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Abstract: Monitoring fine particulate matter with diameters of less than 2.5 µm (PM2.5) is a critical
endeavor in the Beijing–Tianjin–Hebei (BTH) region, which is one of the most polluted areas
in China. Polar orbit satellites are limited by observation frequency, which is insufficient for
understanding PM2.5 evolution. As a geostationary satellite, Himawari-8 can obtain hourly optical
depths (AODs) and overcome the estimated PM2.5 concentrations with low time resolution. In this
study, the evaluation of Himawari-8 AODs by comparing with Aerosol Robotic Network (AERONET)
measurements showed Himawari-8 retrievals (Level 3) with a mild underestimate of about −0.06 and
approximately 57% of AODs falling within the expected error established by the Moderate-resolution
Imaging Spectroradiometer (MODIS) (±(0.05 + 0.15AOD)). Furthermore, the improved linear
mixed-effect model was proposed to derive the surface hourly PM2.5 from Himawari-8 AODs from
July 2015 to March 2017. The estimated hourly PM2.5 concentrations agreed well with the surface
PM2.5 measurements with high R2 (0.86) and low RMSE (24.5 µg/m3). The average estimated PM2.5
in the BTH region during the study time range was about 55 µg/m3. The estimated hourly PM2.5
concentrations ranged extensively from 35.2 ± 26.9 µg/m3 (1600 local time) to 65.5 ± 54.6 µg/m3

(1100 local time) at different hours.
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1. Introduction

Ambient fine particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) are
associated with adverse human health effects; thus, they are regarded worldwide as a public health
threat [1,2]. Given the finer size of PM2.5 compared with PM10 (aerodynamic diameters less than 10
µm), PM2.5 can be breathed deeply into the lungs and seriously damage human organs [3]. The PM2.5
concentrations in the Beijing–Tianjin–Hebei (BTH) region, which is one of the most populated and
polluted regions in North China, have increased significantly in the past few decades due to rapid
economic growth and industrialization, further resulting in severe events of atmospheric pollution [1,4].
However, data on PM2.5 concentrations are often sparse because monitoring activities are often
conducted in urban areas due to difficulties and high costs of technical application; thus, these data
hardly reflect the real effects of local meteorology, topography, and the location of emission sources [5].
Satellite measurements can offer information on aerosol optical depths (AODs) with large-scale spatial
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coverage and different temporal–spatial resolutions. A promising correlation exists between AOD and
atmospheric particles because AOD represents the quantity of light removed from a beam via aerosol
particle scattering or absorption along the optical path [1,6–8]. Thus, satellite measurements have been
widely employed as a proxy to infer surface PM2.5 concentrations [2,5,9].

Previous studies proposed establishing empirical models to correlate ground-level PM2.5 and
satellite-derived AOD (e.g., linear, nonlinear, and logarithmic models) [10–12]. In addition to the
AOD, predictors, such as aerosol types, meteorological factors, and land use information, have been
incorporated into models to improve model performance [13–15]. Advanced statistical methods, such
as generalized linear regression models [12], mixed effects models [16], generalized additive models [9],
geographically-weighted regression [2], and semi-empirical models [7], have been employed to
represent the relationships between the ground-level PM2.5 concentration and various predictors.
Xin et al. [8] demonstrated the linear relationship of daily PM2.5 with the Moderate-resolution Imaging
Spectroradiometer (MODIS) AODs (R2 = 0.57) in North China from 2009 to 2011. Ma et al. [1] explored
the relationship between the mass concentration of surface PM2.5 and MODIS AODs in the BTH
region, and they suggested that the relation strongly depends on the season. Xie et al. [17] developed
a mixed-effect model to derive daily estimations of surface PM2.5 using a 3 km MODIS AOD in
Beijing, and the model performed well in cross-validations (CVs) with R2 of 0.75−0.79. A similar study
developed linear mixed-effect (LME) models to integrate MODIS AODs, meteorological parameters,
and satellite-derived tropospheric NO2 column density to estimate daily PM2.5 concentrations over
the BTH region, in which model accuracy was calculated at R2 = 0.77 with a mean error of 22.4% [18].
Other statistical models, including multiple linear regression [19], non-linear models [19], generalized
additive models [9], and geographically-weighted regression [2,20] were developed to estimate the
spatial distributions of PM2.5 and reduce the estimated errors. However, when PM2.5 was estimated
and these models were applied in the BTH region, two issues were noted. First, the AODs obtained
from polar orbit satellites were limited by observation frequency (e.g., MODIS conducted only twice a
day) [21,22], so they were insufficient for understanding PM2.5 evolution. Second, it is still necessary
to continue exploring more suitable models that can reflect the relationship between AOD and PM2.5.

A geostationary satellite can overcome the estimated PM2.5 with low time resolution [23].
Himawari-8, which is operated by the Japan Meteorological Agency and was launched on 7 October
2014 (operated on 7 July 2015), is a new geostationary meteorological satellite sensor that can
characterize aerosols [24]. Himawari-8 can provide AODs with 10 min intervals and 5 km coverage
over about one-third of the Earth (i.e., the Western Pacific Ocean, East and Southeast Asia, and
Oceania) [25,26]. However, the accuracy evaluation of Himawari-8 aerosol production is limited,
and bias and error characterization is a critical step in satellite aerosol production [21,27]. Therefore,
we evaluated Himawari-8 retrievals by comparing them with the Aerosol Robotic Network (AERONET)
sites before the AODs were applied in estimating PM2.5. In this study, a primary estimation of hourly
PM2.5 based on the Himawari-8 hourly AODs over the BTH region in China was executed from
July 2015 to March 2017. An improved LME model was proposed to estimate PM2.5 concentrations
in the BTH region, and the model performance was assessed by a 10-fold CV method. The spatial
distributions of hourly PM2.5 concentrations were derived from the improved LME model.

