remote sensing @\py

Article
On-Board Ortho-Rectification for Images Based on
an FPGA

Guogqing Zhou "%, Rongting Zhang 1->-%*, Na Liu !, Jingjin Huang 23 and Xiang Zhou 3

1 Guangxi Key Laboratory for Spatial Information and Geomatics, Guilin University of Technology,

Guilin 541004, China; glitezhou@yahoo.com (G.Z.); snalv@163.com (N.L.); zqx0711@tju.edu.cn (X.Z.)
College of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin 300072, China;
zrt65@tju.edu.cn

The Center for Remote Sensing, Tianjin University, Tianjin 300072, China

* Correspondence: zrt65@tju.edu.cn; Tel.: +86-773-589-6073

3

Academic Editors: Qi Wang and Prasad S. Thenkabail
Received: 16 June 2017; Accepted: 18 August 2017; Published: 23 August 2017

Abstract: The traditional ortho-rectification technique for remotely sensed (RS) images, which
is performed on the basis of a ground image processing platform, has been unable to meet
timeliness or near timeliness requirements. To solve this problem, this paper presents research
on an ortho-rectification technique based on a field programmable gate array (FPGA) platform
that can be implemented on board spacecraft for (near) real-time processing. The proposed
FPGA-based ortho-rectification method contains three modules, i.e., a memory module, a coordinate
transformation module (including the transformation from geodetic coordinates to photo coordinates,
and the transformation from photo coordinates to scanning coordinates), and an interpolation
module. Two datasets, aerial images located in central Denver, Colorado, USA, and an aerial image
from the example dataset of ERDAS IMAGINE 9.2, are used to validate the processing speed and
accuracy. Compared to traditional ortho-rectification technology, the throughput from the proposed
FPGA-based platform and the personal computer (PC)-based platform are 11,182.3 kilopixels per
second and 2582.9 kilopixels per second, respectively. This means that the proposed FPGA-based
platform is 4.3 times faster than the PC-based platform for processing the same RS images. In addition,
the root-mean-square errors of the planimetric coordinates @x and ¢y and the distance ¢g are 1.09 m,
1.61 m, and 1.93 m, respectively, which can meet the requirements of correction accuracy in practice.

Keywords: ortho-rectification; field programmable gate array (FPGA); hardware implementation

1. Introduction

Given technological development, remotely sensed (RS) images can be acquired quickly and
easily. However, the speed of image processing cannot catch up with the speed of obtaining remote
sensing images because of the limitations of image processing technology. Conventionally, to process
the acquired images (such as mosaic, fusion, and ortho-rectification), they need to be sent back to the
ground performance center. Moreover, many traditional image processing systems, such as ENVI and
ERDAS IMAGINIE, are serial instruction systems based on personal computer (PC) computers. Thus,
these image processing systems hardly meet the demand in response of time-critical disasters, making
the abundant image resources underutilized.

Ortho-rectification is an essential step in RS image processing, which aims to remove the geometric
distortions and obtain the mapping-based geographic coordinates of the image. It is important for
and the basis of the subsequent image processing and applications. The traditional ortho-rectification
methods correct images and remove distortion pixel-by-pixel using a personal computer (PC)-based
platform on the basis of a digital elevation model (DEM). It is difficult to achieve a demand for (near)

Remote Sens. 2017, 9, 874; d0i:10.3390/rs9090874 www.mdpi.com/journal /remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9090874
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2017, 9, 874 2 of 22

real-time performance because the processing unit is a pixel and there is a great amount of image
data. On the other hand, since the algorithm complexity of ortho-rectification is very high, serial
instruction processing systems take much time to perform the ortho-rectification algorithms. Thus,
how to improve the speed of the ortho-rectification process has become an urgent issue when applied
in on-board processing of a spacecraft.

Due to the limitation of the speed of serial instruction processing, many parallel processing
methods for image processing have been proposed, such as [1-6]. Pan et al. [1] presented a fast motion
estimation method to reduce the encoding complexity of the H.265/HEVC encoder implemented by
Intel Xeon CPU E5-1620 v2 (Intel company, 2200 Mission College Blvd, Santa Clara, CA 95054-1549,
USA). and random access memory (RAM). Jiang et al. [2] proposed a scalable massively parallel fast
research algorithm to reduce the computational cost of motion estimation and disparity estimation
using a central processing unit (CPU)/ graphical processing unit (GPU). In these methods, the GPU and
CPU are combined to process images. Although the ground parallel processing system had improved
the speed of image processing, the RS images needed to be sent back to the ground processing centers.
Within the entire process, much time is still wasted. Additionally, most of the parallel processing
methods are based on the multiple task operating system of the GPU, which cannot essentially solve
the problem of a serial instruction method.

An effective solution for the (near) real-time processing of image ortho-rectification is to perform
the ortho-rectification on hardware. In recent decades, the field programmable gate array (FPGA) has
been widely used in the image processing (such as imaging compression [7,8], filtering [9-11], edge
detection [12,13], real-time processing of video images [14,15], and motion estimation [16-18]) to make
real-time processing come true. Gonzélez et al. [16,17] optimized matching-based motion estimation
algorithms using an Altera custom instruction-based paradigm and a combination of synchronous
dynamic random access memory (SDRAM) and on-chip memory in Nios II processors, and presented
a low-cost system. Botella et al. [18] proposed an architecture for a neuromorphic robust optical flow
based on FPGA, which was applied in a difficult environment. In addition to a very-high-speed
integrated circuit hardware description language (VHDL) and Verilog HDL, OpenCL is usually used to
design an FPGA [19,20]. Waidyasooriya et al. [19] proposed an FPGA architecture for three-dimensional
(3-D) finite difference time domain (FDTD) acceleration applying OpenCL, which solved the problem
of designing time. Rodriguez-Donate et al. [20] evaluated the use of a convolution operator in signal
processing disciplines focused on FPGA evaluation under different optimizations with respect to
thread and memory level exploitation, in which OpenCL was used. In the RS community, although
there is also some research on applying FPGA to the real-time processing of RS images, it is still not
enough to meet the requirement in practice. For example, Thomas et al. [21] and Kalomiros et al. [22]
proposed an image processing system by combining software and hardware that can improve the
speed of image correction and mosaicing. David et al. [23] presented a processing method whereby
the computing process is migrated to an FPGA, which aimed at solving the problem when the number
of pixels in an image was huge and the transformation calculation of the floating-point matrix was
complex. Through applying the characteristics of FPGA parallel computing, the proposed method by
David and Don [23] improved the speed of image correction. Winfried et al. [24] designed an on-board
bispectral infrared detection (BIRD) system based on the neural network processor NI1000, a digital
signal processor (DSP), and an FPGA. The system can perform on-board radiometric correction,
geometric correction, and texture extraction. Malik et al. [25] built a quick process hardware platform
using an FPGA. The hardware platform could process 390 frames of 640 x 480 images per second.
Tomasi et al. [26] researched a stereo vision algorithm based on an FPGA to perform the correction of
video graphics array (VGA) images (57 fps). Pierre et al. [27] applied the pipeline method of an FPGA
to correct the color of stereo video images. Kumar et al. [28] realized the real-time correction of images
using an FPGA under a dynamic environment.

