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Abstract: In recent years, new techniques for the morphological study of cut marks have become
essential for the interpretation of prehistoric butchering practices. Different criteria have been
suggested for the description and classification of cut marks. The methods commonly used for the
study of cut marks rely on high-cost microscopy techniques with low portability (i.e., inability to
work in situ), such as the 3D digital microscope (3D DM) or laser scanning confocal microscopy
(LSCM). Recently, new algorithmic developments in the field of computer vision and photogrammetry,
have achieved very high precision and resolution, offering a portable and low-cost alternative to
microscopic techniques. However, the photogrammetric techniques present some disadvantages,
such as longer data collection and processing time, and the requirement of some photogrammetric
expertise for the calibration of the cameras and the acquisition of precise image orientation.
In this paper, we compare two low-cost techniques and their application to cut mark studies:
the micro-photogrammetry (M-PG) technique presented, developed, and validated previously, and
a methodology based on the use of a structured light scanner (SLS). A total of 47 experimental cut
marks, produced using a stainless steel knife, were analyzed. The data registered through virtual
reconstruction was analyzed by means of three-dimensional geometric morphometrics (GMM).

Keywords: micro-photogrammetry; structured light laser scanner; cut marks; bones; statistical
agreement; low-cost

1. Introduction

Recently, archaeological research has substantially changed, due to the application of new
technologies and multidisciplinary approaches. The application and implementation of the latest
technological advances have enhanced research, scientific dissemination, and archaeological heritage
management, promoting the creation of new research methodologies. Consequently, a more precise
archaeological investigation is possible nowadays, including the performance of very accurate
analyses with better graphic and visual designs that also promote the dissemination of the findings to
a wider audience.

Geotechnologies, especially photogrammetry and laser scanning, have long played an important
role in archaeological research. Photogrammetry, as a geotechnology of taking measurements and
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extracting information from a series of images, has long been used to record, measure, and model
archaeological structures: from small scale artefacts [1–5] and large scale archaeological sites [6] to
complex subterranean caves [7]. Even though model accuracy depends on various factors (i.e., image
network, resolution, number of images, calibration), highly accurate geometric models can be
achieved [8]. However, as a passive sensing technology, photogrammetry has its limitations, such as
light dependence, lack of scale, and the requirement for image texture [9].

Laser scanning, also referred to as LiDAR (light detection and ranging), is a device-to-target
distance measurement technology that generates dense clouds of 3D points describing the target's
geometry. Laser scanning became rapidly popular in the surveying of archaeological sites, due to its
direct 3D measurement, and ease of use. The data acquisition can be efficient, and can be planned
regardless of the light conditions because of active sensing, which can be critical for underground or
cave measurement [10].

Obviously, both photogrammetry and laser scanning have their pros and cons. Therefore,
the combination of both will satisfy most scales in archaeological research [11].

In taphonomy, microscopic techniques [12–17] (Figure 1a,b) (Table 1), have been essential to
identify the type of tool or raw material used to process the carcasses found in the archaeological record.
However, these techniques are expensive, and can only be used in the laboratory. Alternative solutions
have been proposed by Maté-González et al. [18], developing a low-cost micro-photogrammetric
method that allows metric and morphometric analyses of cut marks on bones (Figure 1g) (Table 1).
The micro-photogrammetric method (M-PG) has even been validated by comparison with microscopic
techniques [19]. The compatibility of photogrammetric and microscopic methods, and the possibility
of producing comparable high-resolution three-dimensional models using any of these techniques,
facilitates the exchange of information and data between different research teams. The main advantages
of the M-PG technique, compared to the microscopic technique, is that it is simple, portable (direct work
in fields or museums), and relatively cheap (the price of this type of system is around 1000 euros,
because only a conventional reflex camera and a macro lens are necessary (Table 1)). Nevertheless,
M-PG (passive sensor) techniques present some disadvantages, as they require longer data capture and
processing time than microscopes (active sensors), and certain photogrammetric experience for the
right development of some technical phases (e.g., orientation and calibration) [18]. There are, anyways,
alternative techniques that combine shorter data capture time and processing and portability, like the
handheld laser scanner with active sensors (Figure 1c–f) (Table 1). The applicability of these sensors is
designed for the documentation of objects or close scenarios [20]. Given the wide range of active sensor
handheld laser scanners that currently exist for 3D scanning, it is very important to select the most
appropriate 3D documentation system for the specific sample and study. There is a price volatility
that ranges from low-cost to medium-cost and high-cost systems [21]. Most of the current high-cost
sensors in the market are based on the principle of laser light and triangulation-based systems (LL-TR),
that achieve a 0.02 mm resolution [22] (Figure 1d) (Table 1). These devices stand out, thanks to their
fast data collection, the ability to obtain immediate results, ease of use, suitability for field use, and the
incorporation of metrological software. In archeology, these systems have been widely used for the
documentation of rock art, ceramics, portable art, fossils, archaeological sites, etc. [23–34].

