrieval algorithms may be mitigated with stochastically repeated measurements or retrievals, or
with appropriate integrations with other retrieval products.

There are two different approaches in retrieval ensembles: (1) the deterministic approach to
assemble multiple retrieval models [63]; and (2) the probabilistic approach to process various retrieval
input data with the same retrieval algorithm, where the input errors are stochastically defined in a
form of PDF (Probability Density Function) [48,52,64]. These are also called PDF methods.

In the deterministic method, a single satellite retrieval product is obtained by combining the
different soil moisture retrieval products generated from various retrieval models. It assembles the
different retrieval products to produce a single dataset with the same temporal and spatial resolution.
The advantage of this deterministic approach is that the ensemble members come from various
instruments and retrieval models so that the information includes a broad range of possible estimations,
and diversity.

In the probabilistic method, the retrieval ensembles are obtained by stochastically perturbing
inputs of a single retrieval model. For a random perturbation of inputs, it is important to make a
correct attribution of error sources, and identify error ranges. This could be sometimes helped with the
use of the uncertainty quantification analysis [65,66]. In this review, we focus on this approach. Details
of the probabilistic method are introduced in following Section 2.2.2.

This retrieval ensemble suggests several advantages, as compared to other bias correction or error
analysis methods in Section 2.1. First, the ensemble method directly assesses the footprint-scale errors
without involving upscaling errors. Secondly, this ensemble analysis is specific to a selected retrieval
algorithm and particular sensor. Finally, it is not affected by a selection of or error in reference data,
unlike relative approach.

For the limitation of a stochastic approach, Parinussa et al. [36] previously argued that the Monte
Carlo approach or the use of multiple retrieval models is operationally infeasible, due to the high
computational cost. However, recent studies showed that a small ensemble size at 12–20 is sufficient
to provide the optimal estimates [52]. If perturbing different error sources including land surface
heterogeneity, meteorological event, satellite measurement, and parameter inversion errors with the
same ensemble size, the resultant ensembles indicate a different quantitative measure of retrieval
errors. In this context, the appropriate error attribution and an optimization of realistic ensembles is
much more important than a large ensemble size itself. It is possible to optimize the ensembles that
function as a bias correction in a non-local approach that does not require ground measurements-based
RMSEs. With statistical index such as Lyapunov exponent or Kurtosis, it should be monitored whether
a chaotic system is transformed into a stochastic system that improves a structural stability and flexibly
reduces non-linear retrieval errors, and whether the ensembles follow a Gaussian distribution [67,68].

2.2.2. Generation of Retrieval Ensembles

The retrieval ensembles are dependent on satellite measurements of sensors, and retrieval input
parameters, and land cover. The error sources to be considered for generating ensembles are largely
classified into three main categories, as shown in Table 1.
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Table 1. Error sources to consider for ensemble generation.

Error Sources Details Error Range Reference

Instrument
measurements

(backscattering/
brightness temperature)

calibration error, incidence angle,
interpolation error, RFI, instrument noise,

topography, rainfall events,
surface conditions

20~30 K
(e.g., ±10 K)

Lee et al. [30],
de Rosnay [69],
Lee and Im [52],

Muñoz-Sabater [54]

0.3~2.5 K Crow et al. [59],
Parinussa et al. [36]

0.5~2 dB Mattia et al. [70]

Geo-physical parameters

soil roughness, optical density, soil
property, single scattering, albedo, surface

temperature, vegetation coefficients,
soil temperature

6~10% Verhoest et al. [16],
Schmugge et al. [71]

25~40 K Holmes et al. [72]

−5~18 K Schlenz et al. [73]

20~30 K Crow et al. [59]

Sub-pixel soil/
land cover

land cover, mixing regime, soil map or
vegetation fraction misclassification 22~60% Leroux et al. [45],

Panciera et al. [74]

Instrument Measurements

Measurement errors arise from calibration errors, vegetation attenuation, the water film formed by
rain events, RFI, radiometric noise, instrument errors, bandwidth, sample integration time, structural
uncertainty in surface backscatter or soil emission, and incidence angle interpolation errors and
others [59]. It is a very important error source to consider, since several retrieval algorithms employ an
inversion to minimize a mismatch with measurements. If the measurements are incorrect under such
a scheme, then retrieved variables are also incorrect as a consequence. From the statistics of various
retrieval ensembles generated by various perturbation schemes, Lee et al. [18] found that satellite
measurement errors are multiplicative, in contrast to errors in retrieved geo-physical parameters.
Crow et al. [59] and Parinussa et al. [36] suggested 0.3 to 2.5 K for the brightness temperature errors,
across the bandwidth. If more realistically including external forcing events, complex vegetation
condition, RFI and vertical soil heterogeneity such as a high vertical gradient condition in soil
layers, then a much larger magnitude of 20 K is suggested for brightness temperature measurement
biases [18,47,54,69,73]. This error range is fundementally different from globally averaged climatology
errors estimated over nominal pixels. For backscattering errors, Mattia et al. [70] and Lee [61] previously
suggested 0.5 to 2 dB.