To our understanding, a hardware system for image correction is mainly about the field of
real-time correction of video images, stereo-pair real-time correction, etc. There are few studies on

Remote Sens. 2017, 9, 874 30f 22

ortho-rectification of RS images. Thus, this paper develops a hardware platform based on an FPGA for
RS image ortho-rectification. Through decomposing the ortho-rectification algorithm, several basic
algorithms of image processing can be obtained, reducing the complexity of the algorithm and reaching
the purpose of (near) real-time ortho-rectification. The proposed FPGA-based ortho-rectification
platform integrates three modules: a memory module, a coordinate transformation module (including
the transformation from geodetic coordinates to photo coordinates and the transformation from photo
coordinates to scanning coordinates), and an interpolation module.

This paper is organized as follows: the structure of the proposed hardware platform based on
an FPGA is described in Section 2, and the experiments, comparison, and analyses are conducted in
Sections 3 and 4 to evaluate and validate the accuracy and real-time performance of the proposed
method. Some conclusions are drawn up in Section 5.

2. FPGA Implementation for the Ortho-Rectification Algorithm

2.1. A Brief Review of the Ortho-Rectification Algorithm

Many ortho-rectification models have been proposed over the past few decades. According to
the type of image, terrain of the covered area, and geomorphic features, an appropriate model can
be chosen to ortho-rectify the RS images. Generally, ortho-rectification models contain a rigorous
correction model based on the collinearity condition equation, a rational function model, or an
affine-transformation-based correction model. In this paper, the collinearity condition equation is
used to implement RS image ortho-rectification on the proposed platform. The collinearity condition
equation model is based on the corresponding relationship of space geometry between the point
of image space and the point of object space. The collinearity condition equation is the model
that is applied to simulate and solve the position and posture of a sensor at the time of imaging.
The collinearity condition equation is very suitable for various resolutions of images and the situation
where the parameters of orbit are known or unknown. In this section, the collinearity condition
equation model is briefly introduced.

The ortho-rectification method can be classified as the direct method and indirect method.
The direct method applies the image coordinates of the original image to compute the coordinates of
the ortho-photo, and the indirect method applies the image coordinates of the ortho-photo to compute
the image coordinates of the original image. In this paper, the indirect method is used. The processes
of the indirect method based on the collinearity condition equation include the following:

(1) The determination of the geodetic coordinates of the pixels in the ortho-photo

Let (Xgo, Ygo) be the geodetic coordinates of a marginal point on the left bottom of the ortho-photo;
(I,) be the column and row coordinates of an arbitrary pixel in the ortho-photo; Ax and Ay be the
sample intervals of columns and rows, respectively; M be the scale denominator of the ortho-photo; and
(Xg, Yg) be the geodetic coordinates of pixel G. The geodetic coordinates of pixel G can be obtained by
{ Xy = Xg0 + Me(I +0.5)eAx O

Yg = Yg0 + Me(] +0.5)eAy

After determining the geodetic coordinates of pixels in the ortho-photo, the elevation (i.e., Zg) of
each pixel can be acquired through interpolating the digital surface model (DSM).

(2) The transformation from geodetic coordinates to photo coordinates

Remote Sens. 2017, 9, 874 4 of 22

At the time of imaging, the ground point, the center of projection, and the photo point are on a
line. According to the collinearity relationship among them, the photo coordinates of the ground point

can be obtained by:
. a1 (Xg—Xs)+b1 (Yo —Ys)+c1(Zg—Z)
u=Xxy— fa3(Xz_Xs)+b3(Y§—YS)+C3(Z;—Zs) (2)
o _fllz(Xg—Xs)+b2(Yg—Ys)+CZ(Zg_Zs)
=Yo 13(Xg—Xs)+b3 (Yg—Ys)+03(Zg—Zs)

where (i, v) are the photo coordinates of the ground point; xg, 1o, and f are the interior orientation
elements; X5, Y, and Zg are the exterior orientation elements; and ay, by, and ¢, (h = 1, 2, 3) are the
elements of the rotation matrix R that can be obtained by Equation (3).

a b
R = ar bz C2
a3 b3 c3

®)

COSWCOSK — SINQSINWSINK ~ COSWSINK SiNQCOSK —+ COSPSINwWsink
= | —cosgsink — sinwsin@cosK coSwcosK —Sin@sink + cosPsinwcosk
—singcosw —sinw COSPcosw

where ¢, w, and x are three rotational angles along the x-, y- and z-axis in coordinate
transformation, respectively.
(3) The transformation from photo coordinates to scanning coordinates

Because there is affine deformation between the photo coordinate system and the scanning
coordinate system, the following affine transformation is used to get the scanning coordinates for

the pixels:
i’ _ my np u + kll + ilo
j’ my nNp v klz jlo (4)
l my np] [u k1
= +
my np 0 k2

where m;, ny, and k's (t = 1, 2) are the coefficients of affine transformation; (o, j'o) are the scanning
coordinates of the principle point; specially, k; = k'1 + i’g and ky = k'5 + j/o; and (7, ;') are the scanning
coordinates of an arbitrary pixel.

(4) Gray-scale bilinear interpolation

The gray-scale of pixels in the ortho-photo can be determined according to the acquired scanning
coordinates. Because the obtained scanning coordinates may not only be in the center of a pixel,
a gray-scale interpolation process is required. In this paper, the bilinear interpolation method is applied.

flitpj+q) =Q-p)A—aq)fGj)+Q-plaflij+1) 5)
+p(L=q)f(+1)) +paf(i+1j+1)

where i and j are nonnegative integers; p and g are in the range of (0, 1); and f(i, j) are gray values.

2.2. FPGA-Based Implementation for Ortho-Rectification Algorithms

The parallel processing of an FPGA is a main research direction in the high-performance rapid
calculation community. The calculation speed of an FPGA is affected by multi-factors (such as the
amount of logical resource in the chosen FPGA and the optimal design of algorithms). Through
analyzing the structure of an ortho-rectification algorithm and optimizing it, an FPGA-based hardware
architecture for ortho-rectification was designed (as shown in Figure 1). The FPGA-based hardware
architecture contains three modules: (i) an input data module; (ii) a coordinate transformation module
that includes a collinearity equation transformation module (CETM) and an affine transformation

Remote Sens. 2017, 9, 874 5o0f 22

module (ATM); and (iii) an interpolation module (IM). The details of these modules are described
as follows.

(1) The original data and parameters are stored in the RAM of the input data module. These original
data and parameters are sent to the CETM, ATM, and IM in the same clock cycle, when the enable
signal is being received;

(2) The coefficients of the collinearity conditional equation, geodetic coordinates of the ortho-photo,
and photo coordinates are calculated by the CETM. In the same clock cycle, the acquired photo
coordinates are sent to the ATM;

(3) The coefficients of affine transformation are calculated in the ATM and then the coefficients and
photo coordinates are combined to calculate the scanning coordinates, which are sent to the IM
and output in the same clock cycle;

(4) The gray-scale of the ortho-photo is obtained by scanning the coordinates and cached gray-scale
of the original image in the IM. In the same clock cycle, the obtained gray-scale of the ortho-photo
is output to the external memory.

ST,

0, K RAM

X, ¥, Z
Xy Voo f
D

Xy

Z

RAM

Sl

RAM

@ Xy Yy

Py

I,J RAM

Colinearity
Trum{arnmlmn
Module

X, ¥, M,AxA RAM

%, > RrRAM

ion Module

Input Data Module

5 I P
i jisvn,
CLK by Jys vy tty %’ =T)<
i Jys vty - -
RSTn g 5 4 i,j
— > Ly Jpr Vo Uy Ou!“;u £ Affine :("le/‘;;f;;lrmalinn
EN

FPGA

Y

Figure 1. The proposed field programmable gate array (FPGA)-based architecture for the
ortho-rectification of remotely sensed (RS) images. RAM, random access memory. CLK, clock. RSTn,
reset. EN, enable.