2. Study Area and Datasets

2.1. Study Area

The BTH region, also known as the Jing–Jin–Ji region, is the capital region of China. As the core
area of the Bohai Economic Rim, the BTH region consists of two municipalities (Beijing and Tianjin)
and 11 prefecture-level cities in Hebei Province. As shown in Figure 1, the BTH region with an area of
217,127 km2 is located in northeastern mainland China between the longitudes of 113◦ to 120◦E and
latitudes of 36◦ to 43◦N. With a temperate continental monsoon climate, the BTH region has humid
and hot summers and dry and cold winters. In 2014, the annual average temperature in the BTH
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region was from 3.8 ◦C to 15.5 ◦C, whereas the annual average precipitation was around 400 mm. The
dense population, industrialization, congested local traffic, and coal consumption of the BTH region
all contributed to its status as the most concentrated PM2.5 region in China [1,18].
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Figure 1. Elevation map of (a) China and (b) Beijing–Tianjin–Hebei region. (b) Spatial distributions of
fine particulate matter (PM) and AERONET sites in Beijing–Tianjin–Hebei region.

2.2. Datasets

The datasets used in this study included Himawari-8 Level 3 hourly AOD data and hourly
observation data of surface PM2.5 concentration in the BTH region (Figure 1). Datasets covering
more than a year (from July 2015 to March 2017) were used. The center of Himawari-8 is 140.7◦E
over equator, and the observation area is located from 80◦E to 160◦W and from 60◦N to 60◦S [28].
Himawari-8 can provide AODs at 500 nm and Ångström exponents with 10 min intervals and 5 km
coverage over about one-third of the Earth (i.e., Western Pacific Ocean, East and Southeast Asia, and
Oceania) [25,26]. The AODs were subjected to quality assurance with four confidence levels, namely,
“very good,” “good,” “marginal,” and “no confidence” (or “no retrieval”). In this study, we only
evaluated aerosol retrievals with the highest confidence level (“very good”). Himawari-8 hourly AODs
with high quality were evaluated by comparing with AERONET measurements at level 1.5 because
the accuracy reports of Himawari-8 retrievals were scarce. AERONET AODs could be used as a basis
of comparison for satellite validation because their accuracy was less than 0.02 [29].

Hourly surface PM2.5 mass concentrations were obtained from the official website of the China
Environmental Monitoring Center, which has been described in detail in a previous work [30].
Automated monitoring systems were installed in each site and used to measure the ambient
concentration of SO2, NO2, O3, CO, and PM2.5 and PM10 according to China Environmental Protection
Standards. Meteorological data were obtained from reanalysis datasets (i.e., ERA-Interim) of the
European Centre for Medium-Range Weather Forecasts (ECMWF). The ECMWF uses data assimilation
systems and forecasting models to reanalyze observation datasets [31]. The ERA-Interim, one of
the reanalysis datasets of ECMWF, offers a global atmosphere reanalysis since 1979. Meteorological
data from the ERA-Interim include surface relative humidity (RH, %), and boundary layer height
(BLH, m). The surface type is approximated by the Normalized Difference Vegetation Index (NDVI),
which is obtained from MODIS 16-day NDVI production “CMG 0.05 Deg 16 days NDVI” in
“MOD13C1/MYD13C1.” An NDVI larger than 0.4 usually indicates vegetated areas, whereas a smaller
value refers to soil-dominated surface in generally [27]. Additionally, the DEM covering the BTH region
with a resolution of 90 m produced by the National Aeronautics and Space Administration (NASA)
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was downloaded from the Consortium for Spatial Information (http://srtm.csi.cgiar.org/index.asp).
Detailed information of the datasets applied in this study is shown in Table 1.

Table 1. Summary of datasets applied in this study.

Dataset Variable Unit Temporal Resolution Spatial Resolution Source

PM2.5 PM2.5 µg/m3 1 h Site CEMC

AOD
Ground AOD Unitless ~15 min Site AERONET
Satellite AOD Unitless 1 h 0.18 Himawari-8

Meteorological
Factors

RH % 6 h 0.125◦
ECMWFBLH m 3 h 0.125◦

Land
NDVI Unitless 16 days 0.05◦ MODIS
DEM m not available 90 m NASA

3. Method

3.1. Evaluation Method of the Himawari-8 AOD

Evaluation methods were applied as follows: (1) accuracy, which refers to the average difference
between two datasets; (2) precision, which is the standard deviation of the difference; (3) uncertainty,
which refers to root mean square deviation; (4) correlation coefficient (R), which refers to the correlation
and dependence of the statistical relationships between two datasets; and (5) percentage of Himawari-8
AODs falling within the expected error (EE) range (±(0.05 + 0.15 AOD) over land), as established
by MODIS (i.e., from the continuous validation of the MODIS aerosol team). The MODIS EE is
a linear envelope line below and above the 1:1 line on a scatterplot, which can encompass at least
67% (about one standard deviation) of the collocations [27,32]. The MODIS uncertainty applied in
this study can assess whether the high-quality Himawari-8 AOD can achieve the accuracy of MODIS.
The spatiotemporal collocations between the Himawari-8 retrievals and AERONET AODs were
consistent with those of other studies [27,33,34]. We averaged all of the Himawari-8 retrievals within
the 20 km radius of an AERONET site to represent the satellite aerosol value. To obtain a representative
Himawari-8 AOD around an AERONET site, the requirements are as follows: approximately 20% of
the total Himawari-8 AODs within the 20 km radius circle centered on an AERONET site and at least
two observations obtained from the AERONET within 30 min centered on the Himawari-8 measuring
time. The threshold value of 20% can be found in the evaluation study of VIIRS (Visible Infrared
Imaging Radiometer Suite) retrievals [35].

