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Abstract: Using the Global Navigation Satellite System (GNSS) to sense three-dimensional water
vapor (WV) has been intensively investigated. However, this technique still heavily relies on
the a priori information. In this study, we propose an improved tomography approach based
on adaptive Laplacian smoothing (ALS) and ground meteorological observations. By using the
proposed approach, the troposphere tomography is less dependent on a priori information and the
ALS constraints match better with the actual situation than the constant constraints. Tomography
experiments in Hong Kong during a heavy rainy period and a rainless period show that the ALS
method gets superior results compared with the constant Laplacian smoothing (CLS) method.
By validation with radiosonde and European Centre for Medium-Range Weather Forecasts (ECMWF)
data, we found that the introduction of ground meteorological observations into tomography can
solve the perennial problem of resolving the wet refractivity in the lower troposphere and thus
significantly improve the tomography results. However, bad data quality and incompatibility of the
ground meteorological observations may introduce errors into tomography results.
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1. Introduction

Water vapor (WV) is an important meteorological parameter and its distribution and dynamics
are closely associated with weather phenomena, but it is also one of the most difficult meteorological
parameters to characterize [1]. The Global Navigation Satellite System (GNSS) as a mean to monitor WV
was first proposed by Bevis et al. in 1992 [2]. Since then, extensive research has been conducted [3–5].
In recent years, Li et al. have conducted a lot of studies about using multi-GNSS data to retrieve
atmospheric parameters in real time [6–8].

In 2000, Flores et al. [9], Seko et al. [10] and Hirahara [11] first applied Global Positioning System
(GPS) to troposphere tomography and all solved the 3D or 4D WV field in the least-squares scheme.
Flores et al. proposed using horizontal smoothing, vertical smoothing and boundary conditions to solve
the ill-posed problem and use the singular value decomposition to solve the inversion problem [9].
This method has been developed by many other scientists for troposphere tomography [12–17].
Other approaches to retrieve the 3D WV include algebraic reconstruction techniques [18,19] and
estimating WV directly from raw GPS phase observations [20].

The main drawback of troposphere tomography is the difficulty in retrieving the vertical structure
of the atmosphere when the GNSS network is flat in altitude [21]. In flat geometry, given one solution

Remote Sens. 2017, 9, 886; doi:10.3390/rs9090886 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3459-7824
http://dx.doi.org/10.3390/rs9090886
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 886 2 of 16

compatible with data, one can form another solution by simply interchanging two layers. Rohm and
Bosy have demonstrated that the same tomography model could get better results in a mountainous
area than in plain areas [14]. When the GNSS network covers a small area, the effective GNSS rays
(rays passing from the top layer of the tomography model to the receivers) will concentrate around
the zenith, which will increase the difficulty in retrieving the vertical structure of the troposphere.
The GNSS network we used in Hong Kong is both flat and small, which will present more of a challenge.

In most tomography methods, constraints and a priori information are usually used to overcome
the ill-posed problem and help retrieve the vertical structure of the troposphere. Investigations already
performed show strong dependence on a priori reference data and constraints [12,15]. However, if a
tomography method heavily relies on the a priori data, the tomography solutions will be very similar to
the a priori data and the role of the GPS tomography technique will decrease. To drop the dependence
on a priori information and retrieve a better vertical structure of the troposphere, this paper proposes
a new tomography algorithm based on adaptive Laplacian smoothing (ALS) and Helmert variance
component estimation (HVCE) (Section 3). We also introduce ground meteorological observations
into tomography to constrain the wet refractivity (WR) in the lower troposphere. The tomography
results are validated in the Hong Kong area during a heavy rain period and a rainless period with
respect to radiosonde data and European Centre for Medium-Range Weather Forecasts (ECMWF) data
(Section 4). Problems in introducing ground observations into tomography system are discussed in
Section 5 and some conclusions are reached in Section 6.

