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Abstract: Improving the matching reliability of multi-sensor imagery is one of the most challenging
issues in recent years, particularly for synthetic aperture radar (SAR) and optical images. It is
difficult to deal with the noise influence, geometric distortions, and nonlinear radiometric difference
between SAR and optical images. In this paper, a method for SAR and optical images matching
is proposed. First, interest points that are robust to speckle noise in SAR images are detected by
improving the original phase-congruency-based detector. Second, feature descriptors are constructed
for all interest points by combining a new Gaussian-Gamma-shaped bi-windows-based gradient
operator and the histogram of oriented gradient pattern. Third, descriptor similarity and geometrical
relationship are combined to constrain the matching processing. Finally, an approach based on global
and local constraints is proposed to eliminate outliers. In the experiments, SAR images including
COSMO-Skymed, RADARSAT-2, TerraSAR-X and HJ-1C images, and optical images including
ZY-3 and Google Earth images are used to evaluate the performance of the proposed method.
The experimental results demonstrate that the proposed method provides significant improvements
in the number of correct matches and matching precision compared with the state-of-the-art SIFT-like
methods. Near 1 pixel registration accuracy is obtained based on the matching results of the
proposed method.

Keywords: image matching; SAR image; optical image; phase congruency; Gaussian-Gamma-shaped
bi-windows; geometric constraint

1. Introduction

Synthetic aperture radar (SAR) imaging systems, which can operate normally in clouds, are
increasingly being used for earth observation research because of developments in spatial information
technologies. SAR and optical imaging systems have essential differences, and different objects’
information can be obtained from these two types of systems. SAR datasets alone or optical datasets
alone usually do not perform well in some applications [1,2]. However, the fusion of SAR and optical
images can provide complementary information that is beneficial for the applications [3–5].

Image matching is a fundamental issue in fusion and data integration. Image matching methods
can be classified into two categories: area-based methods and feature-based methods [6]. In area-based
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methods, the gray values in a rectangular image window are simply used to describe the central
pixel. The rectangular window is sensitive to image geometric distortions and the simple gray values
are not robust to nonlinear image intensity changes. Moreover, the correspondence computation is
performed for all pixels in a relatively large search area, which is very time-consuming. In addition,
prior knowledge or coarse registration is needed to determine the position of the search area. Therefore,
although this kind of method can provide sub-pixel accuracy, it is limited in many applications [6,7].
Some feature-based methods can address these problems by constructing robust feature descriptors.
For SAR and optical image matching, feature-based methods are more popular than area-based
methods because the latter are more sensitive than the former to the noise in SAR images and the
non-linear grayscale differences between images.

Feature-based matching methods generally comprise three steps: feature detection, feature
description, and feature matching. In the past decades, a large number of feature-based matching
methods have been developed [8–11]. One of the most popular algorithms is the scale invariant feature
transform (SIFT) because of its invariance for image rotation and scale change [8]. However, the
original SIFT method is unreliable to the speckle noise in SAR image and the nonlinear radiometric
difference between SAR and optical images.

To reduce the influence of noise, some algorithms suggest pre-filtering or de-noising images to
reduce the influence of speckle noise [12,13]. However, these approaches will reduce useful image
information and add artificial interference information in preprocessing. Some other methods have
been suggested to improve the key steps in the matching method, like feature detector, descriptor, or
matching strategies. One of these methods improves the SIFT method by skipping the first octave
based on the observation that most noise features are detected in the first octave [14]. This strategy
can improve the matching precision while improving the time efficiency by reducing the number
of detected interest points significantly compared with the SIFT method. However, it also leads to
a reduction in the accuracy of feature localization because all features originate from the smoothed
scale-space images. The researchers proposed another approach [15] based on the previous work
in [14] by suppressing the orientation computation in feature detection and assigning a uniform
orientation for all features on the basis of the observation that the orientation assignment affects the
robustness of the descriptor. In order to improve the performance further, local geometric is added to
constrain the matching procedure [16]. However, it is still difficult to obtain good matching results
for SAR and optical images because of the unstable scale computation and sensitive difference-based
gradient operator.

Recently, an efficient method named SAR-SIFT was proposed [17]. In SAR-SIFT, the original
grayscale-difference-based gradient operator was replaced by a ratio-based gradient operator.
This contribution makes SAR-SIFT robust to SAR image noise and enables good matching performance.
However, problems are still present. First, the rectangle bi-windows are adopted in the ratio-based
gradient operator in SAR-SIFT. This operator produces unwanted high-frequency responses around
real features and affects the reliability of the method. Second, SAR-SIFT is designed to handle speckle
noise in SAR images but does not consider the non-linear grayscale difference between SAR and
optical images. Thus, this method cannot obtain satisfactory results for SAR and optical image
matching. Another kind of approaches based on shape properties were proposed [18–20] by using
local self-similarity [21] or phase congruency [22,23] to construct feature descriptor. This kind of
descriptor can capture the local geometric properties of images and be robust to image grayscale
change. However, the speckle noise in SAR image is not considered in these methods. In addition,
they are area-based matching methods that are sensitive to image geometric distortion. Line features
are also used to match SAR and optical images [24]. This kind of method can deal with the geometric
distortion well under the constraint of structure relationship between line segments. However, it only
works well for images with many obvious linear features. From the above introduction, it can be seen
that the performance of SAR and optical image matching is still unstable even though many methods
have been proposed. This issue is our main research motivation.
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In this work, a robust feature descriptor based on the Gaussian-Gamma-shaped (GGS)
bi-windows [25] is constructed and a complete framework for SAR and optical image matching
is proposed. We do not improve the matching performance by significantly improving the feature
detector alone, descriptor alone, or matching strategy but focus on how to improve the overall matching
performance by improving the framework and some steps in the workflow. The contributions of this
paper are summarized as follows:

First, an interest point detector based on phase congruency [22,23] is adopted in the proposed
method. In order to improve the detection performance in SAR image, before we use this detector, an
additional image logarithmic transformation is applied to transform the multiplicative noise in SAR
image into additive noise. Moreover, normalization is performed in the logarithmic phase congruency
minimum moment computation to improve the interest point recognition ability.

Second, a gradient operator that is robust to the speckle noise in SAR images, as well as the
non-linear grayscale difference between SAR and optical images, is proposed on the basis of GGS
bi-windows. This gradient operator is further combined with the histogram of oriented gradient
(HOG) [26] pattern to generate a robust descriptor.

Third, a geometric constraint is adopted and combined with descriptor similarity to match
features. An approach based on global and local constraints is proposed to eliminate outliers.