3.2. PM2.5 Estimated Model

The LME model with day-specific random effects for AOD was developed in [16], which can
account for daily variations in the PM2.5-AOD relationship. The day-specific LME model has been
widely applied in many studies because of its high accuracy [5,18,36]. The LME model is an extension
of linear regression models for data that are collected and summarized in groups. The model describes
the relationship between a response variable and independent variables, with coefficients that vary
with respect to one or more grouping variables. The model consists of two parts: fixed effects and
random effects [18]. Fixed-effects terms are the conventional linear regression part, and random effects
are associated with individual experimental units drawn at random from a group (category). Random
effects have prior normal distributions with mean 0 and constant variance, whereas fixed effects do not.
The LME model can represent the covariance structure related to the grouping of data by associating
the common random effects to observations that have the same level of a grouping variable [37].

Given that time-varying parameters, such as RH, PM2.5 vertical, and diurnal concentration
profiles, and PM2.5 optical properties influence the PM2.5-AOD relationship, the statistical model
allows for time variability in this relationship. If the spatial variability of these time-varying parameters
is negligible, namely, the PM2.5-AOD relationship varies minimally spatially on a given time over

http://srtm.csi.cgiar.org/index.asp
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the spatial scale, a quantitative relationship between PM2.5 concentrations and AOD values in their
corresponding grid cells can be determined on a time basis [16]. Basic LME models were applied in
previous studies [17,36]. We used the fitlme function of Matlab R2016b (MathWorks company), and
the model structure is expressed by Model 1:

PM2.5n,m = [β0 + bhour
0,n,m] + [β1 + bhour

1,n,m]× AODn,m + β2 × RHn,m + β3 × BLHn,m

+β4 × DEMn,m + β5 × NDVIn,m + εn,m;
(bhour

0,n,m, bhour
1,n,m) ∼ N[(0, 0, ∑)], εn,m ∼ N(0, σ2);

(1)

where n represents the monitoring grid index and m represents the hour (e.g., PM2.5n,m represents the
hourly average ground-level PM2.5 measurements at time m at monitoring grid n); β0 and b0,n,m are
the fixed and random intercepts, respectively; β1 and bhour

1,n,m are the fixed and hour-specific random
slopes for AOD predictor, respectively; and β2–β5 are the fixed slopes for other predictors. Fixed effects
correspond to the average effects of predictors on PM2.5 concentrations for the entire period. Random
terms reflect the hour-to-hour variations in the AOD–PM2.5 relationship influenced by meteorology
and satellite retrieval conditions. In addition, εn,m ∼ N(0, σ2) represents the observation error, and
∑ represents the variance–covariance matrix of the random effects.

The assumption of PM2.5-(AOD, predictors) relationships vary minimally spatially on a given
day over a specific region, and neglect of spatial non-stationarity in regional scales is the premise
for estimating PM2.5 by Equation (1) [16,18]. Therefore, one of the limitations of the aforementioned
model is that it does not consider spatial variabilities in large-region regressions, which is important
for estimating geographical elements in large regions. Different cities are affected by various pollution
sources, meteorological conditions, population densities, number of vehicles, and so on. All these
factors influence the large-region regressions of LME models. Given that our study area was relatively
large and our study period was relatively long, the relationship between PM2.5 and AOD was
expected to vary in both space and time. To address both the spatial and temporal heterogeneity of the
PM2.5–AOD relationship, we developed an improved LME model to fit the random (including hour-
and location-specific) intercepts for the whole model and the random slopes for the AODs. We consider
that the hour and location have corporate effect on the large-region regression for AOD-PM2.5 relation,
which can be expressed as follows (Model 2):

PM2.5n,m = [β0 + bhour∗location
0,n,m ] + [β1 + bhour∗location

1,n,m ]× AODn,m + β2 × RHn,m

+β3 × BLHn,m + β4 × DEMn,m + β5 × NDVIn,m;
(bhour∗location

0,n,m , bhour∗location
1,n,m ) ∼ N[(0, 0, ∑)], εn,m ∼ N(0, σ2);

(2)

The term hour ∗ location used in the model is only the value of A times B, which represents the
group-level parameters for calculating the random effects (bhour∗location

0,n,m and bhour∗location
1,n,m ). This term

can be written as “hour : location” in Matlab. To represent a location (longitude and latitude) as a
single value, we defined a complex number including location information as:

Location = longitude + latitude ∗ i (3)

where the real and imaginary parts of the expression correspond to longitude and latitude, respectively.
To obtain the PM2.5 estimation at a large region, bhour∗location

0,n,m and bhour∗location
1,n,m can be derived from

the nearest location and corresponding hour training in the model. “Predict” function in Matlab can
estimate predicted responses from the trained LME model at the values in the new datasets. However,
the “predict” function cannot search for the nearest location for estimating PM2.5 in a new location.
Therefore, we rewritten the “predict” function with the ability of search for the “nearest” PM2.5 site
trained in the model. If we cannot find an appropriate random effect from a group-level in the trained
model for estimating PM2.5 at a time and location, the PM2.5 in this case will be removed. As a
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practical technique that extends the ordinary LME model, Model 2 can examine the spatial variation at
a regional scale.