2.2.1. FPGA-Based Implementation for a Two-Row Buffer

As is well known, to perform bilinear interpolation, several neighborhoods of a pixel are needed.
However, an FPGA is not like software for storing the whole image in the internal storage and reading
the value of the image pixel according to the index. Thus, according to the size of the neighborhood,
several rows of image data should be cached in advance. Moreover, the cache should be built to store
the required image data. Many research studies have made efforts to design the structure of a buffer,
such as [29-32]. Especially, the structure of a state machine [32] is a useful method for solving the issue
of buffers.

According to [32], a two-row buffer based on an FPGA is proposed. As shown in Figure 2,
four states, i.e., IDEL (initialization), the beginning of all, the end of all, and beginning of the line,
are used for initialization and cache cleaning. In the “transing” state, according to the control signal
and the address of the reading and writing, the corresponding operations are chosen, including
storing the image date in the dual RAM from the external storage, waiting for image data to be taken
from the dual RAM, and turning to the “end of line” state. The number of dual RAM modules, i.e.,
nraM, can be determined by the number of rows of neighbors, i.e., 11, Where ngan is equal to nyy,.
To implement bilinear interpolation, 2 x 2 neighbors are needed. Thus, as shown in Figure 3, two dual
RAMs are used as the cache media for the first level cache of image input. When two dual RAMs are

Remote Sens. 2017, 9, 874 6 of 22

used to buffer data, a multiplexer is exploited to determine which dual RAM should store the data.
For 2 x 2 neighbors, two groups of cycle shift registers are used to store the data from neighboring
pixels of the input image in the second level cache. For each group consisting of end-to-end registers,
two registers, noted as Rmn (m, n = 1, 2), are contained. The data sent from the dual RAMs first are
input selectors that ensure the row order is the same as the row order of the input image, and then the
output of the selectors is sent to the groups of the cycle shift register. When storing the data from the
dual RAMs into Ry each time, the data stored in Rmn (m =1, 2, n = 1) is assigned to Ryyn41) (M =1, 2,
n = 1), while the data stored in R4 (m =1, 2) are thrown out.

MEL < [odofal]

Yes

begin of all

y Yes

inal transmission
for the lin

Figure 2. State diagram of cache for image input [32]. IDEL, initialization.

Y Y

[| [wiz

RAMI — j
Data Cable >
:I: : RAM2 j—» r21 ||[R22

Group of RAM Groups of Shift Register

4

Y

Figure 3. The model of the two-row buffer.

2.2.2. FPGA-Based Implementation for Coordinate Transformation

According to Section 2.1, the ortho-rectification method based on the collinearity condition
equation needs two coordinate transformations. As shown from Equations (1)—(4), these equations
involve compound operations. However, the hardware implementation for an algorithm is based on
the most basic logic operations. Thus, the ortho-rectification method based on the collinearity equation
must be divided into several simple add and multiplication operations, corresponding to the hardware
components of the adder and multiplier, respectively. The details of the FPGA-based implementation
for coordinate transformation modules are described as follows.

(1) FPGA-based implementation for calculating geodetic coordinates X, Y, and Zg

To obtain the geodetic coordinates Xg, Y, and Zg at part (1) of Section 2.1 using an FPGA chip,
a parallel computation architecture is presented in Figure 4. As shown in Figure 4, four adders and four
multipliers are used to compute Xg and Yy in parallel by I, Xy, Ax, M,], Ay, and Y), respectively. After
obtaining X and Yy, they are sent to the interpolation module for calculating Z. To ensure that Xg, Yg,
and Zg are output in the same clock cycle, the delay units are utilized for computing processing. The
details of the interpolation module are presented in the following Section 2.2.3, because its computing
process is the same as gray interpolation.

Remote Sens. 2017, 9, 874 7 of 22

Interpolation >
Module

0.5

Figure 4. FPGA-based parallel computation architecture for calculating geodetic coordinates Xg, Y,
and Z,.
g

(2) FPGA-based implementation for the transformation from geodetic coordinates to photo
coordinates

For an FPGA-based implementation in parallel computing for the transformation from geodetic
coordinates to photo coordinates, a modification of Equation (2) is needed. The intermediate variables
produced in the computing process can be divided into three levels. The goal of the first level is to
implement the margin calculation of the geodetic coordinates between any point and the principal
point of the photograph. The first level contains:

fl:Xg—Xs}fZZYg_Ys;f3:Zg_Zs- (6)

The second level (see Equation (7)) is to calculate the products between the transformation
coefficients and intermediate variables f1, f, and f3.

fa=aifi +bifatcifzifs = acfi + bafo +cafs; fo = azfi + bafa +cafs ()

The computation of the third level (see Equation (8)) is based on the first and the second levels to
obtain the photo coordinates,

f7 = fal fo; fs = f5/ fe. (8)

To compute f4, f5, and f4 in Equation (7), the elements of the rotation matrix R (i.e., g, b;, and ¢;,
i=1, 2, 3) should be first calculated based on Equation (3). To compute the rotation matrix R using an
FPGA chip, a parallel computation module is presented in Figure 5a, in which a;, b;, and ¢; (i=1, 2, 3)
are calculated by the sin and cos functions of the three rotational angles ¢, w, and x. Through using the
CORDIC IP core, the sin and cos functions can be implemented by an FPGA. To ensure that 45, b;, and
¢ (i=1, 2, 3) are obtained in the same clock cycle, the delay units should be exploited in the computing
process, where there are twelve multipliers and four adders.

To implement the transformation from geodetic to photo coordinates, i.e., Equations (6)—(8) using
an FPGA chip, a parallel computation module is presented in Figure 5b. As shown in Figure 5b,
the initial data (i.e., xo, ¥o, f, Xs, ¥s, and Zg) stored in the input data module, the rotation matrix
calculated by using the sin and cos functions and rotation angles, and the geodetic coordinates (Xg, Yy,
and Zg) calculated by Figure 4 are used to compute the photo coordinates (#, v). In the computing
process, eleven multipliers, eight adders, and two dividers are employed. Moreover, the delay units
are also utilized to ensure that the outputs (1, v) are sent into the next module in the same clock cycle.

Remote Sens. 2017, 9, 874 8 of 22

cosw

COSK

£IN

sing ¢
sine /
<
Y
X1
A
cosp
sink
(a
Xp
X,-X,
S —{Negate
a # ® 9 ’
a, t & i e
a, R u
YA"YS
@—f;;é)
214T ®— —‘2‘—’:'0
b, b o<
Z,Z, v
e J
‘;;47 o] SO -Negate~®
c, ¥ ‘
f
Yo
(b)

Figure 5. (a) FPGA-based computation for elements of rotation matrix R; (b) The FPGA implementation
architecture for coordinate transformation from geodetic to photo coordinates.

(3) FPGA-based implementation for the transformation from photo to scanning coordinates

To realize the transformation from photo to scanning coordinates using an FPGA chip, Equation (4)
is divided into two levels. The first level is:

g1 =A1B; g = AsB.)
Additionally, the second level includes:
g3=81t+ki;ga=8+k (10)
i=gs+ipj=8a+Jo (11)
where A; = (my, n1) and A, = (my, np) are the affine transformation coefficients, and B = (1, v)T are the

photo coordinates. The transformation coefficients, i.e., ms, 15, and ks (s = 1, 2), should be calculated
first based on the following least squares method.