This paper extends our previous work [27] in the following aspects: first, the coarse image
registration is skipped and image resolution is used to determine feature support region size; second,
a geometric constraint from whole to local is proposed to eliminate false matches instead of using
the homography transformation based on RANSAC framework; third, more detailed derivation and
implementation of the proposed method are presented; fourth, all thresholds used in the proposed
method are tuned and the choices of these thresholds are analyzed; besides, a more thorough
evaluation from different viewpoint using more build-up and rural datasets and comparative methods
is presented.

The remainder of this paper is organized as follows. Section 2 discusses the proposed matching
algorithm in detail. Section 3 presents the experimental results, along with the detailed analysis and
discussion. Section 4 concludes this paper by discussing the pros and cons of the proposed method
and the possible improvements that can be made.

2. Methodology

In this paper, the procedure of the proposed matching method is conducted in the following four
steps: first, interest points that are robust to speckle noise in SAR images are detected by adopting the
original phase-congruency-based detector with a logarithmic image transformation and minimum
moment normalization; second, feature descriptors are constructed on the basis of GGS bi-windows
according to the HOG pattern; third, descriptor similarity and geometrical relationship are combined
to constrain the matching process; finally, outliers are eliminated based on global and local constraints.

2.1. Detection of Logarithmic Phase Congruency Interest Points

In this paper, the phase-congruency-based detector is improved to detect interest points.
Equation (1) shows a widely used phase congruency function [22,23]:{

PC(x) = ∑n W(x)bAn(x)·K(x)−Tc
∑n An(x)+ε

K(x) = cos
[
φ(x)− φ(x)

]
−
∣∣sin

[
φ(x)− φ(x)

]∣∣ , (1)

where An is the amplitude of the nth Fourier component at location x; φ(x) is the phase angle; φ(x)
is the mean phase angle; W(x) is a factor to weight frequency spread; ε is a small constant to avoid
division by zero; T is the estimated noise; The symbol b c denotes that the enclosed quantity is equal
to itself if its value is positive and zero if otherwise.



Remote Sens. 2017, 9, 882 4 of 25

According to Equation (1), interest points can be found by using the classical moment analysis
method: phase congruency is calculated independently in each orientation by using Equation (1).
Then, moments of phase congruency are computed. If the minimum moment is larger than a threshold,
the corresponding pixel is considered as an interest point. The minimum moment of phase congruency
is computed as follows:

m =
1
2

[
c + a−

√
b2 + (a− c)2

]
, (2)

where 
a = ∑[PC(θ) cos(θ)]2

b = 2∑[PC(θ) cos(θ)] ·∑[PC(θ) sin(θ)]
c = ∑[PC(θ) sin(θ)]2

, (3)

where PC(θ) refers to the phase congruency value determined at orientation θ. The sum function is
performed over the discrete set of orientations used (typically six).

The phase congruency function is robust to image noise according to Equation (1). However,
this function can handle only additive noise because it assumes that all noise values on each pixel are
equal. Thus, this function is not really robust to the multiplicative noise in SAR image. Considering
that multiplicative noise distribution can be approximated to Gaussian distribution after logarithmic
transformation [28,29], we transform the image as follows:

Ĩ(x, y) = ln[I(x, y)], (4)

where I(x, y) = R(x, y) · N(x, y) denotes the SAR image with speckle noise; R(x, y) is the ideal image
without noise; N(x, y) is the multiplicative noise.

Thereafter, the minimum moment of phase congruency mln is computed on the transformed
image Ĩ(x, y) according to Equations (1)–(3). The inverse logarithmic transformation is performed
to obtain the corresponding minimum moment of phase congruency m on the original image I(x, y).
To improve performance, a normalization step is performed for the phase congruency minimum
moment m as follows:

m̃(x, y) =
m(x, y)−min[m(x, y)]

max[m(x, y)]−min[m(x, y)]
. (5)

Interest points can be recognized on the basis of m̃. Some test results are shown in Figure 1 and
Table 1 to evaluate the interest point detection performance.

Table 1. Repeatability rate of interest points detected by different detectors.

Interest Point Detectors

DoG Improved DoG Proposed
53.2% 36.3% 57.8%

Figure 1a shows that a lot of noise was detected as interest points falsely by the DoG detector.
Figure 1b shows the result of the improved DoG detector adopted in [14–16]. The blue and green
partially enlarged details show that false detection still exists and that many real feature points are
overlooked, respectively. These results demonstrate that the improved DoG detector will suppress
image noise and detail information at the same time. The result of the proposed method is shown
in Figure 1c. Compared with the previous two methods, our method has a tendency to find highly
matchable interest points and avoids the noise normally brought by other methods. Table 1 shows the
repeatability rate of interest points detected by the three detector in a pair of registered TerraSAR-X
(X band, HH polarization) image and Quickbird panchromatic image. It is observed that the proposed
detector achieves the highest repeatability rate. In the test, two points from different images with a
Euclidean distance smaller than two pixels are regarded as repeated points.



Remote Sens. 2017, 9, 882 5 of 25

Remote Sens. 2017, 9, 882  5 of 25 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Interest point detection test. Point features are marked with red crosses. (a) Results of the 
original DoG detector in SIFT method [8]; (b) results of the improved DoG detector [14–16]; (c) 
results of the proposed method.  

2.2. GGS Bi-Windows-Based Feature Descriptor Computation 

2.2.1. Local Support Region Size and Orientation Determination for Interest Points 

In remote sensing applications, the input images usually have been approximately 
geo-referenced using the star-sensor so that the top and bottom of the images point to north and 
south of the earth, thus there is only small rotation change between the SAR and optical images. 
Based on this observation, we do not compute a dominant orientation for each feature as the 
original SIFT method. This strategy can not only speed up the computation but also improve the 
matching performance [14–16]. In addition, the feature local region size is determined on the basis 
of image resolution instead of feature scale values. For each feature on the image with resolution 1λ , 
the radius of local support region is set as 1r . The local support region radius of each feature on 
another image with resolution 2λ  is set as 1 1 2/r λ λ⋅ . 

Figure 1. Interest point detection test. Point features are marked with red crosses. (a) Results of the
original DoG detector in SIFT method [8]; (b) results of the improved DoG detector [14–16]; (c) results
of the proposed method.