For its part, most of the current medium-cost systems in the market are based on the principle
of structured light scanner (SLS) [35–37]. These systems consist of a projector and one or several
cameras, and they achieve 0.05 mm resolution [22] (Figure 1e) (Table 1). SLS systems require a prior
preparation, since calibration is required, and a post-production for the collection of data, since the
union of the clouds of points is semiautomatic. The SLS system presents a special advantage provided
by its composite arrangement (projector + camera), as these elements can be modified or replaced
by other higher-quality devices. Besides, the results would not be affected by such changes, since
the system must be calibrated before use. In archeology, the employment of these tools is increasing:
e.g., ceramics, stone carvings, sculptures, jewelry, fossils, Neolithic gravestones, documentation of
archaeological sites, etc. [38–47].
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Low-cost systems arose for the videogame industry. The most commonly used low-cost system is
the Kinect system (depth sensor, real-time Mobile 3d), which can be used alone, or can be incorporated
to other systems, implying a large cost increase (e.g., Google Tango (Figure 1f) (Table 1), DPI-8,
eyesmap, etc.). The resolution reached by these systems is around 8 mm at best [48]. In archeology,
the use of these tools is proliferating for the close capture of sceneries as a complement to the terrestrial
laser scanning [49]. It has also been used for documentation of stone carvings [50]. The stability and
metric quality of low-cost systems (resolutions of 8 mm) cannot compete with high- or medium-range
systems (resolutions of 0.02 mm and 0.05 mm, respectively).

In order to alleviate the disadvantages of the M-PG techniques, as well as those related to the
active handheld laser scanner systems, here, we present a methodology based on a low-cost and
improved structured light scanner (SLS-2) technique as an alternative to the study of cut marks on
bone surfaces. We also compare, statistically, this methodology (in terms of precision and resolution)
with a previously validated M-PG technique [19,51]. The comparison of these two techniques permits
elucidating their simultaneous applicability in archaeological contexts. In addition, using structured
light laser scanner (SLS-2) techniques, it is possible to obtain high resolution images that allow the
study of taphonomic marks in detail and in real time, as SLS-2 requires short data collection and
processing times. Thus, SLS-2 technique presents two fundamental features that enable the study of
microscopic morphological details of larger samples. In this paper, we also test the capacity of SLS-2
systems to assess differences among cut marks on bones with different morphological characteristics.
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Figure 1. (a) 3D digital microscope KH-8700, (b) Confocal laser microscope Olympus LEXT OLS3000,
(c) Triangulation-based ShapeGrabber, (d) Creafrom EXAscan, (e) Structured Light David Scanner SLS2
(f) Google Tango, (g) Reflex Canon EOS 700D + Objective 60 mm macro lens.
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Table 1. Comparison between different measuring techniques.

Technical Measuring Procedure Classification System Portability Speed (min) Range Usage Way Resolution Cost [EUR]

Microscopy 3D digital microscope Active sensor KH-8700 low >1 1–10 mm Automatic 0.15–0.01 µm <100.000
confocal laser microscope Active sensor Olympus LEXT OLS3000 low >1 1–20 mm Automatic 0.12–0.01 µm <100.000

Laser scanners

Triangulation-based Active sensor ShapeGrabber medium >1 21–120 cm Automatic 0.02 mm <30.000
Structured Light Active sensor Creaform EXAscan high >1 0.17–0.40 m Automatic 0.05 mm <20.000
Structured Light Active sensor David Scanner SLS2 medium >1 0.15–5.00 m Semiautomatic 0.02 mm 3.000