In this study, the 10-fold CV was selected to compare and verify the performance of the LME
and improved LME models. All of the samples were split into ten folds; that is, each fold was set
approximately 10% of the total sample number. For each fold, one part was used for validation,
whereas the remaining nine parts were used for training. This process was repeated for every fold.
The predicted PM2.5 concentrations from all 10-fold processes were compared with the measured
PM2.5 concentrations. Model performance was assessed by a determination coefficient (R2), root mean
square error (RMSE), and mean absolute error (MAE).

4. Results

4.1. Evaluation of Himawari-8 AOD

The results of the matchup comparison between Himawari-8 and AERONET are shown in
Figure 2a–e, and the corresponding statistics are listed in Table 2. About 1000 instantaneous
high-quality matchups of Himawari-8 and AERONET were determined for Beijing_CAMS, Beijing,
Beijing_RADI, and Xianghe during the study period. The comparison of the Himawari-8 AODs against
the AERONET observations showed the performances of Himawari-8 retrievals at the five sites, all of
which exhibited high correlations (R2: 0.74–0.81), low uncertainty (0.18–0.22), and a large percentage
(54–59%) of retrievals falling within the EE. Himawari-8 also showed a slight underestimation with
accuracy of about −0.06. The linear regression (yellow line in Figure 2) between AERONET and
Himawari-8 retrievals demonstrates the slope from 0.58 to 0.65 and the positive intercept from 0.06 to
0.08. Overall, the performances of the current Himawari-8 AOD retrievals at the five sites were almost
consistent with the AERONET AODs.
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Figure 2. Collocations scatterplots of Himawari-8 and AERONET AODs at five sites of
(a) Beijing_CAMS; (b) Beijing; (c) Beijing_PKU; (d) Beijing_RADI; and (e) Xianghe. The study period is
from July 2015 to March 2017. The width of each pixel is 0.04 AOD, and the number of collocations
falling within/above/below EE are represented in each figure. The yellow line is the regression line,
the gray solid line is the 1:1 line, and the gray dashed lines are the expected errors (EE) envelopes.
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Table 2. Comparative statistics of collocated Himawari-8 and AERONET AODs.

Site N Accuracy Precision Uncertainty R2 % Above/Within/Below EE

Beijing_CAMS 1031 –0.06 0.19 0.20 0.76 16/58/26
Beijing 926 –0.06 0.17 0.18 0.78 15/59/26

Beijing_PKU 373 –0.10 0.20 0.22 0.81 13/55/32
Beijing_RADI 954 –0.08 0.19 0.20 0.81 15/54/31

XiangHe 1018 –0.05 0.20 0.20 0.74 19/57/24

The time series of the hourly Himawari-8 AODs, AERONET measurements, and AOD bias with
standard deviations (shadows) during the assessment period at the five AERONET sites are shown
in Figure 3. The AODs of Himawari-8 and AERONET appeared to be coincident with each other.
However, an underestimation of the Himawari-8 AOD was observed from 0900 to 1100 local time (LT)
in the five AERONET sites.
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Figure 4 presents the spatial and hourly Himawari-8 AOD dataset at daytime from July 2015
to March 2017. The spatial distributions of the averaged AOD indicated large values in the BTH
central and south regions, whereas small values emerged over the northwest region. The average
AOD obtained from Himawari-8 was 0.32 ± 0.27. The average maximum AOD for the daytime was
0.38 ± 0.31 at 1500 LT. The mean AOD at 1100 LT was minimum with a mean AOD of 0.30 ± 0.26.
Variations in mean AODs at the BTH region could be partially attributed to the underestimated
Himawari-8 AODs from 0900 to 1200 LT (Figure 3).
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4.2. Verification of Estimated PM2.5

To train the model, ground PM2.5 and these predictors require time–space consistency. Therefore,
surface PM2.5 measurements should match the Himawari-8 AODs in space and time. We averaged all
Himawari-8 retrievals within the 30 min and 5 km radius of a PM2.5 monitoring site to represent the
satellite AOD value. To evaluate how much the AOD, meteorological, and land parameters used in the
final model could improve the model performance, we fitted different models with various predictors
as shown in Table 3. The Akaike information criterion (AIC) provides the relative quality of statistical
models for a given dataset. The finalized LME model is generally determined based on the model
performance denoted by fitting the R2 (highest) and AIC (lowest) values [20]. The performances of
models were assessed by coefficient of determination (R2), MAEs, and RMSEs between the measured
and estimated PM2.5 concentrations. The MAE was defined as (sum of absolute errors)/(the number
of observations). The RMSE was defined as the square root of the mean of the squared errors.