2.2. GGS Bi-Windows-Based Feature Descriptor Computation

2.2.1. Local Support Region Size and Orientation Determination for Interest Points

In remote sensing applications, the input images usually have been approximately geo-referenced
using the star-sensor so that the top and bottom of the images point to north and south of the earth, thus
there is only small rotation change between the SAR and optical images. Based on this observation, we
do not compute a dominant orientation for each feature as the original SIFT method. This strategy can
not only speed up the computation but also improve the matching performance [14–16]. In addition,
the feature local region size is determined on the basis of image resolution instead of feature scale
values. For each feature on the image with resolution λ1, the radius of local support region is set as r1.
The local support region radius of each feature on another image with resolution λ2 is set as r1 · λ1/λ2.
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2.2.2. GGS Bi-Windows-Based Gradient Operator

Gradient operators based on grayscale difference are sensitive to image noise. Recently, many
ratio-based operators with a constant false alarm rate for SAR images have been proposed [30–32].
However, the rectangular bi-windows used in these operators have low performance in the 2D
smoothing of filters and may produce unwanted high-frequency components under the influence
of speckle noise in SAR images. Fortunately, GGS bi-windows can repair the defect of rectangular
bi-windows [25]. For each pixel, the local means in the GGS bi-windows are computed as follows:

m(x, y|θ) = ∑
(x′ ,y′)

Wθ
(
x′, y′

)
I
(

x− x′, y− y′
)
, (6)

where θ = 0, π/P, · · · , π(P − 1)/P is the orientation angle of GGS bi-windows in order to detect
different direction edges; P is the number of orientations; Wθ is window function with an orientation
angle θ. The window function in the horizontal bi-window is defined as follows:

W(x, y) =
|y|α−1 exp

[
−
(

x2

2σ2 +
|y|
β

)]
√

2πσΓ(α)βα
, (7)

where σ is a parameter to control the window length; α is to control the window width; β is to control
the spacing of the two windows. The window function is Gaussian-shaped at the horizontal orientation
and Gamma-shaped at the vertical orientation.

On the basis of the above local mean computation, we define the GGS bi-windows-based
horizontal and vertical gradient operator as follows:

gx = ln
m1(x, y|π/2)
m2(x, y|π/2)

, gy = ln
m1(x, y|0)
m2(x, y|0) , (8)

where gx is the horizontal gradient; gy is the vertical gradient; m1(x, y|π/2) , m2(x, y|π/2) , m1(x, y|0) ,
and m2(x, y|0) are the local means in the GGS bi-windows at orientation π/2 and 0.

The gradient magnitude Gm and orientation Gθ are defined as follows:

Gm =
√

g2
x + g2

y, Gθ =

{
arctan

(
gy/gx

)
, Gθ ≤ π

arctan
(

gy/gx
)
− π, otherwise

. (9)

The gradient orientation is normalized in the range of [0, π) and then classified into eight
subintervals, which make the gradient robust to the non-linear grayscale differences between SAR and
optical images.

Some comparison experimental results of the traditional gradient operators [8,17] and the
proposed gradient operator are shown in Figure 2. The experimental results show that both the
magnitude and orientation between the SAR and optical images computed by the proposed gradient
operator present higher similarity than those of the other two gradient operators.
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Figure 2. Comparison of gradient computation. (a) A pair of registered TerraSAR-X (X band, HH 
polarization) and Google earth (panchromatic band) images in the Netherlands. The size of each 
image is 330 × 330 pixels. Image spatial resolution is 1.85 (unit: meter). (b) The gradient magnitude 
and orientation of the SAR and optical images computed by the grayscale difference-based gradient 
operator [8]. (c) The magnitude and orientation of the SAR and optical images computed by the 
gradient operator in the SAR-SIFT [17] matching method. (d) The magnitude and orientation of the 
SAR and optical images computed by the proposed gradient operator. The orientation values shown 
in these figures are colored with a standard jet color map where blue and red are adopted to denote 
minimum and maximum values, respectively. Those values in between are interpolated through 
blue, green, yellow, and red. 

2.2.3. Feature Descriptor Construction 

In this paper, the proposed GGS bi-windows-based gradient operator is combined with the 
HOG pattern to construct the feature descriptor. First, the gradient magnitude and orientation of 
each pixel in the feature local support region are computed and normalized. Second, the local 
support region is divided into several blocks and each block is further divided into several cells. 
Thereafter, the histogram of gradient orientation is constructed for each block and cell. Finally, all 
histograms are combined to generate a descriptor. To improve the robustness for grayscale change, 
the descriptor is normalized. The flow chart of descriptor computation is shown in Figure 3. 

Figure 2. Comparison of gradient computation. (a) A pair of registered TerraSAR-X (X band, HH
polarization) and Google earth (panchromatic band) images in the Netherlands. The size of each
image is 330 × 330 pixels. Image spatial resolution is 1.85 (unit: meter). (b) The gradient magnitude
and orientation of the SAR and optical images computed by the grayscale difference-based gradient
operator [8]. (c) The magnitude and orientation of the SAR and optical images computed by the
gradient operator in the SAR-SIFT [17] matching method. (d) The magnitude and orientation of the
SAR and optical images computed by the proposed gradient operator. The orientation values shown
in these figures are colored with a standard jet color map where blue and red are adopted to denote
minimum and maximum values, respectively. Those values in between are interpolated through blue,
green, yellow, and red.

2.2.3. Feature Descriptor Construction

In this paper, the proposed GGS bi-windows-based gradient operator is combined with the HOG
pattern to construct the feature descriptor. First, the gradient magnitude and orientation of each pixel
in the feature local support region are computed and normalized. Second, the local support region
is divided into several blocks and each block is further divided into several cells. Thereafter, the
histogram of gradient orientation is constructed for each block and cell. Finally, all histograms are
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combined to generate a descriptor. To improve the robustness for grayscale change, the descriptor is
normalized. The flow chart of descriptor computation is shown in Figure 3.Remote Sens. 2017, 9, 882  8 of 25 
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descriptor between correspondences compared with the other two descriptors. It demonstrates the 
better performance of the proposed descriptor. 
 

Figure 3. Flowchart of descriptor computation.

A group of experimental results based on the indicator “Similarity” in Equation (10) to evaluate
the SIFT descriptor, SAR-SIFT descriptor and the proposed descriptor are shown in Figure 4. In the
experiments, the detector proposed in Section 2.1 is adopted to find interest points in the SAR image
shown in Figure 2a. And points in the optical image in Figure 2a with the same coordinates of the
interest points in the SAR image are regarded as the correspondences since the two images are precisely
registered previously. Then, the three descriptors are used to compute feature descriptor for each
interest point.Remote Sens. 2017, 9, 882  9 of 25 
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The indicator “Similarity” is defined as:

Similarity = exp

−
m
∑

i=1
dist(descSARi − descOpti)

m

, (10)

where m is the number of interest points. descSARi denotes the normalized descriptor of the ith interest
point in the SAR image. descOpti denotes the normalized descriptor of the correspondence in the
optical image. dist() is a function to compute the square root of the sum of squares of all elements in a
vector. exp() is a function to compute the exponent.