2. The GNSS Network and Data Analysis

2.1. The Hong Kong SatRef Network

The Hong Kong SatRef network consists of 15 continuously operating reference stations
equipped with the Leica Global Navigation Satellite System (GNSS) receivers and antennas (Figure 1).
Each station is equipped with an automatic meteorological device to record temperature, pressure and
relative humidity. With these data, the hydrostatic parts of the tropospheric delay can be accurately
removed. These will be the advantages of the SatRef network for troposphere tomography. The mean
horizontal distance between stations is about 10 km and the ellipsoidal heights of the 15 stations
are within 350 m, making SatRef network a small flat network, which will bring more challenge in
retrieving the vertical resolution of water vapor [21].

Figure 1. The GNSS (15 red triangles) and radiosonde (1 blue star) stations in Hong Kong. The grid
lines are used to determine tomography grids.
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As shown in Figure 1, the Hong Kong area is divided into 4 × 5 grids in the horizontal domain with
each grid having an East–West width of ~10 km and a North–South height of ~8 km. The troposphere
over Hong Kong is divided into 13 layers from the ground to the top of the troposphere with each
layer having a thickness of 800 m.

2.2. Data Analysis

To examine the performance and effectiveness of the tomography technique under different
weather conditions, the experiment is conducted in two periods in 2015. One is from 20 July to
26 July when heavy rain attacked Hong Kong with the largest daily rainfall (~190 mm) in 2015 on
22 July. The other is from 1 August to 7 August when the weather is rainless. 14 days of GNSS
observation data from the SatRef Network are processed by the precise point positioning (PPP) module
in Bernese 5.0 software (Astronomical Institute of the University of Bern, Bern, Swiss) [22]. International
GNSS Service (IGS) final orbit and clock products are used. The antenna phase center offsets and
variations, phase wind-up, Earth tides, Earth rotation, ocean tides and relativistic effects are corrected
by conventional methods detailed in [23]. Differential code biases are corrected by products from
the Center for Orbit Determination in Europe. The ionospheric delay is eliminated at first order by
forming the ionosphere-free combination of double frequencies. The higher-order terms are neglected.
In Bernese 5.0, the tropospheric delay is modeled as in [22]:

∆ρi
k(t, A, z) = ∆ρapr,k(zi

k) + ∆hρk(t) f (zi
k) + ∆nρk(t)

∂ f
∂z

cos Ai
k + ∆eρk(t)

∂ f
∂z

sin Ai
k (1)

where ∆ρi
k is the tropospheric path delay between station k and satellite i; t is the observation time; zi

k,
Ai

k are the zenith and azimuth of satellite i as observed from station k; ∆ρapr,k(zi
k) is the slant delay

according to an a priori model; ∆hρk(t), f (zi
k) is a (time-dependent) zenith path delay parameter and

its mapping function; ∆nρk(t), ∆eρk(t) are the (time-dependent) horizontal north and east troposphere
gradient parameters.

In this data analysis, the Saastamoinen model [24] and Neill mapping functions (NMF) [25] are
used to compute hydrostatic slant delay as a priori slant delay. So ∆hρk(t), ∆nρk(t) and ∆eρk(t) are
tropospheric parameters to be estimated. Since the a priori zenith hydrostatic delay (ZHD) provided by
the Saastamoinen model is not accurate and its inaccurate part will transfer to ∆hρk(t), the estimated
∆hρk(t) is not accurate either, but their sum will be much more accurate. As pressure observations are
available at each GNSS station, the ZHD can be accurately determined by the Saastamoinen model
and we obtain zenith wet delay by removing accurate ZHD from the sum of a priori ZHD and ∆hρk(t).
∆nρk(t) and ∆eρk(t) are the total delay gradients. To obtain wet gradients, we remove the hydrostatic
gradients by utilizing the meteorological data from surface observations and radiosonde [21,26,27].
Once the ZWD and wet gradients are obtained, the slant wet delays (SWD) can be retrieved by:

SWD = fw(zi
k) · ZWD + ∆n

wρk(t)
∂ f
∂z

cos Ai
k + ∆e

wρk(t)
∂ f
∂z

sin Ai
k + R (2)

where fw(zi
k) are wet mapping functions from NMF; ∆n

wρk(t) is the wet delay gradient in the north
direction; ∆e

wρk(t) is the wet delay gradient in the east direction; R is the phase residuals to take into
consideration the inhomogeneity.