Geo-Physical Parameters

This considers the effects of errors in geo-physical input parameters or ancillary data. The key
includes soil and surface temperature, surface roughness, optical depth and single scattering albedo.
First, surface roughness largely propagates soil moisture retrieval errors. It is difficult to directly
measure them not only at a local point scale but also at a global scale. Even when it is possible to
measure roughness in the field, there is uncertainty in applying it to satellite due to scale dependency
and a factor of sun-glint [75]. Thus, this parameter is often estimated by an empirical formula or inverse
method based upon the Bayesian approach [70,76]. However, those approaches have uncertainty
in several circumstances such as a large vertical gradient of soil moisture or different soil textures,
propagating errors to the estimation of soil reflectivity and soil moisture [77]. Some retrieval algorithms
such as the LPRM use a globally fixed value for surface roughness, neglecting surface heterogeneity and
consequently producing uncertainty in soil moisture retrievals. For an error range, Verhoest et al. [18]
found that roughness-induced retrieval errors are approximately 6–10% in the case of using active
microwave SAR sensor [71].

Land surface temperature is also an important input parameter for soil moisture
retrievals [71,78,79]. Although it is a key parameter with high sensitivity to soil moisture retrievals,
both SMOS and SMAP instruments at a single frequency do not observe the other variable of surface
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temperature. Thus, the uncertainty arising from interpolating the variable and using the ancillary data
from external database is unavoidable.

Another error source is an optical depth. De Jeu et al. [47] previously reported that a sensor’s
sensitivity to soil moisture variations decreases and errors increase with vegetation optical density,
as soil emission is attenuated by canopy. It may be because no remotely sensed index reasonably
estimates vegetation height yet. Although several retrieval algorithms relate the optical depth to
LAI [5,72], the optical depth is actually more related to the VWC [80] which better reflects vertical
characteristics. The SMAP retrieval system uses the VWC, but it is estimated with the Normalized
Difference Vegetation Index (NDVI) from visible near infrared reflectance from the EOS MODIS and
NPP/JPSS VIIRS instruments. The NDVI barely reads the vertical characteristics of canopy [81], and is
easily saturated by low-level vegetation. For these reasons, Holmes et al. [72] found that the vegetation
models introduce uncertainties up to 25 K. They also stated that the auxiliary vegetation database
regime results in large variations in simulating brightness temperature by 40 K. Crow et al. [59]
also discussed that a spatial pattern in soil moisture retrievals is influenced primarily by vegetation
distribution, and found that the presence of vegetation changes the brightness temperature simulations
at H-polarization up to 30 K, and at V-polarization up to 20 K.

Finally, there is uncertainty in a single scattering albedo. Several retrieval algorithms use the fixed
value of 0.05 to 0.06 across the globe [5,36], due to a scarcity of field measurements. However, in fact,
a range of this variable actually varies by several factors. Davenport et al. [82] previously reported
that it is spatially heterogeneous as the single scattering albedo is a function of canopy geometry, and
vegetation species. They discussed that even an error of 0.01 in the single scattering albedo can be
propagated up to soil moisture retrieval errors at 0.02 to 0.1 m3/m3. For this reason, a single scattering
albedo is also a potential error source to consider for generating retrieval ensembles.