Remote Sens. 2017, 9, 874 9 of 22

To compute the coefficients of affine transformation, four control points are needed. Let H be
the matrix of the control point scanning coordinates, Q be the matrix of the photo coordinates of the
known fiducial points, and C be the matrix of the affine transformation coefficients,

T
H=|i1 j1 @ jo i3 j3 is Ja (12)
[1 0 w3 0 v, 0 |
01 0 ur 0 01
1 0 Us 0 (%) 0
01 0 Uun 0 (%]
pr— 1
Q 10 us 0 U3 0 (3)
01 0 Us 0 U3
1 0 ug 0 w4 O
L 0 1 0 Uy 0 U4]
T
C= [k1 kz mpy mp ny My (14)
H=QC. (15)
According to the least squares method, Equation (15) can be solved by:
-1
C=(Q'Q) (Q'H). (16)

e FPGA-based implementation for QTQ and QTH

To implement the matrix multiplication QTQ based on an FPGA chip, it can be rewritten using
an optimum method. As shown in Equation (17), the elements of the matrix contain three formats,
ie.,“ay +by +cp +di”, “ar® + b2 + 12 + d12”, and “aqyap + by by + c10p + didy”. Moreover, the matrix of
G=QTQis symmetric, i.e., the elements of the lower triangular matrix are the same as the elements
of upper triangular matrix. To save the resources of the FPGA chip, the upper triangular matrix is
computed only in parallel based on the FPGA architecture of Figure 6. In the presented architecture,
twelve multipliers and fifteen adders are used in the parallel computing process. The delay units are
applied to ensure that the results are output into next module in the same clock cycle.

Because the format of matrix E’s elements is similar to the format of matrix G (see Equations (17)
and (18)), the FPGA-based architecture for the parallel computing process of Q' H can be referenced
from the architecture of bj3 and b3s in Figure 6. The details of the parallel computation for QTH based
on an FPGA are not repeated here.

1+1+4+1+1 0 Uy +up +uz + iy 0 U1+ 02+ 03+ 0y 0
0 1+14+1+1 0 Uy + up + uz + Uy 0 01+ 0+ U3+ 0y
G=0QTQ= Uy + p + uz + Uy 0 u%+u§+u§+u§ 0 U0 + UV + UZT3 + UgTy 0 (17)
0 Uy + Uy + 3 + g 0 w2+ ud+ud+ud 0 U101 + U0y + U303 + 1Dy
v+ v+ 03+ 0y 0 U101 + Up0y + U35 + UgDy 0 0} + 03+ 0% + 03 0
0 v+ v+ 03+ 0y 0 U101 + Up0p + U303 + U0y 0 0} + 03 + 03 + 02
E=Q'H=|ii+ir+is+is j1+jo+js+ja irun+iguz+isuz+iguy jiug + o+ jauz + jauts 101 +i202 +i303 +is04 101 + 202 + j303 + javs

e FPGA-based implementation for G~!

To implement the inversion of matrix G (i.e., G~1) based on the FPGA chip, it can be divided
into two parts: (i) the implementation for decomposing matrix G using the LDLT method, and (ii) the
implementation of G~!. The details of the implementation are described as follows.

Remote Sens. 2017, 9, 874 10 of 22

To implement the decomposing of matrix G, the LDLT method is used to modify the matrix G as
the following Equation (19):

T

g1 12 ' 8 1 di 1
cee 1 1 d 1 1
21 22 2 21 22 21
o= | 8 S I _ ‘ : _ = LDLT (19)
8nl 0 8nn I - ln(n—l) 1 dun ba l”(”*l) 1

where matrix L is a lower triangular matrix, matrix D is a diagonal matrix, and LT is a transposed
matrix of L. The elements of matrix L and matrix D, i.e., [and dj;, can be solved by Equation (20):

i1
dii = gii — L Lk (a) i=1,2,---,n

. 2
’ l:]+1/]+2//n (O)

j—1
hj = (8ij = E ladid)/djj(b)

To reduce the times of multiplication, an intermediate variable u;; = [id;; is introduced. Therefore,
Equation (20) can be modified as Equation (21):

i1
dij = i — L uily (a)
l;i% j:1/2/"'/n
Ui :8ij_k§1”ikljk (b) " i=j+1j+2,-,n’
lij = wij/dj; (c)

(21)

According to the characteristics of Equation (21), the FPGA-based architecture for calculating I;;
and dj; is shown in Figure 7. In the LDLT method, the dj; are first calculated based on Equation (21a);
subsequently, the elements of the same column of matrix L are calculated in parallel. Moreover,
Equation (21) shows that the elements of the later column of matrix L depend on the elements of the
former column. As shown in Figure 7, five multipliers and twenty-five adders are used to calculate J;
and dj;. In the computing processing, delay units are applied to ensure that the results are output into
the next process in the same clock cycle.

Vi V2 Vs

=

I NI N
I, NI,
| A X
bss bee
Y2 NI NI Q=D
e NI, N
X & bys by bsy be,
u __r_/‘_¢ .
C) N
z % bis bag bs bes
X
@ @ b33 by

b13 b24 b}l b42

Figure 6. The FPGA implementation architecture of QTQ.

Remote Sens. 2017, 9, 874 11 of 22

8u

dll j
8iesize) J_.4> i)

Hin2<i<6y
«—
Negate

82

‘ ~unly) (~tmila)3<me6250=5)

8i3<iz6)] J e
83] \(-llulu) : ®

8iusice) S (-usls)
\11“ (-ttmalnz)

33 (_umll“') (4=m<63<n<5)

Sm<s 3<ns u 31: 2 Fizaae
(4<m<63<n<%)| \] > _{7 L\j-l,l, Dlwders l.l(-’,l,b]

X
(-tals) (-unls)
o)))] e e

- Q (-usls)

liyssse)

dy

Negate
('"5215 (-llnlu) J

X
Ve dss Siia les
) >1) Dividers
(-llul&) (-t3lss l] (- quSJ) I
Ues
é J .

X

b
(-"ezla % (-uelsy)

Figure 7. The FPGA-based architecture for calculating /; and dj;.

After completing the computation of [; and dj;, the inversion of matrix G can be calculated on
the basis of [;; and dj;. According to Equation (19), the inversion of matrix G can be rewritten as
Equation (22):

1 T

G '=(DLT) =@ Y DL . (22)

To implement Equation (22) based on the FPGA chip, an FPGA-based architecture is presented
in Figure 8. In the presented architecture, five parts are contained. The details of the presented
architecture are described as follows.

In the (i) part, MUX (multiplex module) is applied to construct the column elements of matrix G.

In the (ii) part, the LDLT method is used to calculate the elements of matrix L and matrix D, i.e.,
lij and dii~

In the (iii) part, the inversions of matrix D and matrix L are calculated in parallel. Moreover,
in this part, the first MUX is used to construct the vector of L, and L~! is calculated using a systolic
array architecture that is applied for the fast inversion of dense matrices [33]. The second MUX of this
part is utilized to construct the vector of (L~!)T. Through calculating the reciprocal of the elements
of the diagonal matrix D, the D! can be obtained and output. For D! arow vector is constructed
consisting of the elements of matrix D.

In the (iv) part, the transposed matrix of L~! is multiplied by D~!, denoted as P = (L~1)TD!,
and delay units are used for delaying the output of L~1.

