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Abstract: Sparse Representation has been widely applied to classification of hyperspectral images
(HSIs). Besides spectral information, the spatial context in HSIs also plays an important role in
the classification. The recently published Multiscale Adaptive Sparse Representation (MASR)
classifier has shown good performance in exploiting spatial information for HSI classification.
But the spatial information is exploited by multiscale patches with fixed sizes of square windows.
The patch can include all nearest neighbor pixels but these neighbor pixels may contain some noise
pixels. Then another research proposed a Multiscale Superpixel-Based Sparse Representation (MSSR)
classifier. Shape-adaptive superpixels can provide more accurate representation than patches. But it
is difficult to select scales for superpixels. Therefore, inspired by the merits and demerits of multiscale
patches and superpixels, we propose a novel algorithm called Multiscale Union Regions Adaptive
Sparse Representation (MURASR). The union region, which is the overlap of patch and superpixel,
can make full use of the advantages of both and overcome the weaknesses of each one. Experiments on
several HSI datasets demonstrate that the proposed MURASR is superior to MASR and union region
is better than the patch in the sparse representation.

Keywords: classification; hyperspectral image (HSI); multiscale union regions adaptive sparse
representation (MURASR); multiscale spatial information

1. Introduction

Hyperspectral images have been widely applied to remote sensing image applications, such as
land cover classification [1], target detection [2], anomaly detection [3], spectral unmixing [4] and
others. Each pixel in HSI has hundreds of narrow contiguous bands, spanning from visible to infrared
spectrum [5], which makes it possible to detect and distinguish various objects with higher accuracy [6].
However, increasing the number of spectral bands or features of an HSI pixel does not always help to
increase the classification accuracy. Therefore, how to make full use of the information in HSIs is a
problem in practical applications.

Many algorithms have been developed for the classification of HSIs. Among these, there are some
well-known pixelwise classifiers, such as the support vector machine (SVM) [7–9], support vector
conditional random classifier [10], multinomial logistic regression [11], neural network [12] and
adaptive artificial immune network [13]. These pixelwise classifiers can make full use of the spectral
information of HSIs, but the classification results are often noisy because the spatial information is
not considered.

Therefore, some recent researches incorporated the spatial information in HSI classification
to enhance the classification performance. The basic way to use spatial information is to assume
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that the pixels within a local region usually represent the same material and have similar spectral
characteristics [1]. Various researches [14–25] have been done based on this assumption. Besides these
researches, Sparse representation (SR), which is based on the observation that spectral pixels of a
particular class should lie in a low-dimensional subspace spanned by dictionary atoms (training pixels)
from the same class, is also employed. In [26], a Joint Sparse Representation Classification (JSRC)
method has been proposed to incorporate spectral information and spatial information. The spatial
information is expressed by a fixed-size local square window centered with the test pixel. Then all
pixels in the window are simultaneously joint represented by a few common atoms in the specified
dictionary. The JSRC can achieve a good performance but the optimal size of the window cannot
be determined easily. In [27], a stepwise Markov random field (MRF) optimization was proposed
to exploit spatial information based on the result of multitask joint sparse representation. In [28],
MASR was proposed to release the difficulty in choosing region size. Instead of choosing a single
scale, this method extends the spatial information to several scales to take advantage of correlations
among multiple region scales for HSI classification. But the multiscale regions used in MASR refer
to multiscale patches which may contain noise pixels. Better than patch region, shape-adaptive
superpixel can provide more accurate spatial information. In [29], the superpixel was introduced to
replace the patch region. Then a shape-adaptive local smooth region was generated for each test pixel
by a shape-adaptive algorithm in [30]. The latest research proposed a Multiscale Superpixel-Based
Sparse Representation [31]. In this research, multiscale superpixels were generated and then each
scale was represented by JSRC. Finally, a fusion result was gotten from multiscale results by majority
voting. But the selection of scales for superpixels is still a problem. Although it uses multiscale to
release the difficulty of selecting segmentation scale, it still needs a fundamental number of superpixels
determined empirically.

In fact, patch and superpixel both have their own advantages and shortages. The patch can include
all nearest neighbors but it also may contain noise pixels. Shape-adaptive superpixel can exploit more
accurate spatial information but there are still some mixed superpixels when the scale is not optimal.
In a mixed superpixel, there must be wrong representation because all pixels in the superpixel share
the same representation. Inspired by merits and demerits of patch and superpixel, we propose to use
a union region to replace the patch and superpixel. Union region refers to the overlap of patch and
superpixel. Compared with patch, union region includes more similar pixels for the test pixel aiming
at decreasing the effect of noise pixels. Compared with superpixel, union region provides more direct
neighbors for the test pixel to enhance the representation of pixels located in the wrong superpixel.
In addition, the required superpixels for generating union regions don’t need empirical scale. The scales
are determined by the size of the image and the corresponding patch sizes. By replacing patch in
MASR with union region, we get a new algorithm called Multiscale Union Regions Adaptive Sparse
Representation (MURASR). MURASR also adopts a probability majority voting method to optimize
the classification result generated from the sparse representation. Experiment results show that the
union region based algorithms always perform better than patch region based algorithms and the
proposed MURASR outperforms other algorithms in terms of quantitative metrics and visual quality
on the classification maps.