3. Tomography Approach

3.1. General Methods and Existing Problems

Generally, to retrieve the 3D WV distribution, a discretization of the troposphere needs to be
performed. The troposphere over this study area is divided into a finite number of voxels with each
voxel having a constant WR. When a GNSS signal travels through the troposphere from its top to a
GNSS receiver on the ground, it passes through several voxels and each voxel will produce a delay
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effect to the signal due to water vapor in it. The summation of the delays generated by all voxels
equals to the SWD. So, we can obtain the basic equation for troposphere tomography by:

SWDi =
n

∑
j=1

xj · dj (3)

where SWDi is the SWD of the ith GNSS signal, xj is the WR of the jth voxel and dj is the intercept of
the signal path in the jth voxel. Using all the suitable SWD observations at the same epoch, we can
form the observation equation:

Y = AX (4)

where Y is the vector of SWD, A is the intercept matrix and X is the vector of WR.
However, in a practical situation Equation (4) can be badly ill-posed and ill-conditioned due to

the distribution of GNSS stations and the geometry of the satellites. The problem becomes worse when
the GNSS network is flat [21]. To solve this problem, additional constraints or a priori information are
usually used [9,16,17,21,28]. Three kinds of constraints are usually added:

0 = VX (5)

0 = HX (6)

0 = BX (7)

Equations (5)–(7) are the vertical constraints, horizontal constraints and boundary conditions.
When a priori information is used, Equation (8) is also needed.

Xapr = X (8)

As the horizontal variation of water vapor is reasonably small in a small region, the horizontal
constraints can be easily established by imposing that the refractivity in a voxel is a weighted average
of its neighbors in the same level [9,13,29]. As the water vapor varies rapidly in the vertical direction,
some scientists tried to use external profiles as a priori information to constrain the distribution of
water vapor [17,29,30] while some scientists still used the weighted average method to establish
horizontal constraints [9,21]. The former method is more determined by a priori information than
by the SWDs when the SWDs are not sufficient to retrieve the water vapor distribution. The latter
can perform well in the horizontal direction but may perform badly in the vertical direction since a
simple smoothing is not sufficient to describe the rapid change of water vapor in the vertical direction.
Cao tried to use an exponential function to constrain the vertical distribution of water vapor, which
is better than a simple weighted average but not as good as directly using a priori information [31].
The exponential function itself is determined by a priori information. The dependence on a priori
information is one of the problems existing in tropospheric tomography. Another problem that needs
to be emphasized is the regularization algorithm. Since additional constraints are imposed on the
solutions artificially, we need to give the additional constraints appropriate weights to solve the
ill-posed and ill-conditioned problem while keeping an acceptable accuracy. When the above two
problems are solved, the tomography solution can be obtained:

X = (ATA + λ1VTV + λ2HTH + λ3BTB + λ4)
−1

(ATY + λ4Xapr) (9)

where λi (i = 1, 2, 3, 4) are the weights of corresponding constraints.

3.2. Improved Tomography Algorithm

Before presenting the improved tomography algorithm, we will introduce the Laplacian
smoothing and Helmert variance component estimation which are the basis of the new algorithm.
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3.2.1. Laplacian Smoothing

Laplacian smoothing is an algorithm to smooth a polygonal mesh based on the continuity of time
or space. The smoothing operation is quite simple: the value x0 of a voxel is replaced by the average of
the values of its adjacent voxels. For the rectangular mesh in our case, we just consider the nearest four
neighbors. Since our research area has strict boundaries, three situations will arise when we apply
Laplacian smoothing, see Figure 2.

Figure 2. Three situations in Laplacian smoothing. (a) x0 lies in the central part; (b) x0 lies on the
boundary but not in the corner; (c) x0 lies in the corner.