The LME model with day-specific random effects is widely used in PM2.5 estimation [5,17].
Tests 1 and 2 using AOD as the only independent variable (the AOD-only model) showed that the
LME model with hour-specific random effects exhibited better performance than that with day-specific
effects. Tests 3–6 reveal that these predictors slightly improved for the model. We also fitted a model
only using meteorological and land data without AOD (the non-AOD model) to determine how AOD
could benefit the model performance (Tests 7 and 10). We found that AOD had an obvious positive
effect on Models 1 and 2. If the intercept without random effects (Test 8), the performance is worse than
Test 9 (Model 1). A comparison of Models 1 and 2 demonstrated that the improved model exhibited
outstanding performance.
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Table 3. Result comparison of model fitting with different predictors.

ID Predictor(s) Group Variable AIC R2 RMSE MAE

Test 1 AOD Day 859,622.35 0.64 39.3 25.0
Test 2 AOD Hour 845,625.88 0.74 33.1 20.4
Test 3 AOD; NDVI Hour 845,589.45 0.74 33.1 20.4
Test 4 AOD; RH Hour 845,569.14 0.74 33.1 20.4
Test 5 AOD; BLH Hour 845,488.73 0.74 33.1 20.5
Test 6 AOD; DEM Hour 844,323.77 0.74 32.9 20.4
Test 7 Model 1 without AOD Hour 876,681.07 0.59 41.4 26.7
Test 8 Model 1 without bhour∗location

0,n,m Hour 852,313.20 0.70 35.8 22.6
Test 9 Model 1 Hour 844,079.65 0.74 32.8 20.4
Test 10 Model 2 without AOD Hour; location 815,754.76 0.83 26.6 15.8
Test 11 Model 2 Hour; location 809,533.48 0.93 17.1 10.1

Table 4 displays the analysis of variance (F-test and p-value) explained by each of the individual
terms in Models 1 and 2. All p-values (<0.01) indicate significant effects of these predictors for the
corresponding model. Beta is the coefficient of the fixed term for the two models.

Table 4. Analysis of variance (F-test and p-value) explained by each of the individual terms in different
models. Beta is the coefficient of the fixed term for the two models.

Term
Model 1 Model 2

F-Test p-Value Beta F-Test p-Value Beta

Intercept 767.6983 <0.01 39.43 2.0496 × 103 <0.01 54.44
AOD 1.2631 × 103 <0.01 96.38 4.9156 × 103 <0.01 104.34
RH 100.7208 <0.01 −0.15 38.2626 <0.01 0.11

DEM 1.2633 × 103 <0.01 −0.03 326.3786 <0.01 −0.02
BLH 216.8013 <0.01 −0.01 1.7214 × 103 <0.01 −0.02

NDVI 2.5560 0.11 −3.06 339.0167 <0.01 −28.91

Table 5 displays the estimate for the standard deviation of normal distribution for the
random-effects term for intercept, AOD, and error grouped by hour for each day. Their confidence
interval is small, which indicates that the random effects for intercept, AOD, and error grouped by
hour for each day and bhour∗location

1,m is significant.

Table 5. Standard deviations of normal distribution for the random-effects terms in the two models.

Model 1 Model 2
bhour

0,m bhour
1,m ”n,m bhour∗location

0,m bhour∗location
1,m ”n,m

Estimate 37.03 124.64 33.76 41.02 112.90 19.84
Lower 35.68 120.39 33.59 39.97 109.81 19.72
Upper 38.42 129.04 33.92 42.09 116.08 19.95

Previous studies on the PM2.5–AOD statistical model mainly used the site-based CV [16] and
sample-based 10-fold CV methods [2]. For the site-based CV, one of the PM2.5 monitoring sites was
used for validation, and the rest of the sites were used for model fitting; this process was conducted
for each round of validation. In this section, the two CVs were selected to verify the performance of
the proposed model. A comparison of the performance of the LME and improved LME models is
presented in Table 6.

The predictive performances of the LME models during the study period were low with R2 of 0.73
and 0.73, RMSE of 34.4 µg/m3 and 34.5 µg/m3, and MAE 21.7 µg/m3 and 21.7 µg/m3 for site-based CV
and 10-fold CV, respectively. The superiority of the improved model to the LME model in estimating
PM2.5 concentrations was confirmed by the site-based CVs and the 10-fold CVs, as evidenced by
the RMSE and MAE values (Table 6). Site-based CVs could verify the performance of the improved
LME model on location without any PM2.5 measurements. The 10-fold CV for the improved LME
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model presented higher R2 (0.86 versus 0.73), lower RMSE (24.5 µg/m3 versus 34.5 µg/m3), and lower
MAE (14.2 µg/m3 versus 21.7 µg/m3) compared with the ordinary LME model. Zheng et al. [18] used
LME models to estimate daily PM2.5 concentrations in the BTH region with a R2 of 0.77 in the 10-fold
CV (predictor: MODIS AODs, meteorological factors, and tropospheric NO2). Therefore, to ensure
a relatively good estimation of PM2.5 concentrations, the improved LME model (Model 2) was applied
in our study analysis.

Table 6. Result comparison of model fitting and cross-validation for Model 1 and 2.