The rest parts of the paper are organized as follows. The JSRC and MASR are briefly introduced
in Section 2. The details of proposed MURASR method are described in Section 3. The experimental
results and discussions are presented in Section 4. Finally, Section 5 summarizes the paper and future
works are suggested. The outline of the MURASR is illustrated in Figure 1.
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Figure 1. Outline of the proposed MURASR framework.

2. Background

2.1. JSRC

The sparse representation classification (SRC) framework was first proposed for face
recognition [32]. Then Chen et al. extended the SRC to pixelwise HSI classification, which relied on
the observation that spectral pixels of a particular class should lie in a low-dimensional subspace
spanned by dictionary atoms (training pixels) from the same class. But spatial information is not
considered by Pixelwise Sparse Representation. Therefore, based on the observation that neighboring
pixels belonging to the same class usually are strongly correlated with each other, JSRC is introduced to
capture such spatial correlations by assuming that neighboring pixels within a region of fixed size can
be jointly represented by a few common atoms from a structural dictionary. Concretely, let y ∈ RM×1

be a pixel with M denoting the number of spectral bands and D = [D1, · · · , Dc, · · · , DC] ∈ RM×N be
a structure dictionary, where Dc ∈ RM×Nc , c = 1, · · · , C is the cth class subdictionary whose columns
(atoms) are extracted from the training pixels; C is the number of classes; Nc is the number of atoms in
subdictionary Dc; and N = ∑C

c=1 Nc is the total number of atoms in D. Specifically, the size of a region
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surrounding the test pixel y1 is denoted by W ×W, and pixels within such a region can be denoted by
a matrix Y = [y1, y2, · · · , yW×W ]. The matrix can be compactly represented as:

Y = [y1, y2, · · · , yW×W ] = [DA1, DA2, · · · , DAW×W ]

= D[A1, A2, · · · , AW×W ] = DA
(1)

where A = [A1, A2, · · · , AW×W ] is the sparse coefficients matrix corresponding to Y. Since the
indexes of the selected atoms in D are determined by the positions of nonzero coefficients in
[A1, A2, · · · , AW×W ], the neighboring pixels [y1, y2, · · · , yW×W ] can be represented by a small set
of common atoms by enforcing a few nonzero rows on the sparse coefficients matrix A. Then, matrix A
can be obtained by solving the following optimization problem:

Â = arg min
A
‖Y−DA‖F subject to ‖A‖row,0 6 K (2)

where Arow,0 denotes the joint sparse norm, which is used to select a number of the most representative
nonzero rows in A, and ‖ · ‖F is the Frobenius norm. A variant of the OMP algorithm called the
simultaneous OMP (SOMP) [33,34], can be used to efficiently obtain an approximate solution. After Â
is recovered, the label of test pixel y1 can be decided by the minimal total error:

ĉ = arg min
c
‖Y−DcÂc‖F, c = 1, · · · , C (3)

where Âc denotes the rows in Â associated with the cth class.

2.2. MASR

Compared with pixelwise SRC model, the JSRC can achieve more accurate classification results
because of incorporating spatial information of local regions. However, the region size (or the
region scale) has great influence on the classification performance. It is of great importance to determine
an optimal region scale for the JSRC.

Then Fang et al. proposed the MASR to release the difficulty of choosing region scale. The MASR
effectively exploits spatial information at multiple scales via an adaptive sparse strategy. Not only does
the adaptive sparse strategy restrict pixels from different scales to be represented by training atoms
from a particular class but also allow the selected atoms for these pixels to be varied, thus providing
an improved representation. Given one test pixel y1 in HSI, its T neighboring regions are selected
via different predefined scales. Neighboring regions are defined by multiscale patches centered with
test pixel. Then a multiscale matrix Ymp = [Y1, · · · , Yt, · · · , YT ] can be constructed by pixels within
the selected regions, where the Yt includes pixels from the tth scale region. Since spatial structures
and characteristics for different scales of regions are distinct, the generated multiscale matrix Ymp for
the test pixel y1 should provide complementary yet correlated information, which can be utilized to
classify y1 more accurately.