Assume that x1, x2, x3, x4 are the wet refractivity in the nearest four voxels to x0 and that the sizes
of the voxels are the same, then according to Laplacian smoothing, we get:

x1 + x2 + x3 + x4 − qx0 = 0 (10)

for the situation in Figure 2a.
x1 + x2 + x3 − qx0 = 0 (11)

for the situation in Figure 2b.
x1 + x2 − qx0 = 0 (12)

for the situation in Figure 2c.
where q is the smoothing factor whose initial values are 4, 3 and 2 for Equations (10)–(12),

respectively. We use these three equations to construct constraints for each voxel in the horizontal and
vertical directions, respectively. However, initial smoothing factors may be inaccurate, so we use an
iterative feedback-update process to approach satisfactory results. Its basic idea is to use constraints to
obtain results and then use results to update the constraints in turn. This process will be detailed later
in Section 3.2.3.

3.2.2. Helmert Variance Component Estimation

After we construct the constraints, we use the Helmert variance component estimation [32,33]
to determine the appropriate weights of the observations and constraints, and then estimate the
tomography solution by Equation (9). According to Equations (4)–(8), we obtained five kinds of
equations, so the equations for HVCE in this study can be written as:

Sθ̂ = W

S =


n1 − 2tr(N−1N1) + tr((N−1N1)

2
)

tr(N−1N2N−1N1)
...

tr(N−1N5N−1N1)

tr(N−1N1N−1N2)

n2 − 2tr(N−1N2) + tr((N−1N2)
2
)

tr(N−1N5N−1N2)

· · ·
· · ·
. . .
· · ·

tr(N−1N1N−1N5)

tr(N−1N2N−1N5)
...

n5 − 2tr(N−1N5) + tr((N−1N5)
2
)


θ̂ =

[
σ̂2

00 σ̂2
01 σ̂2

02 σ̂2
03 σ̂2

04

]
W = [ VT

0 V0 λ1VT
1 V1 λ2VT

2 V2 λ3VT
3 V3 λ4VT

4 V4 ]
T

N = N0 + N1 + N2 + N3 + N4

N0 = AT A N1 = λ1VTV N2 = λ2HT H N3 = λ3BT B N4 = λ4

V0 = AX − Y V1 = VX V2 = HX V3 = BX V4 = X − Xapr

(13)
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where σ̂2
0i(i = 0, 2, · · · , 4) and Vi(i = 0, 1, · · · , 4) are the variances of unit weight and residual vectors

for five kinds of equations, respectively. Since the equations in Equations (4)–(8) are very few and not
sufficient to determine all five weights, we chose to determine some weights before we ran HVCE.
First, the wet refractivity in the top layer is constrained to zero and the boundary constraints are set
to a very large weight (say 10,000). The weight of a priori information (if we have it) is set to be the
same as the observations, namely 1. These three weights are considered unchangeable. Therefore, only
λ1 and λ2 need to be determined by HVCE. Giving a small value to λ1 and λ2 as initial weights for
vertical and horizontal constraints, σ̂2

0i(i = 0, 2, · · · , 4) can be estimated by Equations (9) and (13) in an
iterative manner. During each iteration, the jth new weights are updated by:

λi,k =
σ̂2

00,j−1

σ̂2
0i,j−1

λi,k−1 (i = 1, 2) (14)

The σ̂2
0i(i = 0, 2, · · · , 4) are repeatedly estimated until 0.999 <

σ̂2
00

σ̂2
0i

< 1.001 (i = 1, 2). After the

iteration stops, we use the latest weights to estimate the solutions according to Equation (9).