Sub-Pixel Land Cover and Soil Map

There can be retrieval errors arising from the assumption of uniform pixels. Vegetation,
meteorological activity, topography, and soil property are spatially heterogeneous at
low-resolution [33,40,83], although satellite retrievals deal with the pixels as a uniform entity
(the SMOS algorithm considers sub-pixel land cover heterogeneity at 4 km by 4 km, but it is eventually
aggregated to be uniform at 25 km by 25 km). Crow et al. [59] suggested that aggregation errors arise
from the nonlinearity between soil moisture retrievals and land surface, and from the space borne
sensors that are unable to capture the net impact of sub-pixel land surface conditions. Zhang et al. [21]
also demonstrated that the soil moisture retrieval errors increase with a degree of land surface
heterogeneity. Lee et al. [18] demonstrated that sub-pixel land cover misclassification is propagated
to soil moisture retrieval errors. Leroux et al. [45] also reported that sub-pixel soil texture and land
cover information (e.g., the presence of forest in the field of view) are important error sources after
integrating several years of SMOS radiometer data. Draper et al. [84] suggested that a complexity
of topography limits soil moisture retrieval skills of both passive and active microwave sensors.
Panciera et al. [85] also stated that soil moisture retrieval errors are significant due to the negligence of
sub-pixel vegetation heterogeneity. Thus, the sub-pixel heterogeneity may result in retrieval errors, if
not appropriately accounted for.

In particular, uncertainty in high-resolution soil map is also a factor to consider. The soil reflectivity
required to simulate brightness temperature is a function of dielectric constant, which is formulated
with soil moisture, soil bulk density, soil particle density or wilting point [86,87]. Most of the operational
systems determine such soil properties from a soil texture map [5,38,55,88]. However, it is complicated
to estimate the spatially and vertically heterogeneous and dynamic soil property from a soil texture
map, due to a nonlinear relationship between soil texture and property [89–91].

The propagation of error sources discussed above in Section 2.2.2 are dependent on a type of
remote sensor, wave length, climatology and retrieval algorithms used. Every satellite product
has their own error characteristics. For example, an L-band is designed to be less sensitive to
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geo-physical conditions such as soil roughness or vegetation, while active microwave sensors at
higher frequencies are more sensitive to them [60]. If the retrieval algorithm has a decision tree to select
the retrieval model that represents the dominant land cover at sub-pixels, then sub-pixel land surface
heterogeneity information quality will considerably affect the final retrievals, in contrast to other
retrieval algorithms assuming a time-invariance or uniformity of sub-pixel land surface conditions.
Therefore, it is suggested that the perturbation regimes for generating retrieval ensembles should be
empirically determined by a sensitivity analysis of retrieval algorithms to be used.

3. Results

3.1. Bias Correction

For an effective bias correction, it is important to optimize the retrieval ensembles realistically
representative of systematic errors through accurate error attributions in Section 2.2.2 and statistical
monitoring of stochastic evolutions [18,66,68]. Based upon the assumption of Gaussian distribution,
the empirical mean (hereafter called the “ensemble mean”) of retrieval ensembles is used to determine
a single optimal estimate. The arithmetic mean is a very good representative of the whole system
(central limit theorem, Laplace 1749–1827). The normal error distribution is in fact originated from the
astronomical observations that Galileo Galilei found in the 17th century. It has been developed to the
Gauss’ normal law of errors suggesting that the choice of arithmetic mean affords the most optimal
value to adhere to [92–94]. The universal tendency of Gaussian distribution is widely found from
Ensemble Kalman filter system [95], to biological system or price fluctuation of stock market. That
improves structural stability, and chaotic harmony by satisfying the universality (e.g., the second law
of thermodynamics for entropy, [68]), as well as representativeness by embracing various possibilities
as a whole [96,97].

In metrological terms, the optimal value is approximated by taking the empirical mean of the
retrieval ensembles, as follows:

x =
1
n

n

∑
i=1

xii = 1, . . . , n (4)

where x is the ensemble mean, n is the ensemble size, and xi is the ith ensemble member. Equation (4)
corresponds with the ISO VIM definition of the measurements discussed in Section 1.2.1, where the
average of repeated measurements in Equation (1) corresponds with the ensemble mean in Equation
(4), and the conventional true value in Equation (1) corresponds with original satellite end product.
Therefore, by ISO VIM definition, systematic errors become their difference between retrieval ensemble
mean and original satellite end product.

Several studies reported that satellite measurements should be stochastically retrieved due
to nonlinear retrieval errors and complexities. Hossain and Anagnostou [98] employed retrieval
ensembles for the optimal utilization of satellite rainfall data. They produced the probabilistic
(ensemble) representation of satellite rainfall products by specifying the stochastic error structure
of rainfall retrievals. Zhao et al. [99] successfully applied this approach to cloud retrieval products,
and produced optimal estimates by assembling several cloud retrieval models (available at http:
//www.arm.gov/data/eval/49). In order to reduce biases in temperature retrievals, Zhang et al. [66]
developed an “ensemble retrieval” methodology of atmospheric profiles from the Atmospheric InfraRed
Sounder (AIRS). They perturbed the temperature eigenvectors, and successfully reduced retrieval errors.