In MASR, an adaptive sparse strategy is adopted to utilize the correlated information among
multiscales and achieve a flexible selection process for atoms. An important part of the adaptive
strategy is the adoption of a collection of adaptive sets. Each adaptive set is denoted as the indexes of
a set of nonzero scalar coefficients, which belong to the same class in the multiscale sparse matrix Amp.
By combining the adaptive set with the `row,0 norm, a new adaptive norm `adaptive,0 is created on Amp,
which can be used to select a small number of adaptive sets from Amp. Then, Amp matrix can be
recovered by applying the adaptive norm as follows:

Âmp
= arg min

Amp
‖Ymp −DAmp‖F

subject to ‖Amp‖adaptive,0 6 K
(4)
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After recovering the multiscale sparse representation matrix Âmp, a single decision can be made
on the test pixel y1 based on the lowest total representation error:

ĉ = arg min
c
‖Ymp −DcÂmp

c ‖F, c = 1, · · · , C (5)

where Âmp
c represents rows in Âmp corresponding to the cth class.

3. Multiscale Union Regions Adaptive Sparse Representation

The aforementioned MASR shows good performance for HSI classification. But the MASR utilizes
multiscale patches to exploit spatial information. In a patch, maybe most of the pixels are different from
the test pixel, such as a pixel on the edge of a building. The classification may be misled by those noise
pixels from other classes which are similar to the atoms in the dictionary, thus providing an incorrect
classification for test pixel. In computer vision, superpixels have been studied to provide an efficient
representation, which can facilitate visual recognition [35–37]. Each superpixel is a perceptually
meaningful region, whose shape and size can be adaptively changed according to different spatial
structures. But how to find an optimal scale for superpixels is still a challenge. Without optimal
scale, some mixed superpixels will be generated. Based on the fact that patch and superpixel may
include pixels from different classes, a multiscale union regions adaptive sparse representation model
is proposed to decrease the influence of noise pixels for the test pixel. The union region is the overlap of
the patch and corresponding superpixel with the same scale (see Figure 2). For a test pixel, if the patch
includes some noise pixels, the superpixel can provide more similar pixels to reduce the impact of noise
pixels. In the same way, if the test pixel is located in the wrong superpixel which has seldom pixels
similar to test pixel, the patch can provide more similar pixels to enhance the right representation.

(a) (b) (c)

Figure 2. Three kinds of spatial regions: (a) fixed-size patch; (b) adaptive size superpixel; and (c) union
of patch and superpixel. The blue pixel represents test pixel, orange pixels are neighbors defined by
patch, green pixels are neighbors defined by superpixel and red pixels are overlap of neighbors defined
by patch and superpixel.

3.1. Generation of Multiscale Union Regions

Before generating multiscale union regions, we should get multiscale superpixels. There are
various researches focusing on the segmentation [36–39]. In this paper, an oversegmentation algorithm
called ERS [37] is applied to generate 2-D superpixel maps on the base images because of its high
efficiency. Unlike the single-band gray or three-band color image, the HSI usually has hundreds of
spectral bands. To improve the computational efficiency, PCA [40] is first used to reduce the spectral
bands of the HSI. Since the important information of the HSI exists in the principle components
(e.g., first three principle components), they are used as the base images. In this paper, only the first
principle component is chosen as the base image. Instead of choosing scales for superpixels empirically,
we calculate scales of superpixels based on corresponding patch sizes. Assuming that PSt refers to the



Remote Sens. 2017, 9, 872 6 of 19

patch size of tth scale and Ntotal is the total number of pixels in the image (note that origin image will
be extended for edge pixels), the superpixels number nt for tth segmentation is calculated as:

nt = Ntotal/PSt (6)

In this way, the average size of superpixels is equal to patch size. Then most superpixels will
have similar sizes with patches. It guarantees that superpixel and patch can have similar influence
on union region. What’s more, with the increasing of patch size, the superpixels number decreases
fast. Thus, only limited number of segmentations can be generated. According to the performance
of limited number of segmentations, it will be easier for users to determine the scales number.
After segmentations, T superpixels are generated for each test pixel y1 and these superpixels construct
the corresponding multiscale matrix Yms = [Y1, · · · , Yt, · · · , YT ], where the Yt includes pixels from
the tth superpixel. Then for a specific tth scale, the union region Ymu

t is defined as following:

Ymu
t = Yms

t ∪ Ymp
t (7)

3.2. Multiscale Union Regions Adaptive Sparse Representation

For a test pixel y1, the corresponding multiscale matrix is Ymu = [Y1, · · · , Yt, · · · , YT ], where Yt

is the union of Ymp
t and Yms

t . Then the sparse coefficients matrix Amu can be recovered by solving
following problem:

Âmu
= arg min

Amu
‖Ymu −DAmu‖F,

subject to ‖Amu‖adaptive,0 6 K
(8)