3.2.3. The Adaptive Laplacian Smoothing Approach

In conventional tomography algorithms, observations and constraints unilaterally determine the
results which have little effect on the constraints. However, the constraints are not always accurate,
which will significantly affect the results. To establish the constraints as close to practical situations
as possible, we build interaction between the constraints and results by developing an adaptive
Laplacian smoothing algorithm. We first use the Laplacian smoothing to establish the initial vertical
and horizontal constraints and use the HVCE method to estimate the initial solutions. We then use
the initial solutions to estimate the smoothing factors q according to Equations (10)–(12) and establish
the new horizontal and vertical constraints. We then resolve the new equations by HVCE. By an
iterative feedback-update process, we could get better results than constant Laplacian smoothing
(CLS). This new tomography algorithm can be performed by the following procedures:

(a) Use Equations (10)–(12) to construct the initial horizontal and vertical constraints respectively
and initialize their weights as 1, namely λ1 = λ2 = 1. λ3 is set to a large value, λ4 is set to 1;

(b) Determine the values of λ1 and λ2 by HVCE and then calculate the tomography solutions by
Equation (9);

(c) Update the smoothing factors by using the solutions from (b):

q =


n if x0 < xm

n
∑

i=1
xi

x0
if x0 > xm

(15)

where n = 4 for Equation (10), 3 for Equation (11) and 2 for Equation (12). xm is a threshold set to
prevent updating the smoothing factor by inaccurate solutions. The initial value for xm is half of the
maximum wet refractivity in the solutions. xm is updated by multiplying xm by a scale factor, say 0.9,
after each run until it is no larger than 3 times the mean square error of X;

(d) Use the new smoothing factors from (c) to update the horizontal and vertical constraints
and redo (b) and (c) until the mean square error of the solution differences between this run and the
previous run approaches a stable value. In practice, we set a threshold of 20 iterations which is enough
to ensure a stable solution.

In conventional tomography methods, the constraints are constant and can’t be adjusted by
solutions, namely initial constraints determine the final solution. In practice, the constraints are usually
inaccurate and thus may bias the tomography results. In the new method, we establish a relationship
between the constraints and solutions through an iterative feedback-update process. By this interactive
adjustment, the constraints and solutions simultaneously approach the true values. The HVCE method
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helps to determine the weights for the constraints and observations. Appropriate constraints and
weights make this a method better than the conventional ones.

3.3. Comparisons Between Adaptive Smoothing and Constant Smoothing

To verify the effectiveness of ALS, the tomography experiment is carried out with ALS and CLS,
respectively, and no a priori information is used. Two periods of radiosonde data are used to validate
the tomography results. One is from 20 July to 26 July when Hong Kong suffered heavy rain and
the other is from 1 August to 7 August during rainless weather. Equation (16) is used to calculate
wet refractivity for radiosonde data. Figure 3 shows the vertical WR obtained from radiosonde data,
ALS and CLS constrained tomography results.

Nw = 64.8
Pw

T
+ 3.776 × 105 Pw

T2 (16)

Figure 3. Cont.



Remote Sens. 2017, 9, 886 8 of 16

Figure 3. Vertical wet refractivity from radiosonde data, ALS method and CLS constrained results.
(a–n): WR results during rainy period; (o–bb): WR results during rainless period.

In Figure 3, almost all tomography results derived from the ALS method match better with the
radiosonde WR profiles, indicating that the ALS method significantly improved the tomography results
compared with the CLS method. However, the ALS method also obtained some results deviating
from the radiosonde WR in the lower troposphere, though it was better than the CLS method. This is
because most of the water vapor concentrates in the lower troposphere where it also changes more
rapidly than above.

As is known, accurately determining the WR in the lower troposphere is still the most difficult part
in troposphere tomography. To solve this problem, we introduced ground meteorological observations
into the tomography system. In the Hong Kong SatRef network, radiosonde data and meteorological
observations at each GNSS station are available. For radiosonde data, to reduce the dependencies
on external data, only the observation nearest to the ground is used. The GNSS meteorological data
include only surface temperature, humidity and pressure. We first used the Wexler formulations [34,35]
to calculate vapor pressure from radiosonde and GNSS meteorological data and then calculated the
WR according to Equation (16). We used the derived wet refractivity to establish a priori information
equations according to Equation (8). When we solved the tomography equations, we found that the
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residuals of a priori information equations could be very large. Therefore, an extra procedure was
performed to remove a priori information equations with residuals larger than 20 mm/km and then
the tomography equations were resolved. This is an iterative process until no residuals are larger than
20 mm/km. Finally, about 50% of GNNS meteorological data are rejected.