This stochastic approach has been also applied to reduce errors in soil moisture retrievals.
Li et al. [100] employed retrieval ensembles to reduce the uncertainties caused by observation
errors, parameter uncertainties, and an inversion method. They increased the number of brightness
temperature observations using multi-angle and dual-polarized radiometer. Lu and Gong [101] also
found that the ensemble data provides more realistic soil moisture information than deterministic single
product. De Keyser et al. [102] attempted to stochastically reduce errors in roughness when retrieving
Synthetic Aperture Radar (SAR) soil moisture with Integral Equation Model (IEM) model. They applied

http://www.arm.gov/data/eval/49)
http://www.arm.gov/data/eval/49)
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a Monte Carlo Method to estimate a correlation length, and finally achieved RMSE of approximately
3.5 vol % from the median of randomly produced soil moisture product, as shown in Figure 4.
Oh et al. [103] used an ensemble-averaged differential Mueller matrix for microwave backscattering
from PDF of the co-polarized phase angle and backscattering coefficients. Kim et al. [104] found that
several model realizations and repeated measurements reduce radar observational errors arising
from speckle. Merlin et al. [33] also employed ensembles to perform their downscaling of SMOS soil
moisture products to 1 km resolution.
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Figure 5 shows that the retrieval ensemble mean corrected footprint scale wet biases of the SMOS
soil moisture in semi-arid region [52]. Ensembles were generated from a random perturbation of
brightness temperature with an ensemble size of 12. The error range is determined to fully include
all the dynamic and extreme errors arising from the effects of rain events, vegetation attenuation,
any geo-physical parameters, or RFI to be discussed in Section 2.2.2. Among several other ensemble
generation schemes, brightness temperature ensembles were selected because the resultant ensemble
mean appropriately reduced the errors already known by a priori knowledge of retrieval error
structure [18]. It is also possible to make a time or spatial integration of ensembles in order to
enhance the utilization of ensembles at a reduced computational cost. In addition to wet biases in
West Africa, dry biases in Little Washita Watershed site in Oklahoma were also resolved by a time
integration of ensembles [105]. On the other hand, CDF matching in Figure 5 increased the RMSEs of
the original SMOS soil moisture, as CDF matching shifted the original SMOS soil moisture towards
reference data exposed to their own intrinsic errors (i.e., the lowest limit of soil moisture is set at
wilting point for calculating bare soil evaporation so that model did not appropriately simulate soils in
extremely dry conditions drier than the wilting point [106].
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Figure 5 at a local point scale is further extended to a spatial distribution in Figure 6, where CDF
matching overestimated the SMOS soil moisture, similarly to Figure 5.
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Figure 6. Spatial distribution of surface soil moisture, m3/m3 (red is wet, while blue is dry): (a) SMOS
product; (b) CDF matching; (c) ensemble method; and (d) difference between before and after bias
correction [52].

3.2. Estimation of Uncertainty

Retrieval ensembles can also be used to estimate uncertainty by analyzing a standard deviation of
retrieval ensembles [66,95,107–111]. Ensemble spread (SD) is expressed as follows:

SD =

√
1

n − 1

n

∑
i=1

(xi − x)2 (5)

Equation (5) follows the same denotation with Equation (4), and is well in line with the definition
of GUM uncertainty at Equation (3) in Section 1.2.2, where the standard deviation corresponds with
the ensemble spread.

Several previous studies have successfully applied retrieval ensembles for assessing uncertainty
in various satellite retrievals such as carbon dioxide, cloud, and rainfall retrievals. Reuter et al. [112]
previously generated the retrieval ensembles from seven different retrieval algorithms for carbon
dioxide concentrations, and successfully estimated retrieval uncertainty from the ensemble spread.
Olson et al. [113] propagated the random errors in passive microwave radiometer observations to
measure rainfall errors, and successfully quantified the footprint scale rainfall errors at low resolutions.
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Zhao et al. [110] also employed the cloud retrieval ensembles by perturbing the influential factors
from retrieval inputs, assumptions and regression parameters, and successfully estimated the retrieval
uncertainty in cloud retrieval products. By doing so, they suggested the error attribution factors for
various retrieval variables, and showed that the ensemble spread well exhibits realistic retrieval errors.