To solve this problem, the method used in MASR is applied. At each iteration, the current
residual correlation matrix is calculated firstly. Then a a new adaptive set based on the current residual
correlation matrix will be selected. Once the selecting of the new adaptive set is finished, the new
adaptive set will be merged with previously selected adaptive sets. Then the sparse coefficients matrix
is estimated based on the merged adaptive sets. Finally, the residue is updated. The iterations will
stop if the termination criterion is satisfied. After the multiscale sparse representation matrix Âmu is
recovered, the final label of the test pixel y1 can be determined by minimal total representation error:

ĉ = arg min
c
‖Ymu −DcÂmu

c ‖F, c = 1, · · · , C (9)

3.3. Probability Majority Voting

Because multiscale union regions adaptive sparse representation is a pixel-based classifier, there
will be some pepper salt noise pixels in ground truth objects. Therefore, a majority voting process will
be helpful to optimize the classification result. As mentioned above, for each test pixel in each scale,
a union region will be generated. Then for the union region, the probabilities belonging to all classes
are calculated. If a union region at ith scale contains Ntotal

i labeled pixels and Nj
i pixels classified to jth

class, the probability belonging to jth class Pj
i is calculated as:

Pj
i = Nj

i/Ntotal
i (10)

Assuming that there are k classes, T scales of segmentation maps, the class label of the test pixel ĵ
can be obtained by:

ĵ = arg max
j

(
T

∑
i=1

Pj
i), j = 1, · · · , k (11)
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4. Experimental Results and Discussion

4.1. Data Sets

To verify the effectiveness of the proposed MURASR method and superiority of the union
region, experiments are conducted on the following three hyperspectral data sets: the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines data, the AVIRIS Salinas data, and the
Reflective Optics System Imaging Spectrometer (ROSIS-03) University of Pavia data. The AVIRIS
Indian Pines image has 220 data channels with the size of 145 × 145 across the spectral range from
0.2 to 2.4 µm. It was captured over the agricultural Indian Pine test site in northwestern Indiana with
a spatial resolution of 20 m per pixel. Before classification, 20 water absorption bands (No. 104–108,
150–163 and 220) were discarded [41]. Figure 3a,b show the color composite of the Indian Pines image
and the corresponding reference data with 16 reference classes from different types of crops.

(a) (b)

Figure 3. Indian Pines image: (a) three-band color composite image; (b) reference image.

The Salinas image was also acquired by the AVIRIS sensor over Salinas Valley, California.
The image is of size 512 × 217 × 224 with a spatial resolution of 3.7 m per pixel. Similar to the
Indian Pines image, 20 water absorption spectral bands (No. 108–112, 154–167 and 224) were removed
and 16 different reference classes are considered for this image. Figure 4a,b show the color composite
of the Salinas image and the corresponding reference data.

(a) (b)

Figure 4. Salinas image: (a) three-band color composite image; (b) reference image.
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The University of Pavia image, which captures an urban area surrounding the University of
Pavia, Italy, was recorded by the ROSIS-03 sensor. The image is of size 610 × 340 × 115 with a spatial
resolution of 1.3 m per pixel and a spectral coverage ranging from 0.43 to 0.86 µm. The 12 very noisy
channels were discarded before the experiments, and nine information classes are considered for this
image. Figure 5a,b show the color composite of the University of Pavia image and the corresponding
reference data.

(a) (b)

Figure 5. University of Pavia image: (a) three-band color composite image; (b) reference image.

4.2. Comparison of Experiment Results

In the experiments, all related algorithms are based on sparse representation. Except for
published algorithms SRC, JSRC and MASR, JUSRC (Joint Union Sparse Representation Classification),
MJSRC (Multiscale Joint Sparse Representation Classification), MJUSRC (Multiscale Joint Union Sparse
Representation Classification), MURASR* and MURASR were conducted in the experiments. To verify
the priority of union region further, the patch used in JSRC was replaced by JUSRC with the union
region. For demonstrating the superiority of multiscale adaptive strategy, we extended the JSRC and
JUSRC with a simple multiscale scheme that applied the majority voting to the results of all scales for
the final decision-making. The extended algorithms are called MJSRC and MJUSRC. What’s more,
the MURASR* is the MURASR without probability majority voting process. The comparison between
MURASR* and MURASR can show the difference of whether the probability majority voting method
was used or not. The parameters for the SRC, JSRC, and JUSRC algorithms were tuned to reach the best
results in these experiments. For all multiscale algorithms, seven different scales were simultaneously
adopted, and the selected region scales were as follows: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13,
and 15 × 15. Then superpixels numbers for segmentation were calculated with Equation (6) and
listed in Table 1. Other parameters in MJSRC, MJUSRC, MASR, MURASR*, and MURASR were the
same as [28]. To evaluate the performance of classifiers, three objective metrics (overall accuracy
(OA), average accuracy (AA) and kappa coefficient) are adopted. In addition, the McNemar’s test is
applied to analyse the experiment results. The McNemar’s test is based on the standardized normal
test statistic, as described in [42]:

Z =
h12 − h21√
h12 + h21

(12)

where h12 represents the samples correctly classified by method 1 but incorrectly classified by method 2.
If |Z| > 1.96, the accuracy between two methods can be considered statistically significant. The sign of
the Z indicates which method is better. If Z > 0, the method 1 is more accurate than method 2.
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The Indian Pines data set was classified firstly. 10% of the labeled pixels were randomly
sampled for training from each class, while the rest 90% were used to test the classifiers (see Table 2).
The classification maps generated by different classifiers on the Indian Pines image are shown in
Figure 6. The details of the classification results averaged by ten runs with randomly sampled training
samples are tabulated in Table 3. The results of the McNemar’s tests between classifiers are listed in
Table 4. It is easy to find that JUSRC, MJUSRC and MURASR* perform better than JSRC, MJSRC and
MASR, which demonstrates the priority of union region over patch region. In addition, the multiscale
majority voting based MJSRC and MJUSRC perform worse than the multiscale adaptive strategy based
MASR and MURASR* for this image. Compared with MJSRC and MJUSRC, accuracy improvements
of MASR and MURASR* are more than 3%. MURASR gets a better result than MURASR* in accuracy
and classification map. As can be observed from the classification maps of MURASR* and MURASR,
many misclassifications in MURASR* can be eliminated efficiently by probability majority voting
method. What’s more, MURASR performs best among all algorithms in terms of OA and AA,
and the results of the McNemar’s test are statistically significant and coherent with the obtained
overall accuracies.

Table 1. Number of Superpixels in Each Scale.

1 2 3 4 5 6 7

Indian Pines 2809 1011 515 312 208 149 112
Salinas 13,500 4860 2479 1500 1004 718 540

University of Pavia 24,544 8835 4508 2727 1825 1307 981

Table 2. Sixteen reference classes in the Indian Pines image.

Class Name Train Test

1 Alfalfa 5 41
2 Corn-no till 143 1285
3 Corn-min 83 747
4 Corn 24 213
5 Grass/Pasture 48 435
6 Grass/Trees 73 657
7 Grass/Pasture-mowed 3 25
8 Hay-windrowed 48 430
9 Oats 2 18

10 Soybeans-no till 97 875
11 Soybeans-min 246 2209
12 Soybeans-clean 59 534
13 Wheat 21 184
14 Woods 127 1138
15 Building-Grass-Trees-Drives 39 347
16 Stone-steel Towers 9 84

Total 1027 9222

The second experiment was performed on the Salinas data set. To compare the classification with
MASR, only 1% of the labeled pixels for each class were randomly selected for training. Then the
remaining 99% labeled data were classified with the classifiers to demonstrate the superiority of the
proposed MURASR (see Table 5). The classification maps for various classifiers are illustrated in
Figure 7 and the average quantitative results of ten runs are tabulated in Table 6. Moreover, the results
of the McNemar’s tests are shown in Table 7. As can be observed, union region based algorithms
JUSRC, MJUSRC and MURASR* still get more accurate results than patch region based JSRC, MJSRC
and MASR in terms of OA, AA and Kappa coefficients. The classification maps of MJSRC and MJUSRC
have more pepper salt noise pixels than MASR and MURASR*. Comparing classification maps of
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MURASR* and MURASR, we can find that most misclassifications generated by MURASR* can be
corrected by probability majority voting method. In addition, the average accuracy of MURASR is
99.70% which is very high for classification. Moreover, it should be noted that the McNemar’s tests
between classifiers are also statistically significant and coherent with the obtained overall accuracies.

The final experiment was conducted on the University of Pavia image. The shapes of surface
objects in this image are more complex than previous two images. For each reference class, 200 train
samples were randomly selected from the labeled data and the remaining pixels were used for testing
the performance of various classifiers (see Table 8). The classification maps are demonstrated in
Figure 8 and the detail data averaged by ten runs in term of OA, AA, and Kappa coefficients is listed
in Table 9. The McNemar’s tests between classifiers also were conducted on this image and the results
are tabulated in Table 10. Same as previously mentioned two images, union region based classifiers
also performed better than patch region based classifiers. Multiscale adaptive strategy still works
better than multiscale majority voting strategy in this image. The accuracy improvement gained by
probability majority voting is less than previous two images because the University of Pavia image
has less large homogenous regions. And from Table 9, we can find that MASR only has more accurate
result than MURASR with one class and MURASR performs best among all classifiers with 7 classes,
which proves the priority of MURASR further. The results of the McNemar’s tests also provide enough
support for the analysis.