4. Validation of the New Tomography Algorithm

In this section, radiosonde and ECMWF data are used to validate the tomography results.
The validation was divided into two periods: one is from 20 July to 26 July when Hong Kong suffered
heavy rain; the other is from 1 August to 7 August when the weather was rainless. Three strategies
are used to conduct the tomography experiments. The first one is totally a priori information free
(a priori information free strategy). The second one uses only the radiosonde observation closest to
the ground to constrain the lower WR (one radiosonde observation constrained strategy). We don’t
use the whole vertical radiosonde profile because we want to reduce the dependence on a priori
information. The third one uses GNSS meteorological data to constrain the lower wet refractivity
(GNSS meteorological data constrained strategy).

4.1. Comparison with Radiosonde Data

Since the radiosonde launches at 0:00, 12:00 UTC daily, we compare the radiosonde results with
the tomography results at these time points. We first interpolate WR calculated from radiosonde
data to the tomography voxel center. Figures 4 and 5 show the comparisons between tomography
and radiosonde results. It can be seen that all strategies can retrieve the vertical distribution of WR
in most cases but the a priori information free strategy sometimes deviates from the radiosonde
results in the lower troposphere. The one radiosonde observation constrained results and GNSS
meteorological data constrained results are very similar, both matching better with the radiosonde
results than the a priori information free results, especially in the lower troposphere. It can be seen that
when only one radiosonde observation near the ground is used to constrain the results, the discrepancy
between tomography results and radiosonde results can be sufficiently suppressed. This suggests that
the constrained strategies make a compensation for the lower troposphere by introducing ground
observations and make the tomography technique more capable of retrieving the vertical distribution
of WR.

To gain knowledge of the vertical accuracy distribution, layered bias and standard deviation (STD)
between the tomography and radiosonde results are calculated and shown in Figure 6. Comparing the
subplots of different rows in Figure 6, we can see that the ground observation constrained strategies
perform better than the a priori information free strategy by having a much smaller bias and STD.
Both ground observation constrained strategies significantly improved the accuracy in the lower
troposphere. In all subplots, the tomography results have a larger bias and STD below 3 km height
than at greater heights, and the bias and STD decrease with increasing height. This can be explained
by the fact that the water vapor is more concentrated and changeable in the lower troposphere than
in the higher. In Figure 6a,b, the a priori information free strategy can obtain a good bias and STD at
greater heights but it has a very large bias and STD in the lower troposphere. By introducing ground
observations, this problem can be solved. Table 1 shows the statistics of the comparison between the
tomography results and radiosonde results.
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Figure 4. Comparisons between the tomography results and radiosonde results during 20 July
to 26 July. Green lines indicate the a priori information free strategy; Blue lines indicate the one
radiosonde constrained strategy; Cyan lines indicate the GNSS meteorological data constrained strategy.
(a–n): comparisons between WR at different time points.
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Figure 5. Comparisons between the tomography results and radiosonde results during 1 August
to 7 August. Green lines indicate the a priori information free strategy; Blue lines indicate the one
radiosonde constrained strategy; Cyan lines indicate the GNSS meteorological data constrained strategy.
(a–n): comparisons between WR at different time points.
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Figure 6. Layered bias and STD calculated from the comparison between the tomography results and
radiosonde results during rainy days (20 July to 26 July) and rainless days (1 August to 7 August) in
2015. The light blue squares indicate bias and the error bars indicate STD. (a,b): a priori information
free strategy; (c,d): one radiosonde observation constrained strategy; (e,f): GNSS meteorological data
constrained strategy.

Table 1. Statistics of the tomography accuracy with respect to radiosonde data during a rainy period
and a rainless period in 2015. unit: mm/km.