In the (v) part, through multiplying P and L1 the inversion of matrix G, i.e., G~1, is obtained
and output.

Remote Sens. 2017, 9, 874 12 of 22

D D! @)D
-y
L—s{ Mux [t~ x|
7 (ii) (iii) (i) ®

Figure 8. The FPGA-based architecture for the inversion of G. MUX, multiplex module.

e FPGA-based implementation for the transformation from photo to scanning coordinate

After obtaining the coefficients of the affine transformation based on the FPGA chip, the scanning
coordinates can be calculated with these coefficients, and the photo coordinates based on the
FPGA-based architecture are presented in Figure 9. As shown in Figure 9, four multipliers and
four adders are used.

u

k>

Figure 9. The FPGA-based architecture for the transformation from photo coordinates to scanning
coordinates.

2.2.3. FPGA-Based Implementation for Bilinear Interpolation

In the whole process of ortho-rectification, the interpolation process is needed in two stages,
i.e., the interpolation for geodetic coordinate Zg and gray-scale. In the part (1) of Section 2.2.2, after
obtaining the geodetic coordinates Xz and Yy, Zg can be obtained using X and Y to interpolate
the DSM. In a similar way, after acquiring the scanning coordinates i and j, the gray-scale of the
ortho-photo can be acquired using i and j to interpolate the gray-scale of the original image. Because
these two interpolation processes are similar, the FPGA-based architecture for interpolation is shared
between them.

Considering the interpolation effect, the algorithm’s complexity, and the resources of the FPGA,
the bilinear interpolation method is used to implement the interpolation for Z; and gray-scale.
However, as shown in Equation (5), the original bilinear interpolation method has eight times of
multiplication, three times of adding, and two times of subtraction. Since the multiplication will take
up many resources, Equation (5) is rewritten as Equation (23), which contains only three times of
multiplication, three times of adding, and three times of subtraction.

r =ri+q(r2—r1)
r2 =13 +q-(ra —13) (23)
fout = 111 + p-(r12 — r11)

where r represents the value of the DSM or gray-scale of the original image, and p = |i-INT(i) | and
q = 1j-INT(j)| are intermediate variables. The FPGA implementation architecture of the bilinear
interpolation algorithm is shown in Figure 10. The two-row buffer, in Figure 10, is an independent

Remote Sens. 2017, 9, 874 13 of 22

function module presented in Figure 3. The two-row buffer is packaged as an independent subsystem
so that it can decrease the utilization of the buffer module. In this architecture for the bilinear
interpolation algorithm, four multipliers and eight adders are utilized.

i INT—Negaid——F

T
two |] n

Bolte
er
Modle -
Fy _b X F

Figure 10. The FPGA implementation architecture for the bilinear interpolation algorithm.
INT, integerize.

3. Experiment

3.1. The Software and Hardware Environment

The hardware platform used in this paper is the AC701 Evaluation Kit of Artix-7 series produced
by the Xilinx company (2100 Logic Drive, San Jose, CA 95124-3400, USA). The version of the FPGA
is Xilinx Artix-7 XC7A200T FBG676ACX1349 D4658436A ZC. The design tool is ISE 4.7 and System
Generator. The simulation tool is ModelSim SE10.1a. As shown in Figure 11, the FPGA Evaluation
Kit uses the UART and JTAG ports to connect with the computer. The power port provides 250 V.
The LCD (liquid crystal display) panel and the screen show the results at the same time. To validate
the proposed method, the ortho-rectification algorithm is also implemented using Matlab 2015a
(MathWorks, 1 Apple Hill Drive, Natick, MA 01760-2098, USA) on PC with a Windows 7 (64 bit)
operation system, which is equipped with an Intel(R) Core(TM) i7-4790 CPU @ 3.6GHz (Intel company,
2200 Mission College Blvd, Santa Clara, CA 95054-1549, USA) and 8 GB RAM.

FPGA-Board

Figure 11. System diagram. LCD, liquid crystal display. LED, light-emitting diode. PC, personal
computer.

3.2. Data

To validate the proposed system based on an FPGA, two test data sets are used to perform
the ortho-rectification. The first study area is located in central Denver, Colorado. The exploited
aerial image (17,054 x 17,054), see Figure 12a, was collected on 17 April 2000 using an RC 30 aerial
camera, which is the same as Zhou et al. [34]. The focal length is 153.022 mm and the flying height is
1650 m above the mean ground elevation of the imaged area. The second data set is acquired from an

Remote Sens. 2017, 9, 874 14 of 22

ERDAS IMAGINE example dataset, i.e., ps_napp.img (2294 x 2294) and ps_dem.img (see Figure 13).
The known parameters, provided by the vendors, are listed in Table 1.

(b)

Figure 12. (a) The original aerial image covering the first study area; (b) digital surface model (DSM)
covering the first study area (Zhou et al. [34]).

6868-138) 4 C0E-04-347

(b)

Figure 13. (a) The original aerial image covering the second study area; (b) digital elevation model
(DEM) covering the second study area (from ERDAS IMAGINE 9.2).

Table 1. The known parameters for the data sets of the two study areas.

Known Parameters First Study Area Second Study Area

X0 0.002 —0.004
Yo —0.004 0.000

f (mm) 153.022 152.8204

Xg (m) 3,143,040.5560 543,427.1886

Ys (m) 1,696,520.9258 3,744,740.3247

Zs (m) 9072.2729 6743.2730

w (rad) —0.02985539 0.63985182

@ (rad) —0.00160606 —0.65999005

x (rad) —1.55385318 0.86709830

Remote Sens. 2017, 9, 874 15 0of 22

As described in part (2) of Section 2.2.2, to obtain the scanning coordinates, the affine
transformation coefficients must be solved. To this end, four fiducial points for each study area
are used to acquire the affine transformation coefficients according to Equation (16), and they are
shown in Table 2.

Table 2. Four fiducial points for each study area.

The First Study Area The Second Study Area
#
i j u v i j u v
FP; 683.403 881.001 —196.100 191.150 87.500 88.501 —106.000 106.000

FP, 15,820.521 835.103 182.325 192.300 2208.499 83.501 105.999 105.994
FP3 15,868.602 15970.971 183.525 —186.075 2213.503 2204.504 105.998 —105.999
FPy 730452 16,019.980 —194.925 —187.300 92.500 2209.501 —106.008 —105.998

After the above necessary parameters are acquired, they are taken as the constants and input to
the proposed FPGA-based ortho-rectification system. The ortho-rectified results (ortho-photo) using
the proposed FPGA-based method are shown in Figures 14b and 15b. To validate the rectification’s
accuracy and speed, ortho-rectification for the same data sets was also implemented using the PC-based
platform. The ortho-rectification results using the PC-based software are shown in Figures 14a and 15a.

PC-Based FPGA-Based

Figure 14. The ortho-photo ortho-rectified by (a) the personal computer (PC)-based platform; (b) and
the proposed method in the first study area.

£668-139 o 06-04-94

5868-139)4 08-04-94

FPGA-Based

Figure 15. The ortho-photo ortho-rectified by (a) the PC-based platform; (b) and the proposed method
in the second study area.