Compared with many presented algorithms, MASR is a time-consuming algorithm. In this paper,
the proposed MURASR is designed based on the multiscale adaptive representation in MASR. Also,
the generation of union regions will consume some time. Moreover, the union region has more pixels
than patch region. Therefore, the MURASR is also a time-consuming algorithm and the time cost
of MURASR is about twice as much as MASR. But the proposed MURASR was coded in MATLAB
(R2016a, Mathworks, Portola Valley, CA, USA) and was not optimized for speed. The MURASR
can be significantly sped up by changing the compiling code from MATLAB to C++ and adopting a
general-purpose graphics processing unit (GPU).

(a) OA=68.74 (b) OA=94.80 (c) OA=96.84 (d) OA=93.22

(e) OA=95.19 (f) OA=98.30 (g) OA=98.89 (h) OA=99.33

Figure 6. Classification maps for the Indian Pines image by different algorithms: (a) SRC-Pixel-Wise;
(b) JSRC; (c) JUSRC; (d) MJSRC; (e) MJUSRC; (f) MASR; (g) MURASR*; and (h) MURASR.
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Table 3. Classification accuracy (averaged on ten runs with randomly sampled training samples) of the
Indian Pines image. The best results are highlighted in bold typeface.

Class SRC-Pixel-Wise JSRC JUSRC MJSRC MJUSRC MASR MURASR* MURASR

1 35.12 87.56 96.83 95.37 96.34 93.66 96.83 98.54
2 54.63 94.87 96.48 94.39 95.25 97.77 97.93 97.84
3 51.99 93.44 97.00 91.67 95.69 98.17 98.77 99.54
4 36.53 89.62 95.31 91.50 92.77 94.89 95.77 98.78
5 82.44 94.28 95.38 92.11 93.17 95.59 96.23 96.51
6 93.32 97.43 98.95 96.19 98.42 99.83 100 100
7 66.80 96.80 94.40 66.40 66.80 98.80 98.40 96.00
8 95.93 99.44 99.79 98.60 98.70 99.95 99.98 100
9 17.78 60.56 91.11 12.22 19.44 64.44 79.44 71.67

10 65.99 95.67 97.58 89.14 91.55 97.68 98.23 97.67
11 71.52 96.68 97.78 95.91 95.76 99.01 99.11 99.85
12 41.82 89.76 95.30 87.83 92.47 96.55 98.15 99.25
13 92.28 94.95 98.37 90.43 97.83 98.75 99.29 99.89
14 88.93 98.99 99.33 99.24 99.92 99.95 99.96 100
15 35.45 89.05 93.83 92.54 91.84 97.52 98.70 99.48
16 89.40 88.33 92.02 81.90 89.40 96.07 96.90 98.69

OA 68.83 95.35 97.36 93.91 95.35 98.29 98.69 99.06
AA 64.40 94.69 96.98 93.06 94.71 95.55 97.11 98.93

Kappa 0.64 0.92 0.96 0.86 0.88 0.98 0.99 0.97

Table 4. The McNemar’s tests between classifiers (averaged on ten runs with randomly sampled
training samples) of the Indian Pines image.

Method JSRC JUSRC MJSRC MJUSRC MASR MURASR* MURASR

JSRC – −10.56 5.24 −0.25 −14.19 −15.28 −16.33
JUSRC 10.56 – 13.34 8.37 −5.15 −8.27 −10.09
MJSRC −5.24 −13.34 – -7.63 −17.24 −18.77 −20.26

MJUSRC 0.25 −8.37 7.63 – −12.29 −14.84 −17.17
MASR 14.19 5.15 17.24 12.29 – −3.51 −5.65

MURASR* 15.28 8.27 18.77 14.84 3.51 – −3.40
MURASR 16.33 10.09 20.26 17.17 5.65 3.40 –

Table 5. Sixteen reference classes in the Salinas image.

Class Name Train Test

1 Weeds 1 20 1989
2 Weeds 2 37 3689
3 Fallow 20 1956
4 Fallow plow 14 1380
5 Fallow smooth 27 2651
6 Stubble 40 3919
7 Celery 36 3543
8 Grapes 113 11,158
9 Soil 62 6141
10 Corn 33 3245
11 Lettuce 4 wk 11 1057
12 Lettuce 5 wk 19 1908
13 Lettuce 6 wk 9 907
14 Lettuce 7 wk 11 1059
15 Vinyard untrained 73 7195
16 Vinyard trellis 18 1789

Total 543 53,586
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Table 6. Classification accuracy (averaged on ten runs with randomly sampled training samples) of the
Salinas image. The best results are highlighted in bold typeface.