A Priori Data
Rainy Period Rainless Period

Bias STD RMSE Bias STD RMSE

Low
(<5.6 km)

No −4.9 12.6 13.8 −3.2 13.0 13.6
Lowest radiosonde observation −1.8 5.5 6.6 0.3 7.9 8.2

GNSS meteorological data −1.6 7.2 8.4 0.9 9.0 9.4

Total
No −2.5 10.0 10.5 −0.8 10.2 10.3

Lowest radiosonde observation −1.9 4.9 5.7 −0.6 6.2 6.4
GNSS meteorological data −2.3 5.9 6.8 −0.6 7.2 7.3

The statistics in Table 1 show that all strategies have lower accuracy in the low troposphere (height
below 5.6 km) compared with the total mean accuracy, indicating again that it is difficult to accurately
retrieve the WR in the lower troposphere. In both periods, the one radiosonde observation constrained
strategy obtained the best accuracy, the GNSS meteorological data constrained strategy follows and
the a priori information free strategy performs the worst. As for why the GNSS meteorological data
constrained strategy is not as good as the one radiosonde constrained strategy, we think it should
be due to local effects, height differences and observation errors. As the pressure, temperature and
relative humidity measured by the GNSS meteorological equipment are close to the ground, the
surroundings have a significant impact on the measurements. In addition, the tomography results
are an average of WR within a voxel of size ~10 km × 10 km × 800 m. This makes the tomography
results inconsistent with the ground observations, even though a height correction is already made
and ground observations with large differences from tomography results are not used.

Comparing the results in the two periods, except in the case of the a priori information free
strategy that has similar RMSE in both periods, ground observation constrained strategies have a
relatively better accuracy in the rainy period than that in the rainless period with respect to STD or
RMSE. In Figures 4 and 5, the vertical distributions of wet refractivity are more even during the rainy
days than those during rainless days. In Figure 5, the wet refractivity has large values below 5 km
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height and near 0 values above 5 km height, which indicates that the water vapor is more concentrated
near the ground during this period than during rainy days. The evenly distributed water vapor is
beneficial to obtain good tomography results from smoothing constrained methods, while the sharply
changed distribution is not. This may explain why most STD and RMSE are smaller in the rainy period.
However, the bias in the rainy period is much larger than that in the rainless period. Brenot et al. [36]
and Kacmarik et al. [37] showed that the contribution of hydrometeors to GNSS signal delay can be as
much as 20 mm or more, which is far from being negligible. In our data processing, the hydrometeors
contribution is not removed thus may introduce a bias in the tomography results. There are more
hydrometeors in the rainy period than in the rainless period, which may cause the bias of tomography
results to be larger in rainy period than in the rainless period.

4.2. Comparison with ECMWF Data

The comparison between tomography results and radiosonde data are limited to only one vertical
column that the radiosonde station lies in, and the wet refractivity at the bottom is constrained by
radiosonde observations, so this comparison may be not sufficient. Here we use ECMWF ERA-Interim
data interpolated to a resolution of 0.125◦ to calculate and interpolate WR at the centers of the voxels.
Then we calculate the bias, STD and RMSE between tomography results and ECMWF WR. Layered
bias and STD are shown in Figure 7, and statistical data are shown in Table 2. Similar to the conclusions
in Section 4.1, the ground observation constrained strategies obtained significantly better results than
the a priori information free strategy. In this comparison, the GNSS meteorological data constrained
strategy gets very similar results to the one radiosonde observation constrained strategy, both better
than the a priori information free strategy with respect to STD or RMSE. Most of the bias in Table 2 is
larger in the rainy period than in the rainless period, which is associated with hydrometeors in the
atmosphere. The bias, STD and RMS derived from these three strategies decrease with increasing
height and the results are better on the rainy days than the rainless days, which is consistent with
the results in Section 4.1. The differences between the results in Tables 1 and 2 should be due to the
discrepancy which existed between the radiosonde data and ECMWF data.

Figure 7. Layered bias and STD calculated from the comparison between tomography results and
ECMWF results during rainy days (20 July to 26 July) and rainless days (1 August to 7 August) in
2015. The light blue squares indicate bias and the error bars indicate STD. (a,b): a priori information
free strategy; (c,d): one radiosonde observation constrained strategy; (e,f): GNSS meteorological data
constrained strategy.
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Table 2. Statistics of the tomography accuracy with respect to ECMWF data during a rainy period and
a rainless period in 2015. unit: mm/km.