Remote Sens. 2017, 9, 874 16 of 22

4. Discussion

4.1. Visual Check

To validate the rectified accuracy, the ortho-photo results ortho-rectified by a PC-based platform
are taken as the references. In each of the study areas, three sub-areas are chosen and zoomed
into to visually check the accuracy (see Figures 16 and 17). As observed from Figures 16 and 17,
the ortho-photos ortho-rectified by the proposed method expose one pixel’s difference when compared
to the results from the PC-based platform. Through the visual check, it can be concluded that the
proposed method can meet the demand of ortho-rectification in practice.

PC-Bascd FPGA-Based

Figure 17. Visual check analysis for the ortho-rectified results in the three subareas of the second
study area.

4.2. Error Analysis

To further quantitatively evaluate the ortho-photo accuracy obtained by the proposed method,
the root-mean-square error (RMSE) [35,36] is applied to quantitatively analyze the rectification error of
the proposed method. The RMSEs of the planimetric coordinates along the x- and y-axes, and distance
(¢x, py and ¢g), are computed by, respectively

n X — X 2
¢X=\/ Lim %~ %) en

n—1

Remote Sens. 2017, 9, 874 17 of 22

n ’_ 2
e -

@s = \/ZZ—l ((X; — Xk)2 + (Y — Yk)z)

n—1

(26)

where X'y and Y’y are the geodetic coordinates rectified by the proposed method; X; and Y are the
reference geodetic coordinates; and # is the number of check points.

To this end, ninety check points (see Figure 18) for the first study area were selected to validate
the accuracy achieved by the proposed method. The differences of coordinates obtained between the
proposed method and the PC-based platform are shown in Figure 19. According to Equations (24)—-(26)
and Figure 19, the RMSEs of ¢x, ¢y and ¢s are 1.09 m, 1.61 m, and 1.93 m, respectively. In addition,
other statistics, such as maximum value, minimum value, standard deviation, and mean of difference
value are also computed and shown in Table 3. As shown in Table 3, the standard deviations of X and
Y are very small. From Table 3, it can be found that the maximum error of the X and Y coordinates
are 1.16 m and 1.89 m, respectively, and the standard deviation of the X and Y coordinates are 0.14 m
and 0.38 m, respectively. According to Zhang et al. [37], the ultimate purpose of RS image rectification
is to produce thematic maps from the rectified images. Whether the rectified images can satisfy the
cartographic requirement of thematic maps depends on the scale of thematic maps. Because the
minimum resolving distance on any map is only 0.1 mm, the tolerable errors on the ground distance
vary with the scales of thematic maps. The tolerable error would be equivalent of 10 m on the ground if
the scale of thematic map is 1:100,000. Because the rectification error obtained by the proposed method
ranges from ~1 m to ~2 m, thus, the correction accuracy level of the proposed FPGA-based platform is
suitable for compiling 1:10,000 to 1:20,000 thematic maps.

Table 3. Statistics of difference value of geodetic coordinate.

Max Min Mean Standard Deviation
X coordinates 1.16 m 0.23m 1.07 m 0.14m
Y coordinates 1.89 m 0.74 m 1.55m 0.38 m

Figure 18. The distribution of the 90 check points labeled as red in the first study area.

Remote Sens. 2017, 9, 874 18 of 22

"

>
T

—
=
—

= s
. —

o

-

Difference Values (m)

— XX
—— V=Y

0w w0 4w s w7 s %

The Number of Check Points
Figure 19. Different statistics analysis for ortho-photos obtained by our method and the
PC-based platform.

However, it is also noted that differences between the proposed method and the PC-based
platform in the X and Y coordinates still exist. The difference may be caused by the algorithms
implemented through the FPGA hardware, such as fix-point computation, which propagate and
accumulate. In addition, the proposed FPGA-based platform only applies two octaves, while the
PC-based platform applied at least eight octaves.

Moreover, another method (i.e., receiver operating characteristics curve, ROC curve) is used
to evaluate the error of the proposed method. The ROC curve is useful for organizing classifiers
and visualizing the performance of classifiers. The detailed information of the ROC curve can be
found in [38]. In an ROC graph, the vertical axis represents the true positive rate (TPR) acquired by
Equation (27) and the abscissa axis is the false positive rate (FPR) obtained by Equation (28). Let the
difference of X-coordinate and Y-coordinates, which are less than 1 m, be of a positive class, and the
others be of a negative class. Then, the differences are sorted by descending order. Finally, three
differences of X-coordinates (the same as Y-coordinates) are used as a group to calculate the TPR and
FPR. The ROC curves of the X-coordinates and Y-coordinates are shown in Figure 20a,b, respectively.
As shown in Figure 20, there are 17 X-coordinates and 20 Y-coordinates that are less than 1 m. The ROC
curve of the X-coordinates point at (0.013, 1) produces the highest TPR. Additionally, the ROC curve of
the Y-coordinates point at (0.014, 1) produces the highest TPR.

Positives correctly classified

TPR = = 27
Total positives @7)
Negatives incorrectly classified
FPR = %8 yclassif (28)
Total Negatives
1.10 1.10
1.00 . (o-o-o-
o g |
080 L
§(L70 %gﬁ L
4 060 E 060 ¢
050 0.50
040 040
E(]30 E()JO r
020 020 -
0.10 010

False positive rate

@

000 0.10 020 030 040 050 0.60 0.70 0.80 0.90 1.00

0.00 L L L L " " L " "
000 0.10 020 030 040 050 060 070 080 090 1.00

False positive rate

(b)

Figure 20. The receiver operating characteristics (ROC) curve analysis through the difference of the

X-coordinates (a) and Y-coordinates (b).

Remote Sens. 2017, 9, 874 19 of 22

4.3. Processing Speed Comparison

One of the most importance factors on on-board ortho-rectification is the processing speed.
To evaluate and compare the speed of the proposed method and the PC-based platform, a normalized
metric, i.e., throughput representing the capacity of processing pixels per second, is used. For the
proposed FPGA-based platform, the throughput is 11,182.3 kilopixels per second and the whole time
of the ortho-rectification processing is 26.01 s for the first study area. However, for the PC platform,
the throughput is 2582.9 kilopixels per second and the total time of the ortho-rectification processing is
112.6 s for the same image. That means the processing speed by the proposed FPGA-based platform is
approximately 4.3 times faster than that by the PC-based platform.

4.4. Resource Consumption

In addition, this paper takes the utilization ratio of each type of resource, such as input buffers
(IBUF), output buffers (OBUF), and signal processors (DSP48E) to assess the proposed method.

First, the utilization ratios for the resources of the coordinate transformation module and
the bilinear interpolation module are analyzed, independently. For implementing the coordinate
transformation module of the proposed FPGA-based platform, the main hardware consists of 192
IBUF, 870 OBUF, and 78 DSP48E, as well as a few adding units (ADDSUB), multiplier units (MULT),
and lookup tables (LUT). The results of the utilization ratios of the logic unit for implementing the
coordinate transformation module are shown in Table 4.

Table 4. The utilization ratios of logic units for the coordinate transformation module. LUT, Look Up
Table; FF, Flip Flop; IOB, Input output block.

Name of Logic Unit Utilization Ratio (%)
Logic unit resource Register 34
Flip Flop 12
SR . . LUT 27
Distribution of logic unit LUT-EE Pairs 58
Control Sets 2
I0s 78
Input and output (I0) IOBs 54

For the bilinear interpolation module of the proposed FPGA-based platform, 129 slice resources,
291 IOs (inputs and outputs), and 75,779 LUTs are used. The utilization ratio of the IOs can reach 72%
(291/400 ~ 0.72). Additionally, the utilization ratio of LUT is 56% (75,779/134,600 ~ 0.56) (see Table 5).