Time-of-flight Active sensor Google Tango high >1 0.50–4.00 m Automatic 8 mm 450

Photogrammetry Micro-photogrammetry Passive sensor Reflex + macro objective high ∼=25 10–50 cm Semiautomatic 0.02 mm 1000
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2. Materials and Methods

2.1. Sample

For the purpose of this study, experimental cut marks were produced using a stainless steel knife,
model Molybdenum Vanadio C 0.5 CR 14 MO 0.5 VA 0.25, which allows the control of certain variables
(see Maté-González et al. [19] for further details) (Figure 2). A total of 22 cut marks on an Ovis aries
radius and humerus, were registered using SLS and M-PG techniques, creating 2 homologous sets
of cut marks to assess differences in virtual reconstruction techniques. A second set of cut marks,
reproduced using SLS, was analyzed to evaluate possible differences among cut marks on long bone
epiphyses and flat bones. Radius and humerus are long bones with a more or less oval shaft, which
determines cut mark section, shape, and form, when compared to cut marks performed of flat axial
bones, where the curvature of bones is less, or not pronounced. In this case, a total of 21 cut marks on
long bone shafts, and 26 cut marks on a scapula, were virtually reconstructed and statistically analyzed.
The bones used in this second part of the study also belong to a young Ovis aries individual.
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Figure 2. Stainless steel knife used in the study to create the cut marks on several bones.

Only cut marks where the limits of the mark were clear, e.g., the start and end of the mark could be
easily identified, were selected for the study. A very abnormal cut mark, according to both registration
techniques (SLS and M-PG), was excluded from the analysis to avoid statistical noise.

2.2. Reflex Camera and Macro-Lens

Cut marks were first registered using micro-photogrammetry (M-PG) and computer vision
techniques, so as to create high-resolution 3D models of each cut mark. Precise metrical models
were generated using images taken with vertical and oblique photography, using a CANON
EOS 700D with a 60 mm macro lens (Table 2), and following the specified protocol explained in
Maté-González et al. [18]. The camera was self-calibrated to simultaneously compute the interior and
exterior camera parameters [52]. A total of 9–13 photos were taken for each mark, depending on the
geometry of the bone and the shape of the mark (Figure 3a). The 3D reconstruction of a single mark
took 25–30 min depending on the number of photos acquired. Photographs were processed with the
open-source photogrammetric reconstruction software GRAPHOS (inteGRAted PHOtogrammetric
Suite) [53,54] to generate a 3D model for each mark (Figure 3b). The scaled 3D models were exported
as PLY files, and subsequently registered and studied by means of Geometric Morphometrics.
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Table 2. Technical specifications of the photographic sensor with macro lens (Canon EOS 700D).

Canon EOS 700D

Type CMOS
Sensor size 22.3 × 14.9 mm
Pixel size 4.3 µm

Image size 5184 × 3456 pixels
Total pixels 18.0 MP
Focal length 60 mm

Focused distance to object 100–120 mm
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2.3. Structured Light Scanner

Cut marks were also digitalized with a DAVID structured-light scanner SLS-2 (Table 3), a newer
version of the former DAVID SLS-1 which was improved with a macro lens getting better resolutions.
This equipment, located at the C.A.I. of Archaeometry at the Complutense University of Madrid,
consists in a camera, a projector, and a calibration marker board that in the first phase, needs to be
calibrated (Figure 4). To carry out this process, a DAVID USB CMOS Monochrome camera is positioned
and fit with a macro lens alongside an ACER K132 projector, both facing towards the calibration marker
board at an angle between 15◦ and 25◦ (Figure 5a). The projection produced by the projector has to
cover the entire calibration marker board, in our case, the size and calibration pattern corresponds to a
15 mm scale. Within the DAVID software, the scale is introduced as displayed on the calibration marker
board, the camera’s exposure is adjusted accordingly while the focus of all the single instruments is
adjusted. The equipment is then calibrated. During this process, the camera, as well as the projector,
must remain fixed and stable.