Experimental results in Figure 4 show that higher similarity is obtained by the proposed descriptor
between correspondences compared with the other two descriptors. It demonstrates the better
performance of the proposed descriptor.

2.3. Image Matching Based on Descriptor Similarity and Geometric Constraint

Given that the image is rectified previously and image spatial resolution is known in most
applications, some geometric relationships can be used to constrain the matching procedure.
A matching framework based on the strategy in [16] is adopted in this paper:

First, the similarities between feature descriptors are computed using the Euclidean distance.
Second, the K-NN strategy is used to find K candidates for each feature in the reference image

on the basis of descriptor similarity because the large differences between SAR and optical images
may lead to some true correspondences without the largest similarity. Correspondence candidates
are marked as (Csar

i , Coptical
i ), (i = 1, · · · , I), where I is the number of correspondence candidates.

This number is K times of the number of features on the reference image. Among the candidate pairs,
the H pairs with the largest descriptor similarity, i.e., with the smallest descriptor distance, are set as
seed match pairs Mh, (h = 1, · · · , H).

Third, a match set Sh is constructed for each seed match pair Mh. Each pair of correspondence
in Sh is marked as (Fsar

j , Foptical
j ), (j = 1, · · · , J), where J is the number of correspondences in Sh.

At the beginning, Mh is saved in Sh and regarded as the reference. Then, each candidate in the initial
correspondence set is compared with all correspondences in Sh.

As shown in Figure 5, for a pair of candidate match (Csar
i , Coptical

i ), (i = 1, · · · , I) and a pair of

reference match (Fsar
j , Foptical

j ), (j = 1, · · · , J), if the difference between the distance ratio l1/l2 and the
image resolution ratio λ2/λ1 is smaller than a threshold td, and the difference between the angles θ1

and θ2 is smaller than a threshold tθ , this pair of candidate match is regarded as spatially consistent
with the reference match. When the candidate is checked by all reference matches in Sh, if the candidate
match is spatially consistent with more than 95% reference matches, it is saved into Sh. Different from
the distance ratio constraint based on an estimated scale factor in [16], the scale factor is replaced by
image spatial resolution ratio in our experiments.

Finally, iterative computation is performed for each seed match and the iteration that generates
the Sh with most matches is identified. Matches in the set Sh are considered as initial matches, which
are then saved into a set SM.
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i . The spatial resolution (unit: meter) of the
reference image and the searching image are λ1 and λ2, respectively.

2.4. Outliers Elimination

Outliers are inevitably present in the previous set of correspondences SM. Traditional methods
estimate the homography between images by using the RANSAC algorithm. Matches that do not
conform to the homography will be eliminated as outliers. However, the local distortions of SAR
images, e.g., foreshortening, lay over and shadowing, make the geometric transformation between
all pixels of two images cannot be approximated to an affine transform. Therefore, many correct
matches will be eliminated as outliers under the homography constraint. To overcome this problem,
polynomials of degree two, as shown in Equation (11), are combined with the extension of Denaulay
triangles [33] to construct a whole-to-local constraint framework in the proposed method.{

x1 = a0 + a1x2 + a2y2 + a3x2
2 + a4x2y2 + a5y2

2
y1 = b0 + b1x2 + b2y2 + b3x2

2 + b4x2y2 + b5y2
2

, (11)

where (x1, y1) and (x2, y2) are the coordinates of matches in the reference image and searching image,
respectively. a0, · · · , a5 and b0, · · · , b5 are the polynomial coefficients.

The procedure of outliers elimination is as follows:

Step 1: Select six correspondences from SM randomly to construct a sample set.
Step 2: Compute the polynomials of degree two with the current sample set.
Step 3: Test all matches in SM by using the polynomials and save the correspondences with residuals

smaller than a threshold (e.g., 1 pixel) into a set Sp.
Step 4: Perform iterative computation. If the correspondences in the current set Sp are more than the

correspondences in the previous set, the current polynomials and correspondences set Sp are
preserved. The previous polynomials and set Sp are discarded.

Step 5: After the iterative calculation, matches in the final correspondence set Sp are regarded as
correct matches.

Step 6: The extension Delaunay triangles are constructed in each image based on points in the final Sp.
The images are divided into sub-regions.

Step 7: A local transformation Hi is fitted for each pair of corresponding sub-regions based on the
matches in the sub-regions from the initial matches set SM. For each initial match, if the position
transformation error based on Hi is larger than two pixels, it is regarded as false match.
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The detailed local transformation fitting processing is shown in Figure 6. The affine transformation
Ti between each pair of corresponding sub-regions Ri and R′i is computed based on the corresponding
three pairs of matches that compose the sub-regions. Then, we use Ti to check the matches in the
sub-regions from set SM and count the number of matches consistent with Ti. If the number is larger
than six, Hi is set as polynomials of degree two shown in Equation (11); if the number is smaller than
six and larger than three, Hi is set as affine transformation shown in Equation (12); otherwise, the
initial matches in Ri and R′i are clustered into other sub-regions according to the Euclidean distance
and they will be checked by the sub-regions they clustered into.{

x1 = a0 + a1x2 + a2y2

y1 = b0 + b1x2 + b2y2
, (12)

where (x1, y1) and (x2, y2) are the coordinates of matches in the reference image and searching image,
respectively. a0, a1, a2 and b0, b1, b2 are the transformation coefficients.
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Figure 6. Outliers elimination based on local geometric constraint. The extension Delaunay triangles
are constructed in each image based on the matches in Sp. Images are divided into many pairs of
corresponding sub-regions. Ri and R′i are a pair of corresponding sub-regions. P1Q1, P2Q2, and P3Q3

are three pairs of matches constructing the two corresponding sub-regions Ri and R′i . Ti denotes the
affine transformation between Ri and R′i computed by the three pairs of matches.

3. Experimental Results and Discussion

3.1. Experimental Datasets

The proposed method is compared with SIFT [8] and other methods proposed by Schwind [14],
Suri [15], Fan [16], and Dellinger (SAR-SIFT) [17] on the basis of the images shown in Figure 7.
For convenience, some of the comparative methods are labeled as the name of the first author. Among
the datasets, the SAR images include COSMO-Skymed (X band, HH polarization), RADARSAT-2
(C band, HH polarization), TerraSAR-X (X band, HH polarization) and HJ-1C (S band, VV polarization)
images. The optical images include ZY-3 images and Google Earth images.
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Figure 7. Experimental images. The images in (a–d) are the COSMO-Skymed image, RADARSAT-2
image, TerraSAR-X image, and ZY-3 visible image of a building area in China, respectively. The images
in (e–h) are the COSMO-Skymed image, RADARSAT-2 image, TerraSAR-X image, and ZY-3 visible
image of a rural area in China, respectively. (i,j) are a pair of TerraSAR-X and Google earth images in
Netherlands. (k,l) are a pair of TerraSAR-X and Google earth images in Canada. (m,n) are a pair of
TerraSAR-X and Google earth images in China. (p,q) are a pair of HJ-1C and ZY-3 images in China.