Class SRC-Pixel-Wise JSRC JUSRC MJSRC MJUSRC MASR MURASR* MURASR

1 98.23 100 100 99.99 100 99.98 100 100
2 98.04 99.95 100 99.95 99.94 99.78 99.79 100
3 94.16 99.33 99.71 99.07 99.68 99.38 99.86 100
4 98.77 70.59 87.10 85.46 94.91 97.31 98.83 99.88
5 91.84 85.98 92.08 93.77 97.71 99.07 99.51 99.52
6 99.41 95.68 96.81 99.26 99.57 100 100 100
7 99.16 97.65 98.49 99.57 99.72 99.95 99.92 100
8 70.99 95.19 98.07 94.29 96.52 96.41 98.39 99.61
9 97.23 99.98 99.99 99.97 100 99.91 99.95 100

10 85.45 93.78 95.69 96.76 97.63 98.06 98.44 99.63
11 93.56 88.91 93.81 98.34 99.13 99.91 99.92 100
12 99.75 88.68 94.33 96.16 98.95 99.85 99.96 100
13 97.14 81.52 89.35 95.64 97.65 99.26 99.46 99.98
14 92.64 85.15 87.18 96.95 97.56 98.59 98.53 99.93
15 59.14 91.69 96.03 87.90 92.44 93.12 96.74 98.79
16 93.93 99.73 99.55 99.65 99.64 99.16 99.14 99.78

OA 85.79 94.32 96.96 95.87 97.65 97.97 98.98 99.70
AA 84.19 93.67 96.62 95.40 97.38 98.73 99.28 99.66

Kappa 0.92 0.92 0.96 0.96 0.98 0.98 0.99 1

Table 7. The McNemar’s tests between classifiers (averaged on ten runs with randomly sampled
training samples) of the Salinas image.

Method JSRC JUSRC MJSRC MJUSRC MASR MURASR* MURASR

JSRC – −32.24 −17.31 −34.78 −37.06 −46.17 −53.08
JUSRC 32.24 – 11.43 −9.24 −11.66 −26.65 −36.90
MJSRC 17.31 −11.43 – −26.12 −28.24 −37.55 −44.79

MJUSRC 34.78 9.24 26.12 – −4.82 −22.67 −32.56
MASR 37.06 11.66 28.24 4.82 – −20.12 −29.66

MURASR* 46.17 26.65 37.55 22.67 20.12 – −18.89
MURASR 53.08 36.90 44.79 32.56 29.66 18.89 –

Table 8. Nine reference classes in the University of Pavia image.

Class Name Train Test

1 Asphalt 200 6431
2 Meadows 200 18,449
3 Gravel 200 1899
4 Trees 200 2864
5 Metal sheets 200 1145
6 Bare soil 200 4829
7 Bitumen 200 1130
8 Bricks 200 3482
9 Shadows 200 747

Total 1800 40,976
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Table 9. Classification accuracy (averaged on ten runs with randomly sampled training samples) of the
University of Pavia image. The best results are highlighted in bold typeface.

Class SRC-Pixel-Wise JSRC JUSRC MJSRC MJUSRC MASR MURASR* MURASR

1 62.24 86.22 93.13 86.14 94.79 89.97 96.87 98.38
2 80.22 96.62 97.15 97.71 98.63 98.78 99.44 99.70
3 69.07 98.64 99.36 99.27 99.76 99.78 99.87 99.89
4 91.48 91.32 90.94 95.89 94.99 97.47 97.13 95.66
5 99.52 97.69 99.11 99.55 99.78 100 100 100
6 68.84 99.54 99.71 99.53 99.93 99.87 99.93 100
7 86.90 97.53 99.59 99.79 99.92 100 100 100
8 72.67 95.89 97.92 96.70 98.68 98.76 99.72 99.94
9 98.17 66.96 75.17 84.08 86.43 92.16 94.90 95.30

OA 76.74 94.51 96.27 95.83 97.83 97.42 98.92 99.21
AA 69.61 92.67 95.02 94.42 97.09 96.54 98.55 98.94

Kappa 0.81 0.92 0.95 0.95 0.97 0.97 0.99 0.99

(a)
OA=85.80

(b)
OA=94.01

(c)
OA=96.17

(d)
OA=95.34

(e)
OA=97.02

(f)
OA=98.06

(g)
OA=99.19

(h)
OA=99.91

Figure 7. Classification maps for the Salinas image by different algorithms: (a) SRC-Pixel-Wise;
(b) JSRC; (c) JUSRC; (d) MJSRC; (e) MJUSRC; (f) MASR; (g) MURASR*; and (h) MURASR.
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Table 10. The McNemar’s tests between classifiers (averaged on ten runs with randomly sampled
training samples) of the University of Pavia image.