The second phase consists in substituting the calibration marker board for the bone we intend
to scan. The DAVID structured-light scanner SLS-2 can produce a density of up to 1.2 million points.
The use of this scanning process provides a real reproduction of the bone external topography
(Figure 5b). In this case, the matt polished surface of the bones avoids problems related to light
intensity, or the contrast of lights and shadows during data collection. The active sensor reduces data
capture time to less than 1 min. The DAVID structured-light scanner SLS-2 used in this experiment
produced a higher quality resolution than the scanner used in Maté-González et al. [18].

Table 3. Technical specifications of the Structured Light Scanner SLS-2.

DAVID Structured-Light Scanner SLS-2

Workpiece size 16 × 500 mm
Resolution Up to 0.1% of scan size (down to 0.016 mm)

Scanning time One single scan within a few seconds
Mesh density Up to 12,000,000 vertices per scan
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2.4. Statistical Comparison

For the purpose of this study, 13 landmarks located on the exterior and interior of the mark groove
were used to describe the cut marks, following the model proposed by Courtenay et al. [55] (Figure 6).
This model has been proved to better capture the morphological information of cut marks when using
3D techniques, including the opening angle of the mark, and the location of its central deepest point.
The landmarking step was performed in Avizo (Visualisation Sciences Group, USA).

Landmarks are homologous points that contain shape and size information in the form
of Cartesian coordinates, allowing the comparison among different elements [56–59]. Landmark
configurations can be analyzed by means of geometric morphometric procedures based on a
Procrustes superimposition, also called generalized procrustes analysis (GPA). This technique takes the
landmark data, and normalizes the form information by the application of superimposition procedures
(translation, rotation and scaling). After GPA, the remaining differences between the structures,
defined by landmarks, expose patterns of variation and covariation that can be studied using common
multivariate statistics [60–62].
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Figure 6. Landmarks used to describe cut marks registered using (a) SLS and (b) M-PG techniques as
suggested in Courtenay (2017).

Several principal component analyses (PCA) performed in MorphoJ [63] and Morphologika 2.5 [56]
were used to assess patterns of variation among the data in shape and form space, to study shape and
size differences among cut marks. Form spaces, containing size and shape information, were obtained
by re-scaling data using the natural logarithm of centroid size. Changes in shape and form space were
visualized with the aid of transformation grids and warpings [64] computed using thin-plate splines.

Several tests were performed to assess differences and similarities among (1) registration
techniques, and (2) cut marks on cylindrical and flat bones. The presence of defined groups was
statistically tested using a multiple variance analysis (MANOVA) on the principal components (PC)
scores, and analyses of variance (ANOVA) when the condition of variance homogeneity was fulfilled
according to the Levene’s test. When samples showed unequal variances, the Welch’s t-test was
performed to test the null hypothesis of equal means among groups. Variance analyses were performed
in the free software R [65].

Linear discriminant analyses (LDA) were performed using Morpho J [63] to determine the shape
features that best distinguish between the established groups [66]. Permutation tests were computed
to assess differences between group means.

3. Results and Discussion

3.1. SLS vs. M-PG

The whole sample, consisting of 22 homologous 3D models (i.e., pairs of 3D models obtained
with SLS and M-PG), was subjected to a PCA, where two outliers representing the same cut mark (N 5)
can be observed (Figure 7a). Since differences between this mark (N 5) and the rest of the sample are
due to the nature of the cut mark itself, as it appears clearly separated when registered using both
techniques, tests were run leaving the outlier out of the study, to avoid noise. However, numerical
results obtained with and without the outlier are similar, and do no show significant differences
between methodologies.

The cut marks registered by means of M-PG and SLS-2, overlap considerably in the second PCA
plot, where less than 50% of the total variance is explained (Figure 7b). However, a slight difference
can be noticed, as cut mark models generated using M-PG show a greater dispersion that expresses
larger variance. Nevertheless, this larger variance among cut marks registered using M-PG methods
seems to be mainly produced by only two specific marks that are clearly separated from the main
scatter range.
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Variance analyses (MANOVA, ANOVA) conducted on the principal component (PC) scores and
assessing a greater variance percentage than the one observed in the PCA plot, support the results depicted
in the graph. Both the MANOVA and ANOVA results (Table 4) highlight that there is no significant
difference (p-value > 0.05) between the models generated by means of M-PG and the SLS-2. In fact,
the Levene’s test performed on the sample confirmed the homogeneity of the variance in both groups
(p-value > 0.05). Equally, differences between registration techniques were assessed in form space, where
changes in size are also considered alongside shape, resulting in no significant differences (Table 4).