On the basis of the images in Figure 7, 12 pairs of images are grouped. The detailed information
of the image pairs are shown in Table 2. Both the reference image and searching image in the first two
pairs are SAR images. In the other 10 pairs, all reference images are SAR images and all searching
images are optical images. Therefore, all the matching experiments in this paper can be classified into
two groups: the first group is used to compare the performance of each method for SAR and SAR
images; the second group is used to evaluate the matching performance for SAR and optical images.

3.2. Evaluation Criteria

Two indicators, number of correct matches (NCM) and matching precision (MP), are adopted
to evaluate the performance of each matching method. MP is computed as MP = (NCM/M) × 100%,
where M is the number of total matches. To count the correct matches, 50 evenly distributed
correspondences are selected manually and the projective transformation is calculated for each pair
of images. Then, those matches with localization errors smaller than two pixels based on the global
consistency of the projective transformation are regarded as correct matches.
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Table 2. Description of image pairs used in the experiments.

Category Pair
Number

Image
Number Image Source Image Size

(Unit: Pixel)
Spatial Resolution

(Unit: Meter)

SAR & SAR

Pair 1
(a) COSMO-Skymed 724 × 951 2.70
(b) RADARSAT-2 848 × 1114 2.30

Pair 2
(f) RADARSAT-2 497 × 642 2.30
(g) TerraSAR-X 592 × 765 1.85

SAR & Optical

Pair 3
(a) COSMO-Skymed 724 × 951 2.70
(d) ZY-3 934 × 1227 2.10

Pair 4
(b) RADARSAT-2 848 × 1114 2.30
(d) ZY-3 934 × 1227 2.10

Pair 5
(c) TerraSAR-X 1011 × 1328 1.85
(d) ZY-3 934 × 1227 2.10

Pair 6
(e) COSMO-Skymed 424 × 584 2.70
(h) ZY-3 547 × 707 2.10

Pair 7
(f) RADARSAT-2 497 × 642 2.30
(h) ZY-3 547 × 707 2.10

Pair 8
(g) TerraSAR-X 592 × 765 1.85
(h) ZY-3 547 × 707 2.10

Pair 9
(i) TerraSAR-X 715 × 1073 1.85
(j) Google Earth 715 × 1073 1.85

Pair 10
(k) TerraSAR-X 1165 × 1315 1.75
(l) Google Earth 1699 × 1918 1.19

Pair 11
(m) TerraSAR-X 1751 × 2030 2.75
(n) Google Earth 986 × 1351 4.78

Pair 12
(p) HJ-1C 2450 × 3575 5.00
(q) ZY-3 1600 × 2000 4.60

3.3. Thresholds Setting

In the proposed method, those thresholds affecting the final matching performance are listed in
Table 3.

Table 3. Thresholds of the proposed method.

Thresholds Description

r1 local support region radius of features in the image with spatial resolution λ1
σ to control the length of the GGS bi-windows
α to control the width of the GGS bi-windows
β to control the spacing between the two windows of the GGS bi-windows
K the number of initial candidate correspondences for each interest point in the SAR image
H the number of seed matches
td the distance ratio threshold of the geometric constraint in the matching strategy
tθ the orientation difference threshold of the geometric constraint in the matching strategy

In the experiments, the last four parameters are set as K = 25, H = 10, td = 0.2 and tθ = 5
◦
,

according to the recommendation in [16]. The first four parameters are tuned as follows.

3.3.1. Tuning of Feature Local Support Region Radius r1

Firstly, several simulated datasets are constructed. In the experiments, we use each image pair
from pair 3 to pair 11 in Table 2 to simulate a dataset. Each original image pair is manually registered
before simulation. The simulation is performed by using Gaussian smooth and downsampling.
After the simulation, each dataset contains seven pairs of images with resolution 3 m, 5 m, 7 m, 9 m,
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11 m, 13 m, and 15 m. Then, these 10 datasets with 77 pairs of images together are used to tune
the parameter of feature local support region radius. Because it is observed that all groups of tests
show similar tuning results, here only one group (based on image pair 11) is displayed. The detailed
information on the dataset simulated from image pair 11 is shown in Table 4.

Table 4. Information of the dataset simulated from image pair 11.

Number of Simulated Image Pair Spatial Resolution (Unit: Meter) Image Size (Unit: Pixel)

1 3.00 1000 × 1000
2 5.00 689 × 681
3 7.00 654 × 670
4 9.00 664 × 681
5 11.00 515 × 538
6 13.00 468 × 463
7 15.00 403 × 405

In this part, in order to test the effect of feature local support region radius to the matching
performance, all other parameters are regarded as constant. Besides the geometric constraint
parameters described before, the parameters of the GGS bi-windows are set as: σ = 3.7, α = 3,
and β = 1.5. The computed NCM and MP values of all images pairs are shown in Figure 8.
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Figure 8. Experimental results of feature local support region radius tuning. (a) The test results of
the criteria NCM for image pairs with different spatial resolution. Where r1 (unit: pixel) is the local
support region radius of the features in the image with resolution λ1. The local support region radius
of those features in another image with resolution λ2 is computed as r1 · λ1/λ2. (b) The test results of
the criteria MP for image pairs with different spatial resolution.
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From the experimental results, it can be seen that both too small a local support region and too
large a local support region produced low NCM and MP values. There are two reasons: firstly, too
small a region makes the descriptor not robust to image noise and grayscale difference. Also, it leads
to low similarity between the descriptors of correspondence. Secondly, too large a region decreases
the distinction of the feature descriptor, which makes it difficult to distinguish the descriptors of
non-correspondence and find false matches. From the results, it is observed that the overall peak
performance of NCM and MP have been obtained when the region radius r1 is set at 64 pixels.
Therefore, the threshold is set at 64 pixels in the following experiments.