Method JSRC JUSRC MJSRC MJUSRC MASR MURASR* MURASR

JSRC – −16.69 −13.38 −31.89 −28.46 −40.43 −42.27
JUSRC 16.69 – 4.06 −19.51 −11.12 −29.82 −32.77
MJSRC 13.38 −4.06 – −22.57 −20.97 −32.92 −34.68

MJUSRC 31.89 19.51 22.57 – 5.09 −18.40 −21.43
MASR 28.46 11.12 20.97 −5.09 – −21.53 −23.41

MURASR* 40.43 29.82 32.92 18.40 21.53 – −6.93
MURASR 42.27 32.77 34.68 21.43 23.41 6.93 –

(a) OA=76.54 (b) OA=94.38 (c) OA=96.50 (d) OA=95.52

(e) OA=97.99 (f) OA=97.19 (g) OA=98.83 (h) OA=99.05

Figure 8. Classification maps for the University of Pavia image by different algorithms:
(a) SRC-Pixel-Wise; (b) JSRC; (c) JUSRC; (d) MJSRC; (e) MJUSRC; (f) MASR; (g) MURASR*; and
(h) MURASR.

4.3. Effects of Region Scales

Except for SRC-Pixel-wise, other related algorithms can be affected by different number of scales.
In the previously mentioned experiments, 7 scales have been chosen to compare the performance of
all algorithms. The effect of region scales for JSRC, MJSRC, and MASR has been presented in [28].
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(a) (b)

(c)

Figure 9. Effect of the region scales on single scale algorithms JSRC, JUSRC and the multiscale
algorithms MJSRC, MJUSRC, MASR, MURASR* and MURASR for the: (a) Indian Pine image;
(b) Salinas image; and (c) University of Pavia image.

From Table 1, we can find when the scale number is 7, the calculated scale for superpixels is large
enough. If the scale continues increasing, there will be more mixed superpixels generated. Moreover,
the classification results of MURASR on three images are encouraging when the number of scales
is 7. Therefore, the effects of scales number under or equal to 7 will be analyzed in this section.
It means that scales for patches range from 3 × 3 to 15 × 15. Figure 9 shows the average OA of ten
runs for JSRC, JUSRC, MJSRC, MJUSRC, MASR, MURASR* and proposed MURASR. For multiscale
algorithms, each scale represents the combination of the current scale and its smaller scales. It is easy
to find that the union region based classifiers JUSRC, MJUSRC, and MURASR* generally outperform
corresponding patch region based JSRC, MJSRC and MASR. And the probability majority voting
method can optimize the classification result on each region scale. In addition, the proposed MURASR
consistently outperforms other algorithms on all the region scales.

4.4. Effects of Training Samples Number

The number of training samples may affect the performance of the classifiers. Therefore the effects
of different number of training samples on the JSRC, MJSRC, JUSRC, MJUSRC, MASR, MSPASR and
proposed MURASR were examined on the three images. For the Indian Pines, the number of selected
training samples for every class varies from 1% to 20% percentage. For the Salinas, the percentage
is from 0.1% to 2%. For the University of Pavia, 60–500 training samples were selected for each
reference class. The difference in terms of classification OA for each classifier with different number
of training samples is illustrated in Figure 10. The OA is also the average of ten runs. As can be
observed, the union region based classifiers JUSRC, MJUSRC and MURASR* always perform better
than corresponding patch region based JSRC, MJSRC, and MASR. Comparing the result of MURASR*
and MURASR, it is easy to find that the improvement obtained from probability majority voting
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method increases with the decreasing of training samples number. Moreover, the proposed MURASR
generally outperforms other classifiers on all the training samples.

(a) (b)

(c)

Figure 10. Effect of the number of training samples on JSRC, JUSRC, MJSRC, MJUSRC, MASR,
MURASR* and MURASR for the: (a) Indian Pine image; (b) Salinas image; and (c) University of
Pavia image.

5. Conclusions

In this paper, a novel multiscale union region adaptive sparse representation, the MURASR,
which uses union region integrating patch and superpixel to exploit the spatial information, is
proposed for spectral-spatial HSI classification. Unlike the patch region based MASR, the proposed
MURASR extends the patch region to the union region. The union region utilizes the integration
of the observation that neighboring pixels that belong to the same material usually are strongly
correlated with each other and pixels in the superpixel usually belong to the same material. Before
sparse representation, multiscale union regions are generated via the union operation for patch and
superpixel. Then multiscale adaptive sparse representation is adopted to classify multiscale union
regions and an effective probability majority voting method is applied to generate the final result.
Experiments on three HSIs demonstrate that the union region based algorithms always perform better
than patch region based algorithms and the proposed MURASR outperforms other algorithms in terms
of quantitative metrics and visual quality for the classification maps.

As the MURASR is a pixel-based algorithm, if we replace the superpixel with a region growing up
from each test pixel, the generated union region will have more accurate representation of the spatial
information. Thus, the further research will generate one superpixel for each test pixel. In addition,
the structure dictionary for sparse representation is constructed directly by selected training pixels.
A trained structure dictionary may decrease the running time of the algorithm and provide more
accurate representation for test pixels.
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