A Priori Data
Rainy Period Rainless Period

Bias STD RMSE Bias STD RMSE

Low
(<5.6 km)

No −1.7 10.5 10.7 −2.2 11.6 12.1
Lowest radiosonde observation −1.3 6.5 7.1 −0.2 7.7 8.3

GNSS meteorological data −0.9 6.9 7.3 0.4 7.8 8.4

Total
No −0.7 7.9 8.1 −0.5 8.9 9.0

Lowest radiosonde observation −1.7 5.3 5.7 −1.3 6.2 6.5
GNSS meteorological data −2.1 5.4 6.0 −1.4 6.4 6.8

5. Discussion

In our tomography experiments, observations were not sufficient in the lower troposphere, so
introducing ground observations into the tomography system will be very helpful. However, the GNSS
meteorological data constrained strategy led to a lower accuracy than the one radiosonde observation
constrained strategy in both Sections 4.1 and 4.2. To further investigate this problem, we used GNSS
meteorological data, radiosonde data and ECMWF data to derive wet refractivity. Figure 8 shows an
example which can represent most of the cases. Figure 8a shows the original GNSS meteorological
data derived WR, Figure 8b shows a similar WR but reduced to 400 m height and Figure 8c shows the
ECMWF derived WR at 400 m height. In Figure 8a, the WR from GNSS meteorological data shows
sharp variations on the ground, but no clear gradient pattern can be observed. WR at site HKSC, which
is closest to the RS site, is significantly different from the RS WR. This may be due to local effects,
height differences and observation errors. In Figure 8b when GNSS meteorological data derived WR
and RS WR are reduced to the same height of 400 m, the GNSS meteorological data derived WR still
has sharp variations in the horizontal domain and a large difference still exists between HKSC and
RS sites. This rules out the possibility of height differences causing WR variations. Figure 8c shows
the ECMWF WR and RS WR, both reduced to 400 m height. In Figure 8c, ECMWF WR shows a clear
gradient pattern that WR is decreasing from southeast to northwest. The ECMWF WR also has an
obvious difference from RS WR. Assume that the gradient shown in Figure 8c is true, the fact that
the gradient doesn’t show in Figure 8b should be mainly due to local effects since observation errors
shouldn’t change the gradient pattern as much. The significant differences between RS WR and GNSS
meteorological data derived WR (at HKSC) should be due to observation errors. WR at HKST is also
very likely to have large errors since it is significantly larger than WR at other sites. Since the GNSS
meteorological data derived WR is not as reliable as RS WR, we deleted GNSS meteorological data
derived WR that were significantly incompatible with the tomography results when we performed
tomography in an iterative way. By this additional procedure, we obtained the tomography results in
Section 4.

Figure 8. Wet refractivity from GNSS meteorological data, radiosonde and ECMWF at 0:00 UTC on
20 July 2015. (a) WR from ground GNSS meteorological data and RS; (b) GNSS meteorological data
and RS data derived WR reduced to 400 m height; (c) ECMWF and RS WR reduced to 400 m height.
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6. Conclusions

We presented an improved tomography approach based on adaptive Laplacian smoothing and
ground meteorological observations to reconstruct a three-dimensional wet refractivity field in Hong
Kong under rainy and rainless weather conditions. By comparing tomography results with radiosonde
and ECMWF data, we concluded that (1) adaptive Laplacian smoothing could retrieve better vertical
distribution of WR than constant Laplacian smoothing, especially when no ground meteorological data
is available (see Figure 3); (2) using ground observations to constrain the WR in the lower troposphere
could significantly improve the tomography results in small flat networks (at least 29% of RMSE
is reduced when compared with radiosonde data), but one should be cautious of the quality and
compatibility of ground observations and (3) the tomography technique is affected by the vertical
distribution of WR in small flat networks.
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