3.3.2. Tuning of GGS Bi-Windows Thresholds

There are three thresholds, σ to control the window length, α to control the window width, and
β to control the spacing between windows, can affect the performance of the GGS gradient operator
and the final matching result. When we are tuning one parameter, the other two parameters are set as
constant as the tuning of feature local support region radius. The tuning of these three thresholds is
performed based on the 11 SAR and optical image pairs in Table 2. Because it is observed that all tests
show similar tuning results, here only the result based on image pair 11 is displayed. The experimental
results are shown in Figure 9.
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Among the three thresholds, σ is tuned firstly. In the tuning of σ, other two parameters α and β are
set at 3 and 1.5, respectively. From Figure 9a,b, it can be observed that the best matching performance
is obtained when σ = 3.4. Therefore, in the tuning of other two parameters, σ is set as 3.4. α is tuned
secondly. In that tuning, β is set as 1.5. And from Figure 9c,d, we can see that the best matching
performance is obtained when α = 3.2. Therefore, in the tuning of β, other two thresholds σ and α are
set as 3.4 and 3.2, respectively. From Figure 9e,f, it can be seen that the best matching performance is
obtained when β = 1.5.

Based on the experiments and analysis in this section, all thresholds in the proposed matching
method are set as in Table 5.

Table 5. Threshold setting of the proposed method.

Thresholds

r1 σ α β K H td tθ

64 3.4 3.2 1.5 25 10 0.2 5
◦

3.4. Descriptors Comparison

In order to evaluate the performances of different descriptors, the interest point detector described
in Section 2.1 and the NNDR matching strategy of the three descriptors are combined to match the
12 pairs of images listed in Table 2. All descriptors are computed in a feature support region with fixed
radius (64 pixels) and orientation (0 degree). The matching performances of different descriptor based
methods are shown in Table 6.

Table 6. NCM and MP values of different descriptor based matching methods.

Image Pair
SIFT SAR-SIFT Proposed

NCM MP NCM MP NCM MP

Pair 1 0 0.0% 0 0.0% 2 11.1%
Pair 2 1 10.0% 1 50.0% 2 50.0%
Pair 3 0 0.0% 0 0.0% 1 20.0%
Pair 4 0 0.0% 0 0.0% 2 33.3%
Pair 5 0 0.0% 1 20.0% 1 5.3%
Pair 6 0 0.0% 1 33.3% 3 50.0%
Pair 7 0 0.0% 1 25.0% 4 44.4%
Pair 8 0 0.0% 1 33.3% 3 37.5%
Pair 9 51 67.8% 21 75.0% 58 69.0%

Pair 10 0 0.0% 0 0.0% 1 7.7%
Pair 11 1 16.7% 1 33.3% 5 41.7%
Pair 12 1 20.0% 2 28.6% 5 22.7%

It is observed from Table 6 that the matching method based on the proposed descriptor performs
best for almost all the image pairs. Although the SAR-SIFT descriptor-based method achieves slightly
higher matching precision than the proposed method for some image pairs, it obtains fewer correct
matches than the proposed method. The SIFT descriptor-based method almost fails for most image
pairs except pair 9. It works much better in 9 than in other image pairs because the radiometric
difference between the images in pair 9 is not as significant as that in other pairs. In this comparison,
the same detector and matching strategy without geometric constraint are selected for all matching
methods. Therefore, the test results can fairly reflect the performances of different descriptors.

3.5. Matching Strategies Comparison

In order to evaluate the performance of the applied matching strategy in the proposed method,
we compare it with the NNDR method, the fast sample consensus (FSC) method [34] and the enhanced
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matching method (EM) [35]. The interest point detector and descriptor described in Sections 2.1 and 2.2
are adopted to extract features for all four matching methods. The KNN candidates are selected as the
input of all methods. The test is based on the 12 image pairs listed in Table 2. The statistic matching
results of the four matching strategies are shown in Table 7. The adopted matching strategy based on
geometric constraint is labeled GC in this comparison.

Table 7. NCM and MP values of different matching strategies.

Image Pair
NNDR FSC EM GC

NCM MP NCM MP NCM MP NCM MP

Pair 1 2 11.1% 0 0.0% 0 0.0% 75 21.4%
Pair 2 2 50.0% 0 0.0% 0 0.0% 76 30.6%
Pair 3 1 20.0% 0 0.0% 0 0.0% 46 51.7%
Pair 4 2 33.3% 0 0.0% 0 0.0% 113 24.6%
Pair 5 1 5.3% 0 0.0% 0 0.0% 137 30.4%
Pair 6 3 50.0% 6 66.7% 8 72.7% 33 42.3%
Pair 7 4 44.4% 5 62.5% 9 75.0% 25 41.7%
Pair 8 3 37.5% 7 63.6% 13 76.5% 60 49.2%
Pair 9 58 69.0% 73 96.0% 98 100.0% 489 69.7%
Pair 10 1 7.7% 0 0.0% 0 0.0% 118 39.2%
Pair 11 5 41.7% 12 63.2% 26 65.0% 155 33.6%
Pair 12 5 22.7% 16 64.0% 37 74.0% 432 38.5%

It is observed from Table 7 that the GC strategy adopted in the proposed method obtained many
more correct matches than the other matching strategies for all image pairs. The MP values of other
methods are higher than the GC method in some cases, but the few correct matches cannot meet the
demands of some applications. The NNDR strategy computes the descriptor distance ratio to find
matches. Unfortunately, for SAR and optical images, many correspondences that are expected to
be matched do not meet the distance ratio constraint, or do not even have the minimum descriptor
distance. Therefore, the number of correct matches of NNDR is limited. In addition, we can see that
the matching performances of the FSC and EM methods are unstable. For example, they work very
well for image pair 9 but fail for some other image pairs. This is because the NNDR result is part of
the input of the FSC and EM methods. They will work well if the NNDR method works and at least
three correct matches are obtained to compute the initial transformation. Otherwise, they will fail.
In the GC method, the input is the K-NN result. Most of the correspondences expected to be matched
are contained in the K-NN result. During the iteration, the GC method can work well if one correct
match is found. This is a requirement easy to meet. Therefore, the GC method is more stable than
other methods.

3.6. Matching Performances of Different Framework between SAR and SAR Images

In this part, the proposed method is compared with other methods on the first two pairs of images
shown in Table 2. The corresponding NCM and MP values are shown in Tables 8 and 9, and the
matching results of the proposed method are illustrated in Figure 10.

Table 8. NCM values of each method for SAR and SAR images.

Image Pair
Matching Methods

SIFT Schwind Suri Fan SAR-SIFT Proposed

Pair 1 0 0 2 5 4 75
Pair 2 1 2 3 7 5 76
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Table 9. MP values of each method for SAR and SAR images.