Table 4. Mean comparison between cut mark samples. CM = Cut mark; LB = Long bone; FB = Flat bone.

Sample F p-Value

MANOVA in shape space SLS-2 vs. M-PG 0.4904 0.7812
MANOVA in form space SLS-2 vs. M-PG 1.33 0.2739
ANOVA in shape space SLS-2 vs. M-PG 0.5242 0.718

Welch t-test in form space SLS-2 vs. M-PG 3.345 0.998
MANOVA in shape space CM on LB vs. CM on FB 1.414 0.2395
MANOVA in form space CM on LB vs. CM on FB 0.7747 0.536

Welch t-test in shape space CM on LB vs. CM on FB 0.9202 0.4552
Welch t-test in form space CM on LB vs. CM on FB 1.076 0.989
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A jackknife cross-validated LDA was performed to assess minimal variance within cut mark
groups, and maximal variance between groups, extracting a confusion matrix that indicates high
confusion rates between the cut marks registered with M-PG techniques and the SLS-2 (Table 5).
Though misclassified marks do never surpass the 50%, the Procrustes and Mahalanobis distances
calculated between the groups, and the permutation tests run to assess their significance, stress that
the two groups cannot be distinguished (Procrustes distance p-value = 0.44, Mahalonobis distance
p-value = 0.47).

According to our statistical results, cut marks registered using M-PG and SLS-2 show no significant
difference, and can thus be equally applied for the study of cut marks. In this way, the use of the SLS
method would be validated in taphonomic contexts, becoming a supplementary technique that can be
added to previously investigated microscopic and photogrammetric techniques.

Table 5. Cross-validated confusion matrices calculated for the different cut mark groups analyzed. CM
a = Cut mark; LB b = Long bone; FB c = Flat bone.

CM a on LB b with SLS-2 CM a on LB b with M-PG CM a on LB b CM a on FB c Total

CM a on LB b with SLS-2 13 (61.9%) 8 (38.1%) 21
CM a on LB b with M-PG 8 (38.1%) 13 (61.9%) 21

CM a on LB b 14 (66.7%) 7 (33.3%) 21
CM a on FBc 7 (26.9%) 19 (73.1%) 26

3.2. Cut Marks on Long Bone Diaphyses vs. Cut Marks on Flat Bones

The PCA of the cut marks in shape space shows a non-polarized morphospace, defined by a high
number of PCs. The scatter-plot in Figure 8 expresses only 53.1% of the total variance. In shape space,
cut marks on the scapula (flat bone) appear more widely distributed than the cut marks produced
on the humerus and the radius (long bones) that are mainly concentrated in the center of the graph.
Though both groups clearly overlap, the shape of the cut marks on flat bones tends to be more variable,
especially in relation to changes in shape expressed by PC1, that is described in its positive axis by flat
and narrow cut mark shapes, and in its negative limit by wider and more curved shapes. Most cut
marks registered on the scapula are closer to the narrow and flat shape, but variance in this sample is
still quite large. The cut marks generated on long bone diaphyses tend to be closer to the mean shape,
and mostly change along PC2, which is explained by changes in the direction of the curvature of the
mark. However, in most cases, cut marks on long bones are distributed along the negative x-axis,
indicating that these marks tend to be wider, deeper, and more curved. This description is consistent
with the nature of long bone shafts.