Model N
Site Cross-Validation 10-Fold Cross-Validation

R2 RMSE MAE R2 RMSE MAE

Model 1 83,989 0.73 34.4 21.7 0.73 34.5 21.7
Model 2 83,989 0.87 24.1 14.0 0.86 24.5 14.2

Figure 5 presents the scatterplot of the comparison between measured and estimated PM2.5
concentrations in the BTH region at different hours. In these scatterplots, colors indicate the number
of data points for a corresponding pixel. The high CV R2 values of the improved LME model (i.e.,
0.86 for all data and 0.81–0.90 for different hours) prove the acceptable performance of the model
in the BTH region; that is, the model yielded reasonable predictions. However, the different CV R2

values at different hours (e.g., maximum of 0.90 at 1500 LT; minimum of 0.81 at 0900 LT) imply that the
performance of the improved LME model was higher at noon and in the afternoon than for the other
hours during daytime. Figure 3 presents the underestimations of the Himawari-8 AODs from 0900 to
1100 LT at the five AERONET sites. Discrepancies in hourly results such as for the CV RMSE at 1600 LT
(13.4 µg/m3), which was smaller than for the other hours (above 20 µg/m3), could be attributed to
the relatively small number of matchups. Furthermore, the MAE in the BTH region was 14.2 µg/m3

for all matchups, and the values ranged from 9.0 µg/m3 to 17.4 µg/m3 for the different hours. PM2.5
difference was equal to the estimated value minus the measured PM2.5 (Table 7).
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Table 7. Averages of estimated and measured PM2.5 at different hours.

Local Time N R2 Estimated PM2.5 Measured PM2.5 PM2.5 Bias

ALL 83,989 0.86 61.6 ± 61.4 61.5 ± 65.8 0.1 ± 24.3
0900 7378 0.81 58.6 ± 41.5 57.6 ± 45.2 1.1 ± 19.7
1000 10,150 0.82 63.5 ± 53.2 64.5 ± 58.9 –1.0 ± 24.9
1100 11,639 0.83 71.0 ± 65.2 71.7 ± 71.8 –0.8 ± 29.5
1200 12,648 0.85 66.9 ± 67.1 67.0 ± 72.3 –0.1 ± 28.1
1300 11,870 0.88 66.7 ± 69.6 66.6 ± 73.4 0.1 ± 25.4
1400 12,294 0.89 62.9 ± 67.5 62.3 ± 71.0 0.6 ± 23.8
1500 11,548 0.90 54.8 ± 60.6 54.1 ± 63.8 0.6 ± 20.1
1600 6462 0.82 35.3 ± 30.3 34.0 ± 31.7 1.3 ± 13.4

Figure 6 shows the spatial distributions of the estimated PM2.5 errors in individual PM sites in
the BTH region, which could be used to evaluate the accuracy of the improved LME model for each
PM2.5 monitoring site. The red (blue) solid circles indicate that the estimated PM2.5 was overestimated
(underestimated). Figure 6a shows the mean bias from all available data. Accordingly, the PM2.5
concentrations were overestimated in one of the sites in Qinghuangdao (~20 µg/m3) and Shijiazhuang
(~15 µg/m3). Coasts with complex surfaces and aerosol types may reduce the performance of the
Himawari-8 aerosol retrievals. In Qinghuangdao, the sites near the coast may result in overestimation
at all hours. By contrast, sites with underestimations were observed in some parts of Tianjing. As shown
in Figure 6, the rest of the sites displayed light-colored solid circles, which indicated unclear estimated
biases. Despite the general consistency between estimated and measured PM2.5 concentrations in
Figure 6a, site discrepancies were obvious in different hours, as shown in Figure 6b–i. In the ante
meridiem (0900–1100 LT), most of the mild positive biases were observed in Beijing, Shijiazhuang, and
Xingtai, whereas negative biases existed in Tianjing and Handan. The Himawari-8 AODs, which were
highly accurate at noontime, might have contributed to the slight biases at 1200–1500 LT.

Remote Sens. 2016, 8, 858 11 of 17 

 

Table 7. Averages of estimated and measured PM2.5 at different hours. 

Local Time N R2 Estimated PM2.5 Measured PM2.5 PM2.5 Bias 

ALL 83,989 0.86 61.6 ± 61.4 61.5 ± 65.8 0.1 ± 24.3 

0900 7378 0.81 58.6 ± 41.5 57.6 ± 45.2 1.1 ± 19.7 

1000 10,150 0.82 63.5 ± 53.2 64.5 ± 58.9 –1.0 ± 24.9 

1100 11,639 0.83 71.0 ± 65.2 71.7 ± 71.8 –0.8 ± 29.5 

1200 12,648 0.85 66.9 ± 67.1 67.0 ± 72.3 –0.1 ± 28.1 

1300 11,870 0.88 66.7 ± 69.6 66.6 ± 73.4 0.1 ± 25.4 

1400 12,294 0.89 62.9 ± 67.5 62.3 ± 71.0 0.6 ± 23.8 

1500 11,548 0.90 54.8 ± 60.6 54.1 ± 63.8 0.6 ± 20.1 

1600 6462 0.82 35.3 ± 30.3 34.0 ± 31.7 1.3 ± 13.4 

Figure 6 shows the spatial distributions of the estimated PM2.5 errors in individual PM sites in 

the BTH region, which could be used to evaluate the accuracy of the improved LME model for each 

PM2.5 monitoring site. The red (blue) solid circles indicate that the estimated PM2.5 was 

overestimated (underestimated). Figure 6a shows the mean bias from all available data. Accordingly, 

the PM2.5 concentrations were overestimated in one of the sites in Qinghuangdao (~20 μg/m3) and 

Shijiazhuang (~15 μg/m3). Coasts with complex surfaces and aerosol types may reduce the 

performance of the Himawari-8 aerosol retrievals. In Qinghuangdao, the sites near the coast may 

result in overestimation at all hours. By contrast, sites with underestimations were observed in some 

parts of Tianjing. As shown in Figure 6, the rest of the sites displayed light-colored solid circles, which 

indicated unclear estimated biases. Despite the general consistency between estimated and measured 

PM2.5 concentrations in Figure 6a, site discrepancies were obvious in different hours, as shown in 

Figure 6b–i. In the ante meridiem (0900–1100 LT), most of the mild positive biases were observed in 

Beijing, Shijiazhuang, and Xingtai, whereas negative biases existed in Tianjing and Handan. The 

Himawari-8 AODs, which were highly accurate at noontime, might have contributed to the slight 

biases at 1200–1500 LT. 