Image Pair
Matching Methods

SIFT Schwind Suri Fan SAR-SIFT Proposed

Pair 1 0.0% 0.0% 16.7% 6.1% 1.8% 46.8%
Pair 2 4.8% 20.0% 33.3% 36.8% 31.3% 50.7%
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Figure 10. Matching results of the proposed method between SAR and SAR images. In the matching
results, correct matches are marked as red points. False matches are marked as blue points. (a) Matching
results of the proposed method for the first pair of images described in Table 2; (b) matching results of
the proposed method for the second pair of images described in Table 2.

Table 8 shows that the proposed method obtained more correct matches than the other methods
because of the use of ratio-based gradient operators. By replacing the rectangular windows with
GGS bi-windows and using geometric constraints, the proposed method becomes much more robust
to image noise and can achieve better performance than the SAR-SIFT method. Furthermore, other
methods, particularly Fan’s method, can also obtain several matches. Two reasons contribute to this
result. First, all images in the first and second pairs are SAR images, and many noise correspondences
exist between images. Some matches in the results of these methods are not the expected feature
correspondences. Secondly, the slight grayscale difference between SAR and SAR images is acceptable
for these methods. Table 9 shows that the proposed method not only obtains many more correct
matches, but also reaches higher matching precision than all the other methods. It also shows a similar
result to the NCM: Fan’s method obtained the second best performance, behind the proposed method,
which benefited from the contribution of the geometric constraint.

3.7. Matching Performances of Different Framework between SAR and Optical Images

Different from matching SAR and SAR images, methods for matching SAR and optical images
should be robust to image noise and non-linear grayscale difference. In this section, the proposed
method is compared with the other methods on the basis of image pairs 3–12, described in Table 2.
The NCM and MP values of each method are shown in Tables 10 and 11, respectively. The matching
results of the proposed method are illustrated in Figure 11. In this part, we also tuned the thresholds
discussed in Section 3.3. The best matching results are obtained based on the threshold values shown
in Table 5, consistent with the conclusion in Section 3.3.

v Experiments in Tables 10 and 11 show that in all tests the proposed method improves
the matching performance significantly compared with other methods. There are several reasons
contributing to the improvement: first, the interest point detector used in the proposed matching
method can find features with higher localization accuracy, as shown in Figure 1. Most of the detected
interest points are located at “real features”. These features are more salient than those features
detected by other methods. It is easier to find correspondences for features with high distinctiveness;
second, the GGS bi-windows based gradient operator in the proposed method is more robust to
noise and non-linear grayscale changes between SAR and optical images. This makes the feature
descriptors of correspondences have high similarity and the descriptors of non-correspondences
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have high distinctiveness. It is a fundamental property for a good image matching method; third,
the determination of feature local support region radius and feature orientation is based on image
spatial resolution and the property of rectified remote sensing images. This strategy improves the
reliability of feature local support region size and orientation; fourth, the geometric constraint in
the matching framework reduces the searching area. The interference of those features with similar
descriptors is avoided. Moreover, the whole to local outlier elimination method further improves the
matching precision.

Table 10. NCM values of each method for SAR and optical images.

Image Pair
Matching Methods

SIFT Schwind Suri Fan SAR-SIFT Proposed

Pair 3 0 0 2 0 0 46
Pair 4 0 0 1 0 4 113
Pair 5 0 0 0 0 2 137
Pair 6 0 0 0 4 1 33
Pair 7 0 0 0 13 4 25
Pair 8 1 1 0 1 5 60
Pair 9 29 20 39 14 58 489

Pair 10 0 0 0 0 0 118
Pair 11 1 1 2 0 1 155
Pair 12 5 10 5 174 9 432

Table 11. MP values of each method for SAR and optical images.

Image Pair
Matching Methods

SIFT Schwind Suri Fan SAR-SIFT Proposed

Pair 3 0.0% 0.0% 9.1% 0.0% 0.0% 57.5%
Pair 4 0.0% 0.0% 3.7% 0.0% 4.2% 59.2%
Pair 5 0.0% 0.0% 0.0% 0.0% 2.2% 72.1%
Pair 6 0.0% 0.0% 0.0% 36.4% 25.0% 68.8%
Pair 7 0.0% 0.0% 0.0% 43.3% 40.0% 62.5%
Pair 8 2.3% 8.3% 0.0% 5.9% 41.7% 76.9%
Pair 9 25.9% 43.5% 47.0% 19.2% 55.2% 75.2%

Pair 10 0.0% 0.0% 0.0% 0.0% 0.0% 59.0%
Pair 11 0.1% 0.7% 1.1% 0.0% 6.7% 67.4%
Pair 12 1.0% 5.1% 2.1% 19.8% 21.4% 71.4%

The first three methods, SIFT, Schwind’s method, and Suri’s method, almost fail to match these
images because of the following reasons. In SIFT method, firstly, the DoG detector is sensitive to noise
and much speckle noise is detected as features in SAR images. However, there is no corresponding
noise in the optical images. Therefore, the noise affects the matching and produces many outliers.
Secondly, the computed scale values and orientation in the SIFT method are unstable and the local
support regions to compute feature descriptors are inconsistent between correspondences. It is difficult
to extract similar descriptors from this kind of feature support region. Thirdly, the gradient operator
used in the SIFT method is sensitive to image noise and non-linear grayscale changes between SAR
and optical images. It makes the SIFT descriptors of correspondences between SAR and optical images
have low similarity and produces false matches. Finally, the nearest neighbor distance ratio (NNDR)
matching strategy in the SIFT method is unreliable because of the low similarity between the descriptors
of correspondences and the low distinctiveness between the descriptors of non-correspondences.
In Schwind’s method, although the influence of image noise is reduced by detecting features from
the second octave of the image pyramid, many salient features with high localization accuracy on the
first octave are eliminated. Except for the processing of image noise, the other problems with the SIFT
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method are still not solved in this method. Based on Schwind’s method, a certain orientation (0 degree)
is assigned to each feature in Suri’s method. However, other problems—unstable scale computation,
a sensitive gradient operator, and an unreliable matching strategy—are still not solved. Fan added
a geometric constraint to the method based on the spatial relationship between correspondences to
improve the matching performance. From the experimental results, it can be observed that this kind of
geometric constraint works very well. However, the improvement is limited because of the unstable
scale value computation and gradient operator. In addition, the reference scale ratio in the geometric
constraint in Fan’s method is computed from the initial matches, which is less reliable compared with
the determination based on image spatial resolution in the proposed method.
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Figure 11. Matching results of the proposed method between SAR and optical images. In the matching
results, correct matches are marked as red points. False matches are marked as blue points. (a)–(j) are
the matching results of the proposed method for the third to the twelfth pairs of images described in
Table 2, respectively.