The PCA in form space is quite different, with both groups of cut marks similarly distributed
along the graph, especially along PC1 (Figure 9). The first principal component is closely related to
changes in centroid size that are remarkable as changes in width. Despite the scattering of the sample
in the plot, two tendencies can be noticed in relation to the nature of the bones, where cut marks
haven been generated: cut marks on long bones tend to gather mostly in the central or negative area
of the x-axis, which corresponds to wider, deeper, and more curved forms, while 69.2% of cut marks
on the scapula appear on the positive area of the x-axis, equivalent to narrower and flatter marks.
Such changes in form expressed in PC1 make up 97.6% of the total variance, while PC2 only explains
0.68% of the variance and is determined by the same variables that characterize PC1 in shape space.
Cut marks on long bones are similarly scattered along the positive and negative ranges of the second
principal component, whereas cut marks on flat bones mostly fall in the negative range of the y-axis,
determined by flatter and narrower mark forms.
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The visual overlapping of cut mark groups in the PCA plots needs to be further investigated,
since those graphs are two-dimensional representations of the first two PCs. Thus, the scatter-plots,
first, fail to explain the entirety of the variance expressed by the sample, and, second, cannot display
the distance among groups in the z-axis.

The MANOVAs performed on the PC scores to assess the differences among group means show
no significant differences in shape (Wilks’ Lambda = 0.8529, F = 1.414, p = 0.2395) and form space
(Wilks’ Lambda = 0.9137, F = 0.7747, p = 0.536). However, the Levene’s test indicates that variance
among groups is unequal in shape and form space, and Welch’s tests were needed to confirm the
similarity of the group means (Table 4). On top of that, the confusion matrix calculated shows that
confusion rates between cut marks on flat and long bones are not that high and that most of the marks
can be correctly classified (Table 5).
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Despite graphical overlapping and statistical non-significant results in some cases, it cannot be
disregarded that there is an interesting difference in the variance range of each sample, with cut
marks on long bones being more concentrated in a specific area of the graph, in response to a stronger
influence of bone morphology. Therefore, further experimentations are necessary to assess differences
in variance distribution depending on the characteristics of the bone. The future enlargement of the
experimental sample would help characterize cut marks on different bones and identify possible
patterns related to bone morphology.

4. Conclusions

In this paper, we present a low-cost, portable and accurate technology for the analysis of marks on
bone surfaces. The use of structured light scanners in this research area has been statistically validated
by comparison with the results obtained using photogrammetric methods. Structured light scanners
present remarkable advantages over photogrammetric methods, especially the time needed for data
collection and processing. Particularly, the time required for the reconstruction of cut marks using
SLS-2 is lower (only a few seconds) than the time required with M-PG (around 25 min). Regarding
the quality of results (precision and resolution) obtained, the incorporation of a specific system of
lenses to the low-cost David SLS-2 system allows us to reach a resolution of 0.016 mm and a precision
equivalent to the M-PG (±0.017 mm [51]).

As shown in this paper, results obtained with both techniques are statistically identical, allowing
the combination of SLS and M-PG for the study of certain taphonomic traces. Beyond that, structured
light scanners do not only permit the application of the technique to the study of marks, but they
also provide sufficient resolution to assess differences among very similar marks. Three-dimensional
reconstructions generated with an improved DAVID structured light scanner have sufficient resolution
so as to compare cut marks produced with the same raw material (stainless steel knife) on cylindrical
(long bones) and flat bones (axial element). The resolution obtained with SLS-2 technique opens a new
range of possibilities for taphonomic studies, making it possible to observe and analyze morphological
differences of microscopic marks in much greater detail (Figure 10). The implementation of SLS to
archaeological research would, thus, enhance statistical studies and enable the proposal of a broader
range of taphonomic questions, including hypotheses on subtle morphological features.

Here, we assessed the performance of SLS-2 in morphological studies on bone surface
modifications. However, the method could be extended to other types of surfaces to study the
shape and size features of different elements, such as engravings on portable or parietal art.

Although the results obtained in this study are very satisfactory and demonstrate the validity of
this low-cost method for the study of conspicuous and well-defined marks (e.g., cut marks), the SLS-2
technique still shows the same difficulties when carrying out studies of more loosely defined marks
(e.g., trampling marks), as it was the case with M-PG techniques. It is true that the SLS-2 technique
achieves a better resolution than M-PG (Figure 10), but still lacks sufficient resolution to register the
subtleties of fine microscopic details.

Researchers now have a low-cost method at their disposal that overcomes the limitations
encountered when using microscopes (e.g., restricted access due to high costs), providing fast and
accurate results. Accordingly, analytical costs and time might reduce, facilitating an increase in
processed sample sizes.
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