 

Figure 6. Differences in estimated and measured PM2.5 for individual PM monitoring sites: (a) all 

available data; (b–i) different hours (0900–1600 local time). 

  37
o
N 

  39
o
N 

  41
o
N 

  43
o
N 

(a) ALL (b) 0900LT (c) 1000LT

  37
o
N 

  39
o
N 

  41
o
N 

  43
o
N 

(d) 1100LT

L
a
ti

tu
d

e
 (

o
)

(e) 1200LT

 

 

(f) 1300LT

P
M

2
.5

 D
if

fe
re

n
c
e
 (

μ
g

/m
3
)

-20

-15

-10

-5

0

5

10

15

20

 114
o
E  117

o
E  120

o
E 

  37
o
N 

  39
o
N 

  41
o
N 

  43
o
N 

(g) 1400LT

 114
o
E  117

o
E  120

o
E 

(h) 1500LT

Longitude (
o
)

 114
o
E  117

o
E  120

o
E 

(i) 1600LT

Figure 6. Differences in estimated and measured PM2.5 for individual PM monitoring sites: (a) all
available data; (b–i) different hours (0900–1600 local time).
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4.3. Spatial Distribution of PM2.5

The hourly spatial distributions of PM2.5 in the BTH region (Figure 7) were spatially
heterogeneous, which implies the applicability of the improved LME model. Many fine-scale variations
in AOD of Figure 4 show up as variations in the PM2.5 estimates in Figure 7. The consistency of spatial
distribution between AOD and PM2.5 indicate the geographic correlations of AOD and PM2.5.
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Urban areas with high PM2.5 concentrations, such as Beijing, Shijiazhuang, Xingtai, and Handan,
were effectively captured by the improved LME model. The average PM2.5 in the BTH region was
58.2 ± 52.7 µg/m3 (Table 7), which exceeded the World Health Organization Air Quality Interim
Target-1 standard of 35 µg/m3. The average PM2.5 in southern BTH was larger than 50 µg/m3, which
was considerably higher than those in the northern regions. Severely-polluted areas were located in
Cangzhou and Hengshui, as evidenced by the large mean PM2.5 concentrations of 66.9 + 58.7 and
67.8 + 56.7 µg/m3, respectively. Industrial production and high vehicle population contributed to high
anthropogenic emissions, further resulting in a relatively high PM2.5 in southern BTH. Low PM2.5 in
northern BTH (i.e., Zhangjiakou and Chengde) were observed at less than 35 µg/m3 on average; these
areas have hilly topography and low human activities, resulting in low anthropogenic emissions. Our
results were similar to that of a previous study [8], which reported an annual mean PM2.5 concentration
of 45–55 µg/m3 in the southern anthropogenic area. The satellite-derived population-weighted average
of PM2.5 in Beijing was 51.2 µg/m3 during the study period (March 2013 to April 2014) [17]. A one-year
study on the PM2.5 estimations in the BTH region using a generalized additive model presented an
annual mean value of 69.4 µg/m3 with values ranging from 13.3 µg/m3 to 133.7 µg/m3 [9].

The spatial distributions of the hourly PM2.5 estimations differed across hours (Figure 7b–i); that
is, 1100 LT was most polluted with a large mean PM2.5 of 65.5 ± 54.6 µg/m3 (Table 8), as opposed to the
minimum average of PM2.5 at 1600 LT. The hourly variations were consistent with the measured mean
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PM2.5 values (Table 7), but these mean values were smaller because the estimated PM2.5 concentrations
were averaged using datasets from urban and suburban regions. The variations in hourly Himawari-8
AODs also disagreed with the estimated PM2.5; for example, the maximum PM2.5 (65.5 ± 54.6 µg/m3)
corresponded to the minimal AOD (0.30 ± 0.26) at 1100 LT. Several factors might have influenced the
variations, such as meteorological factors, which could synergistically affect PM2.5 concentrations.

Table 8. Average Himawari-8 AOD and estimated PM2.5 at different hours in the BTH region.