Table 5. The utilization ratios of logic units for the bilinear interpolation module.

Name of Logic Unit Utilization Ratio (%)
Use ratio of logic unit Register 24
Flip Flop 17
. . . LUT 56
Distribution of logic unit LUT-EF Pairs 64
Control Sets 7
10s 72
Input and output (I0) IOBs 65

Generally, if the utilization ratio of a resource reaches 60-80%, it shows that the selected device
can meet the requirements of the design scheme. If the utilization ratio of a resource is too low,
it demonstrates that the selected device is wasted for implementing the design scheme. As shown
in Tables 4 and 5, the utilization ratios of register used in the coordinate transformation module and
the bilinear interpolation module are only 34% and 24%, respectively. The utilization ratio of the

Remote Sens. 2017, 9, 874 20 of 22

register is relatively low in both models. The utilization ratios LUT applied in these two models are
27% and 56%, respectively. The utilization ratio of LUT used in the bilinear interpolation module is
about twice higher than the utilization ratio of LUT applied in the coordinate transformation module.
The reason is that the bilinear interpolation module needs to store the gray values of neighbors.
Additionally, the utilization ratios of the Flip Flop and control sets are low in both models. Moreover,
the utilization ratios of LUT-FF pairs, IOs and IOBs (input output blocks) are relatively high in both
models. In summary, according to the above comprehensive utilization ratios for resources, it can be
demonstrated that the resources of the selected FPGA can meet the design requirement of the proposed
FPGA-based ortho-rectification method.

5. Conclusions

In this paper, an FPGA-based ortho-rectification method, which is intended to perform the
ortho-rectification process on board spacecraft, is proposed for accelerating the speed of the
ortho-rectification of remotely sensed images. The proposed FPGA-based ortho-rectification platform
consists of a memory module, a coordinate transformation module (including the transformation from
geodetic to photo coordinates and the transformation from photo to scanning coordinates), and a
gray-scale interpolation module based on a bilinear interpolation algorithm.

To validate the ortho-rectification’s accuracy, an ortho-photo ortho-rectified by a PC-based
platform is taken as a reference. Two study areas, including three subareas, are chosen to validate
the proposed method. The root-mean-square error (RMSE), associated with maximum, minimum,
standard deviation, and mean of the X and Y coordinates’ differences are used. The experimental
results demonstrated that the maximum errors of the X and Y coordinates are 1.16 m and 1.89 m,
respectively, and the standard deviations of the X and Y coordinates are 0.14 m and 0.38 m, respectively.
The RMSEs of the planimetric coordinates along the X- and Y-axes (¢x, ¢y) and the distance ¢g are
1.09 m, 1.61 m, and 1.93 m, respectively. Thereby, it can be concluded from these quantitative analyses
that the proposed method can meet the demand of ortho-rectification in practice.

In addition, through analyzing the processing speed of ortho-rectification, it can be found that
the processing speed by the proposed FPGA-based platform is approximately 4.3 times faster than
that by the PC-based platform. In terms of the resource consumptions, it can found that the bilinear
interpolation module of the proposed method utilizes 129 slice resources and 291 IOs, whose utilization
ratio of the IOs can reach 72%, and the LUT achieves 56%.

Acknowledgments: This paper is financially supported by the National Natural Science of China under
Grant numbers 41431179 and 41162011, The National Key Research and Development Program of China
under Grant numbers 2016YFB0502501 and The State Oceanic Administration under Grant numbers [2014]#58,
GuangXi Natural Science Foundation under grant numbers 2015GXNSFDA139032, and 2012GXNSFCB05300;
Guangxi Science & Technology Development Program under the Contract number GuiKeHe 14123001-4, and
GuangXi Key Laboratory of Spatial Information and Geomatics Program (Contract No. GuiKeNeng110310801,
120711501, and 130511401, 140452401, 140452409, 151400701, 151400712, 151400716, 163802506, and 163802530),
the “BaGuiScholars” program of the provincial government of Guangxi.

Author Contributions: G. Zhou conceived and designed the experiments. R. Zhang performed the experiments
and wrote the initial paper. N. Liu conducted the experiments, and J. Huang analyzed the data. X. Zhou drawn
and improved the illustration.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pan, Z; Lei, J.; Zhang, Y.; Sun, X.; Kwong, S. Fast motion estimation based on content property for
low-complexity H.265/HEVC encoder. IEEE Trans. Broadcast. 2016, 62, 675-684. [CrossRef]

2. Jiang, C.; Nooshabadi, S. A scalable massively parallel motion and disparity estimation scheme for multiview
video coding. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 346-359. [CrossRef]

3. Warpenburg, M.R; Siegel, L.]. SIMD image resampling. IEEE Trans. Comput. 1982, 31, 934-942. [CrossRef]

http://dx.doi.org/10.1109/TBC.2016.2580920
http://dx.doi.org/10.1109/TCSVT.2015.2402853
http://dx.doi.org/10.1109/TC.1982.1675902

Remote Sens. 2017, 9, 874 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Wittenbrink, C.M.; Somani, A K. 2D and 3D optimal parallel image warping. J. Parallel Distrib. Comput. 1995,
25,197-208. [CrossRef]

Sylvain, C.V,; Serge, M. A load-balanced algorithm for parallel digital image warping. Int. . Pattern Recognit.
Artif. Intell. 1999, 13, 445-463.

Dai, C.; Yang, J. Research on orthorectification of remote sensing images using GPU-CPU cooperative
processing. In Proceedings of the International Symposium on Image and Data Fusion, Tengchong, China,
9-11 August 2011; pp. 1-4.

Escamilla-Hernandez, E.; Kravchenko, V.; Ponomaryov, V.; Robles-Camarillo, D.; Ramos, L.E. Real time
signal compression in radar using FPGA. Cientifica 2008, 12, 131-138.

Kate, D. Hardware implementation of the huffman encoder for data compression using altera DE2 board.
Int. J. Adv. Eng. Sci. 2012, 2, 11-15.

Pal, C.; Kotal, A.; Samanta, A.; Chakrabarti, A.; Ghosh, R. An efficient FPGA implementation of optimized
anisotropic diffusion filtering of images. Int. |. Reconfig. Comput. 2016, 2016, 1. [CrossRef]

Wang, E.; Yang, F,; Tong, G.; Qu, P; Pang, T. Particle filtering approach for gnss receiver autonomous integrity
monitoring and FPGA implementation. Telecommun. Comput. Electron. Control 2016, 14. [CrossRef]

Zhang, C.; Liang, T.; Mok, PK.T.; Yu, W. FPGA implementation of the coupled filtering method.
In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Shenzhen, China, 15-18 December 2016; pp. 435-442.

Ontiveros-Robles, E.; Vazquez,].G.; Castro, J.R; Castillo, O. A FPGA-based hardware architecture approach
for real-time fuzzy edge detection. Nat. Inspired Des. Hybrid Intell.Syst. 2017, 667, 519-540.
Ontiveros-Robles, E.; Gonzalez-Vazquez, J.L.; Castro, J.R.; Castillo, O. A hardware architecture for real-time
edge detection based on interval type-2 fuzzy logic. In Proceedings of the IEEE International Conference on
Fuzzy Systems, Vancouver, BC, Canada, 24-29 July 2016.

Li, H.H,; Liu, S.; Piao, Y. Snow removal of video image based on FPGA. In Proceedings of the 5th International
Conference on Electrical Engineering and Automatic Control, Weihai, China, 16-18 October 2015; Huang, B.,
Yao, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 207-215.