This stochastic method has been also applied to the estimation of uncertainty in soil moisture
products. De Keyser et al. [102] provided an estimation of SAR retrieval uncertainty by propagating a
probability distribution of roughness parameters via IEM model. Kim et al. [104] evaluated soil
moisture retrieval accuracy by estimating the impact of radar measurement noise with Monte
Carlo Simulation. They showed that the error propagation is different by a type of vegetation.
They considered the noise arising from speckle or geo-physical uncertainties. Verhoest et al. [114]
modeled roughness parameters with a probability distribution to assess uncertainty in soil moisture
retrievals from ERS synthetic aperture radar backscattering. Lee et al. [18] showed in Figures 3 and 7
that the spread of SAR and SMOS soil moisture retrieval ensembles varies by error attributions and a
range of input errors to be defined. Thus, before concluding uncertainty information, there is need to
evaluate whether the nature of ensembles becomes stochastic, instead of a chaotic system.
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4. Discussion

As the unbiased Root Mean Square Error (RMSE) goals of 0.04 m3/m3 are imposed for the
SMOS and SMAP retrieval qualities, the error characterization or validation of satellite data is often
carried out by upscaling the ground measurements. However, it is not a trivial issue to reproduce
footprint scale land surface heterogeneity with point measurements [8]. In this context, this review
discusses the limitation of RMSE retrieval goal based upon different governing factors, a limited
spatial coverage of high density validation site at a global scale, field measurement errors, and variable
penetration depth. It is also stated that relative approach such as Triple Collocation (TC) or cumulative
distribution function (CDF) matching that rely on a relative comparison with other datasets are
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designed for climatology stationary errors at a time-scale of years [45] rather than resolving sub-pixel
heterogeneity [33].

For a short-range weather prediction such as storm or floods at hour to day time scale and
footprint spatial scale, we review a stochastic method for reducing instantaneous retrieval errors at
a footprint scale [52]. However, a stochastic approach also has a limitation. Although a stochastic
approach can mitigate retrieval errors arising from input parameters, sub-pixel land cover or satellite
measurements in Table 1, it does not improve a Radiative Transfer Model itself. In addition, if the error
factors listed in Table 1 are defined optimistically, then the stochastic approach may underestimate
true retrieval bias. However, it does not overestimate retrieval biases, although overestimating input
errors in Table 1. As retrieval algorithms do not propagate such overestimated errors, a stochastic
approach may perform better when assuming large errors. For a successful application, a reasonable
error attribution and a stochasticity of ensembles should be established.

A stochastic approach suggests significance for global application, as the random system improves
a structural stability of retrieval algorithm by embracing several possibilities, is flexible enough to
land surface heterogeneity at a global scale and transforms nonlinear errors in extreme conditions to
stochastic stability, gains representativeness by repeated measurements or retrievals, and has a global
coverage, and operational consistency, unlike the soil moisture international networks [3].

5. Summary and Conclusions

This review discusses various error estimation and reduction methods. As a standard method for
validating satellite soil moisture products, we first introduce an upscaling of point measurements at
local point scale. However, due to a scarcity of core validation sites at global scale, under-sampling
of land surface heterogeneity and discrepancy in scale, TC method is suggested. It is effective to
estimate relative errors and various possibilities at a global scale. However, such a relative approach
may underestimate uncertainty, when three datasets have positive error covariance. Data assimilation
final analysis finds an intermediate between model estimates and observations so that it is possible to
acquire optimal values filtering out random errors in datasets. However, as data assimilation in theory
aims for random errors, there is need to process a bias correction of satellite observations, prior to data
assimilation. Thus, for such a purpose, CDF matching is suggested. It is effective to rescale the satellite
observations with respect to reference data. However, it does not estimate the instantaneous retrieval
errors defined by SMOS or SMAP RMSE goal or retrieval error dynamics required for a short-range
weather prediction.

Thus, we review a stochastic approach using the ensemble method to resolve a complexity of
retrieval errors arising from sub-pixel land cover map, geo-physical parameters, and measurements.
Because of nonlinearity and chaotic nature of retrieval errors, it is shown that a stochastic approach that
repeats measurements or retrieval model realizations under various conditions is more structurally
stable and flexible to non-linear errors and outliers than a deterministic approach. Thus, it is considered
effective for a global estimation, where land surface heterogeneity and scale remain a challenge.
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