SAR-SIFT is a new kind of method. The grayscale difference-based gradient operator is replaced
with a ratio-based gradient operator, which contributes to obtain a similar descriptor between
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SAR and SAR images. This key improvement promotes the method, obtaining the second-best
performance overall. However, the operator will generate some unexpected strong responses around
local features because of the rectangular windows. This method is designed for matching between
SAR images; the non-linear grayscale difference between the SAR and optical images will affect the
matching performance. Moreover, the problems of unstable scale value and orientation computation
and the unreliable matching strategy mean that the method cannot obtain satisfactory results in
many applications.

All the comparative methods obtained more correct matches for image pairs 9 and 12 than other
image pairs because some objects in the SAR and optical images of the two pairs have similar grayscale
distribution. For example, some lakes and rivers exist in these image pairs. It can be seen that the
lakes and rivers appear as lower grayscale levels than the other objects around them in both the SAR
and optical images of the two pairs. This makes the pixels along the lakeside and riverside have the
same gradient orientation and produces similar feature descriptors in the SAR and optical images.
Therefore, some correct matches have been obtained in these regions.

3.8. Registration Accuracy

In this study, image registration accuracy is adopted to evaluate the matching performance, in
addition to NCM and MP. Image registration is performed on the basis of the matching results of each
method. For the proposed method, we use the matches after the constraint of the initial polynomials
of degree two to construct extension Delaunay triangles. Then, local registration is implemented for
each sub-region based on the polynomials of degree two in Equation (11) if the number of matches in
the sub-region is greater than six. Otherwise, the local registration is implemented based on the affine
transformation in Equation (12). For other comparative methods, we use all the matches to construct
extension Delaunay triangles. Local registration is implemented for each sub-region based on the three
pairs of matches constructing the sub-region. Registration accuracy is measured by using the root
mean square error (RMSE), which is computed as follows on the basis of manually selected ground
control points on the registered images:

RMSE =

√
1
n

n

∑
i=1

[(
xi − x′i

)2
+
(
yi − y′i

)2
]
, (13)

where (xi, yi) and (x′i , y′i) is a pair of correspondence and n is the number of selected correspondences.
In the experiments, n is set at 50.

Given that all matching methods mentioned in this paper can obtain more than three pairs of
correct matches on image pairs 9 and 12, the registration accuracy is evaluated on the two pairs of
images. The experiment results are shown in Table 12.

Table 12. Root mean square error (unit: pixel).

Image Pair SIFT Schwind Suri Fan SAR-SIFT Proposed

Pair 9 2.15 2.53 2.39 2.27 1.47 1.01
Pair 12 3.43 3.19 2.03 1.74 1.22 0.88

Table 12 shows that the proposed method achieves the highest registration accuracy
(near one-pixel accuracy), which can meet the requirements of many applications. For image pair 9,
the RMSE values of the first four methods are beyond two pixels. This is because the localization
accuracy of the DoG features in these methods is lower than that of the Harris features in SAR-SIFT
and the phase congruency features in the proposed method. Especially for the methods of Suri,
Schwind, and Fan, features are detected from the higher levels (smoothed images) of the pyramid,
which further decreases the feature localization accuracy. For image pair 12, the registration accuracy
of the first two methods is beyond three pixels. This is because these two methods obtained fewer
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correct matches and some image regions have no corresponding control points to rectify the local
distortion. Compared with other methods, the proposed method obtained many more correct matches.
These matches were evenly distributed on the images, which contributes to the precise registration
of local distortion. The registration results based on the proposed matching method are shown in
Figure 12. The visualization results also show that the registration is very accurate.
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Figure 12. Registration results of the proposed method. (a) Registration result of image pair 9;
(b) registration result of image pair 12. In the figures, the yellow dots in the top-left image are the
control points detected by the proposed method on the SAR image. The yellow dots in the top-middle
image are the control points detected by the proposed method on the optical image. The top-right
image shows the registration result. Four small sub-regions marked by red, green, yellow, and blue
boxes are magnified to show the registration details in the bottom of the corresponding images.

All the experimental results and analysis in this study show that the proposed method can address
the problems in both SAR/SAR image matching and SAR/optical image matching better than the
other methods.
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4. Conclusions

In this paper, a robust matching method is developed to extract correspondences between SAR
and optical images. Firstly, a phase congruency-based interest point detector is adopted to find corners
with high localization accuracy under the influence of the speckle noises in SAR images because there
is a noise factor designed to deal with image noise in the phase congruency function. However, image
noise is regarded as additive noise in the phase congruency function. It is not robust to the speckle
noise in SAR image. Therefore, a logarithmic transformation is applied to transform the speckle noise
into additive noise in the SAR image. The visualization test results show that most of the interest
points extracted by the proposed detector are located at “real features”. This is very important to
improve the matching precision and registration accuracy because these features are more distinctive
and easy to locate unambiguously. Secondly, a strategy of feature local support region radius and
orientation determination is adopted based on the properties of remote sensing images to replace
the feature local support region radius computation based on feature scale value and the orientation
computation based on gradient. In most applications, images have been rectified already and the
image spatial resolution is known. Thus, the proposed strategy can work well and is more reliable than
the computation results in other traditional methods. Similar feature local support regions contribute
to construct descriptors with high similarity between correspondences and produce good matching
results. Thirdly, ratio-based gradient operator is more efficient to deal with noise in SAR images.
The traditional rectangular bi-windows used in ratio-based gradient operators are replaced with GGS
bi-windows. The GGS bi-windows can avoid unwanted high-frequency responses around real features,
which is beneficial to construct a reliable descriptor. Meanwhile, the gradient orientation is normalized
to obtain consistent orientations between correspondences under non-linear grayscale difference.
Finally, a geometric constraint is combined with the descriptor similarity to compute feature matches.
The geometric constraint reduces the search area and avoids the influence of those inconsistent features
with high descriptor similarity. The popular NNDR strategy is not adopted in the proposed method
because some correspondences between SAR and optical images that are expected to be matched
correctly do not meet the descriptor distance ratio constraint in the NNDR strategy, or do not even
have the most similar descriptors. After initial matching, an outlier elimination approach based on
global and local constraints is proposed to further improve the matching precision. The experimental
results in this paper demonstrate the effectiveness of the proposed method. However, we have to
point out some drawbacks of the proposed method: firstly, in feature description, the adopted feature
support region determination method will produce inconsistent feature areas for correspondences
and generate false matches if there is significant topography in the scenes; secondly, the geometric
constraint in the matching procedure and the polynomial fitting in the outlier elimination are global
constraints that do not work well for scenes with significant topography; finally, the image resolution
should be known and the images should have been roughly rectified when we plan to use the proposed
method. One possible future study is to improve the matching performance of the proposed method
for images with significant topography.
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