Local Time Himawari-8 AOD Estimated PM2.5 (µg/m3)

ALL 0.32 ± 0.27 58.2 ± 52.7
0900 0.33 ± 0.25 52.6 ± 38.0
1000 0.31 ± 0.26 59.7 ± 47.6
1100 0.30 ± 0.26 65.5 ± 54.6
1200 0.32 ± 0.27 61.3 ± 56.8
1300 0.34 ± 0.28 62.2 ± 59.9
1400 0.37 ± 0.30 59.5 ± 58.1
1500 0.38 ± 0.31 52.3 ± 50.9
1600 0.37 ± 0.29 35.2 ± 26.9

MAM 0.30 ± 0.26 46.0 ± 38.4
JJA 0.38 ± 0.32 42.5 ± 29.8

SON 0.36 ± 0.31 57.8 ± 50.7
DJF 0.26 ± 0.23 71.5 ± 70.1

The spatial and seasonal images of averaged PM2.5 estimations obtained from the improved LME
model are shown in Figure 8. The different seasons in Figure 8 are denoted as MAM (March, April, and
May), JJA (June, July, and August), SON (September, October, and November), and DJF (December,
January, and February). The void regions in northern regions in winter were due to the limitation
of Himawari-8 in retrieving high-quality AOD under scarce vegetation in winter. Strong seasonality
of PM2.5 concentrations was also found from the averaged PM2.5 concentration. Winter was the
most polluted season with a mean estimated PM2.5 of 71.5 ± 70.1 µg/m3, whereas summer was the
cleanest season with a mean predicted concentration of 42.5 ± 29.8 µg/m3. The mean predicted PM2.5
concentration was 46.0 ± 38.4 µg/m3 in spring and 57.8 ± 50.7 µg/m3 in autumn.
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5. Discussion

Given the sparse distribution of stationary PM2.5 sites, satellite data with wide spatial coverage
are growing as one of the most important supplementary tools to estimate PM2.5 concentrations in
a wide geographical space. The relationship between surface PM2.5 and column-integrated AOD
is associated with vertical and size distribution of aerosols [38,39]. The particulate matter vertical
distribution has been considered from a physics perspective, which could improve the correlation
between PM2.5 and AOD [40,41]. Humidity correction for PM2.5 estimation is necessary because “dry”
PM2.5 measurements after particles are heated to 50 ◦C may undervalue the aerosol particle mass
(aerosol hygroscopicity results in AOD being affected by humidity) [42].

In this study, related factors, such as AOD, meteorological parameters, and land type, are
individually integrated into the typical LME model to test their benefits on model performance. BLH
and RH can be regarded as the correction factors of height and humidity, respectively [39]. Moreover,
this study developed an improved LME model for satellite-based PM2.5 estimation. The improved
LME model considered the spatial and temporal heterogeneity of the PM2.5–AOD relationship.
As expected, the improved LME model clearly showed better performance in estimating PM2.5
concentrations from Himawari-8 AOD compared with the typical LME model in the BTH region.
This result confirmed the necessity of the LME model in simultaneously considering spatial–temporal
heterogeneity for PM2.5-(AOD, predictors) relationships.

The differences in performance of the improved model at 0900 and 1100 LT might be due
to the underestimation of the Himawari-8 AODs at the specified times. PM2.5 underestimations
predominantly occurred when the measured ground-level PM2.5 concentrations were high (i.e., greater
than 80 µg/m3). Meanwhile, overestimated PM2.5 concentrations existed with slightly polluted levels,
which was similar to those in the same region according to another study [18]. This result could be
attributed to the nonlinear relationship between PM2.5 concentrations and AODs at different aerosol
loadings [9]. Moreover, the predicted PM2.5 concentrations using the average AOD for the PM2.5
monitoring sites within the 5 km radius may not fully represent the site measurements.

For the hourly spatial distributions of PM2.5 in the BTH in Figure 7i, estimated PM2.5 at LT
16:00 showed a significant decrease. The Himawari-8 retrievals with high quality at 1600LT in winter
were less than that in summer because the sun angle was probably too low for Himawari-8 retrievals
at 1600LT in winter. The PM2.5 concentration in summer was lower than that in winter (Figure 8).
Therefore, the limited collocations between ground PM2.5 and satellite-based AODs may result in the
decrease at LT 16:00.

6. Conclusions

The spatial distributions of hourly PM2.5 concentrations are significant and necessary in
understanding PM2.5 evolution. In this study, the primary estimation of hourly PM2.5 concentrations
at daytime in the BTH region was executed with a proposed improved LME model using ground-based
PM2.5 observations and collocated Himawari-8 (Level 3) with hourly AODs from July 2015 to
March 2017.

(1) The Himawari-8 AOD with a “very good” confidence level was evaluated by comparing its
values with the AERONET observations for the given study period. The Himawari-8 AODs at the five
AERONET sites presented mild underestimations of about −0.06 with 57% of the AODs falling within
the EE made from MODIS [±(0.05 + 0.15 AOD)].

(2) An improved LME model was developed for hourly PM2.5 estimation based on the
relation between PM2.5 and AOD. The estimated PM2.5 concentrations agreed well with the surface
PM2.5 measurements, as evidenced by the high R2 (0.86) and low RMSE (24.5 µg/m3) based on
10-fold cross-validation.

(3) The average PM2.5 estimations of the improved LME model in the southern BTH were
higher than those in the northern regions. The average PM2.5 concentration in the BTH region
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was 58.2 ± 52.7 µg/m3. The estimated hourly PM2.5 concentrations ranged extensively from
35.2 ± 26.9 µg/m3 (1600 LT) to 65.5 ± 54.6 µg/m3 (1100 LT).

Future studies can focus on the improvement of the LME model to depict the spatial distributions
of PM2.5 concentrations using fine spatial resolutions. The accurate derivation of surface PM2.5
concentrations from satellite retrievals largely depends on the quality of satellite aerosol products.
Thus, efforts to improve the Himawari-8 AODs for hourly PM2.5 estimation or observation should
be considered.
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