Li, H.; Xiang, F; Sun, L. Based on the FPGA video image enhancement system implementation. DEStech Trans.
Comput. Sci. Eng. 2016. [CrossRef]

Gonzalez, D.; Botella, G.; Meyer-Baese, U.; Garcia, C.; Sanz, C.; Prieto-Matias, M. A low cost matching
motion estimation sensor based on the NIOS II microprocessor. Sensors 2012, 12, 13126-13149. [CrossRef]
[PubMed]

Gonzalez, D.; Botella, G.; Garcia, C.; Prieto, M.; Tirado, F. Acceleration of block-matching algorithms using a
custom instruction-based paradigm on a NIOS II microprocessor. EURASIP |. Adv. Signal Proc. 2013, 2013,
118. [CrossRef]

Botella, G.; Garcia, A.; Rodriguez-Alvarez, M.; Ros, E.; Meyer-Baese, U.; Molina, M.C. Robust bioinspired
architecture for optical-flow computation. IEEE Trans. VLSI Syst. 2010, 18, 616-629. [CrossRef]
Waidyasooriya, H.; Hariyama, M.; Ohtera, Y. FPGA architecture for 3-D FDTD acceleration using open CL.
In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China,
8-11 August 2016; p. 4719.

Rodriguez-Donate, C.; Botella, G.; Garcia, C.; Cabal-Yepez, E.; Prieto-Matias, M. Early experiences with
OpenCL on FPGAs: Convolution case study. In Proceedings of the 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines, Vancouver, BC, Canada, 2-6 May 2015;
p- 235.

Thomas, U.; Rosenbaum, D.; Kurz, E; Suri, S.; Reinartz, P. A new software/hardware architecture for real
time image processing of wide area airborne camera images. J. Real-Time Image Proc. 2008, 4, 229-244.
[CrossRef]

Kalomiros, J.A.; Lygouras, J. Design and evaluation of a hardware/software FPGA-based system for fast
image processing. Microproc. Microsyst. 2008, 32, 95-106. [CrossRef]

Kuo, D.; Gordon, D. Real-time orthorectification by FPGA-based hardware acceleration. In Remote Sensing;
International Society for Optics and Photonics: Bellingham, WA, USA, 2010; p. 78300Y.

Halle, W. Thematic data processing on board the satellite BIRD. In Proceedings of the SPIE 4540, Sensors,
Systems, and Next-Generation Satellites V, Toulouse, France, 17-20 September 2001.

http://dx.doi.org/10.1006/jpdc.1995.1040
http://dx.doi.org/10.1155/2016/3020473
http://dx.doi.org/10.12928/telkomnika.v14i4.4196
http://dx.doi.org/10.12783/dtcse/iceiti2016/6169
http://dx.doi.org/10.3390/s121013126
http://www.ncbi.nlm.nih.gov/pubmed/23201989
http://dx.doi.org/10.1186/1687-6180-2013-118
http://dx.doi.org/10.1109/TVLSI.2009.2013957
http://dx.doi.org/10.1007/s11554-008-0109-6
http://dx.doi.org/10.1016/j.micpro.2007.09.001

Remote Sens. 2017, 9, 874 22 of 22

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Malik, A.-W.; Thornberg, B.; Imran, M.; Lawal, N. Hardware architecture for real-time computation of image
component feature descriptors on a FPGA. Int. |. Distrib. Sens. Netw. 2014, 2014, 14. [CrossRef]

Tomasi, M.; Vanegas, M.; Barranco, F.; Diaz,].; Ros, E. Real-time architecture for a robust multi-scale stereo
engine on FPGA. IEEE Trans. Very Large Scale Integr. Syst. 2012, 20, 2208-2219. [CrossRef]

Greisen, P.; Heinzle, S.; Gross, M.; Burg, A.P. An FPGA-based processing pipeline for high-definition stereo
video. EURASIP |. Image Video Proc. 2011, 2011, 1-13. [CrossRef]

Kumar, PR.; Sridharan, K. VLSI-efficient scheme and FPGA realization for robotic mapping in a dynamic
environment. IEEE Trans. Very Large Scale Integr. Syst. 2007, 15, 118-123. [CrossRef]

Hsiao, P.Y,; Lu, C.L.; Fu, L.C. Multilayered image processing for multiscale harris corner detection in digital
realization. IEEE Trans. Ind. Electron. 2010, 57, 1799-1805. [CrossRef]

Kazmi, M.; Aziz, A.; Akhtar, P. An efficient and compact row buffer architecture on FPGA for real-time
neighbourhood image processing. J. Real-Time Image Proc. 2017. [CrossRef]

Cao, T.P; Elton, D.; Deng, G. Fast buffering for FPGA implementation of vision-based object recognition
systems. J. Real-Time Image Proc. 2012, 7, 173-183. [CrossRef]

Hu, X.; Zhu, Y. Research on FPGA based image input buffer design mechanism. Microcomput. Inform. 2010,
26, 5-6.

El-Amawy, A. A systolic architecture for fast dense matrix inversion. IEEE Trans. Comput. 1989, 38, 449-455.
[CrossRef]

Zhou, G.; Chen, W.; Kelmelis,].A.; Zhang, D. A comprehensive study on urban true orthorectification.
IEEE Trans. Geosci. Remote Sens. 2005, 43, 2138-2147. [CrossRef]

Shi, W.; Shaker, A. Analysis of terrain elevation effects on IKONOS imagery rectification accuracy by using
non-rigorous models. Photogramm. Eng. Remote Sens. 2003, 69, 1359-1366. [CrossRef]

Reinartz, P; Miiller, R.; Lehner, M.; Schroeder, M. Accuracy analysis for DSM and orthoimages derived from
SPOT HRS stereo data using direct georeferencing. ISPRS |. Photogramm. Remote Sens. 2006, 60, 160-169.
[CrossRef]

Zhang, Y.; Zhang, D.; Gu, Y.; Tao, F. Impact of GCP distribution on the rectification accuracy of Landsat TM
imagery in a coastal zone. ACTA Oceanol. Sin Engl. Ed. 2006, 25, 14.

Fawecett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861-874. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2014/815378
http://dx.doi.org/10.1109/TVLSI.2011.2172007
http://dx.doi.org/10.1186/1687-5281-2011-18
http://dx.doi.org/10.1109/TVLSI.2007.891100
http://dx.doi.org/10.1109/TIE.2010.2040556
http://dx.doi.org/10.1007/s11554-017-0690-7
http://dx.doi.org/10.1007/s11554-011-0201-1
http://dx.doi.org/10.1109/12.21131
http://dx.doi.org/10.1109/TGRS.2005.848417
http://dx.doi.org/10.14358/PERS.69.12.1359
http://dx.doi.org/10.1016/j.isprsjprs.2005.12.003
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	FPGA Implementation for the Ortho-Rectification Algorithm
	A Brief Review of the Ortho-Rectification Algorithm
	FPGA-Based Implementation for Ortho-Rectification Algorithms
	FPGA-Based Implementation for a Two-Row Buffer
	FPGA-Based Implementation for Coordinate Transformation
	FPGA-Based Implementation for Bilinear Interpolation

	Experiment
	The Software and Hardware Environment
	Data

	Discussion
	Visual Check
	Error Analysis
	Processing Speed Comparison
	Resource Consumption

	Conclusions

