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Abstract: Slum identification in urban settlements is a crucial step in the process of formulation of
pro-poor policies. However, the use of conventional methods for slum detection such as field surveys
can be time-consuming and costly. This paper explores the possibility of implementing a low-cost
standardized method for slum detection. We use spectral, texture and structural features extracted
from very high spatial resolution imagery as input data and evaluate the capability of three machine
learning algorithms (Logistic Regression, Support Vector Machine and Random Forest) to classify
urban areas as slum or no-slum. Using data from Buenos Aires (Argentina), Medellin (Colombia)
and Recife (Brazil), we found that Support Vector Machine with radial basis kernel delivers the best
performance (with F2-scores over 0.81). We also found that singularities within cities preclude the use
of a unified classification model.
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1. Introduction

According to [1], slums are the most deprived and excluded form of informal settlements.
Slums are characterized by poverty and agglomerations of inadequate housing and are often located in
hazardous urban areas. In 2016, approximately one in eight individuals lived in a slum. Although there
was a decrease from 39% to 30% of urban population living in slums between 2000 and 2014,
the absolute number of people living in urban slums continues to grow and it is a critical factor
for the persistence of poverty in the world [2]. Moreover, the urban population of the world’s
two poorest regions, South Asia and Sub-Saharan Africa, is expected to double over the next 20 years,
which suggests that the slum dwellers in those regions will grow significantly [1].

There has been a significant increase in the number of studies regarding the usefulness of remote
sensing imagery to measure socioeconomic variables [3–6]. This trend is partly due to the increasing
availability of satellite platforms, advances in methods and the decreasing costs of these images [7,8].
Remote sensing imagery may become an alternative source of information in urban settings for which
survey data are scarce. In addition, this imagery may complement socioeconomic data that have been
obtained from socioeconomic surveys [3]. The use of remote sensing data to estimate socioeconomic
variables is based in the premise that the physical appearance of a human settlement is a reflection of
the society that created it and is also based on the assumption that individuals who live in urban areas
with similar physical housing conditions have similar social and demographic characteristics [9,10].

Slum detection or slum mapping is one of the most recurrent applications in this field of study;
scholars have published a minimum of 87 papers in scientific journals over the last 15 years [8].

Remote Sens. 2017, 9, 895; doi:10.3390/rs9090895 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4016-681X
http://dx.doi.org/10.3390/rs9090895
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 895 2 of 23

These studies have demonstrated that the physical characteristics of slums are distinguishable
from the physical characteristics of formal settlements by using remote sensing data [11–13].
This is an important area of study because numerous local governments do not fully acknowledge
the existence of slums or informal settlements [1], which hinders the formulation of policies to benefit
the poor citizens of cities [8].

Numerous methods that make use of remote sensing imagery can be used to identify slum
areas. Object based image analysis (OBIA) was, until recently, the most used method; other methods
include visual interpretation, texture/morphology analysis and machine learning, which is more
accurate and is often combined with OBIA [8]. Machine learning (ML) approaches generally combine
textural, spectral and structural features [12]. The Random Forest classifier (RF) is one of the most
popular ML methods for slum extraction that uses very high spatial resolution (VHR) imagery [12,14].
Support Vector Machine (SVM) and Neural Networks (NN) are also used for slum identification [8].
However, most of these ML algorithms are implemented at the pixel level and have limited viability
when working with VHR imagery, in contrast to OBIA [15]. Appropriate ML methods are generally
determined by the intuition of the researcher.

According to [8], most published studies describe the use of remote sensing to map slums and relied
on expensive commercial imagery with near-infrared (NIR) information [16] or three-dimensional data
such as LIDAR [13]. Numerous small cities in developing countries do not have the funds to purchase
full satellite imagery and often use RGB data for data extraction via interpretation [15,17]. Google Earth
(GE) imagery may be the only available source of aerial imagery for small local governments because
these images are free to the public [18,19]. In addition, Google Earth provides historical VHR imagery
for many locations, which may be useful for spatio-temporal urban analysis. According to Google Earth
terms of service [20], GE imagery can be used for non-commercial purposes, and its use is specifically
allowed for research papers and other related documents.

The purpose of this study is threefold. First, we explore the possibility of detecting slums
within cities by using very high spatial resolution (VHR) RGB GE imagery, image feature extraction
and OBIA techniques, without ancillary data. Second, using identical input data, we compare the
performance of different ML algorithms to identify slums and determine which algorithm provides
the optimal results. Third, we seek to identify a low-cost standardized method to detect slums that
is also flexible, easy to automate and may be used in other urban settings with scarce data. We use
data for three Latin American cities with different physical and climate conditions and different urban
layout characteristics: Buenos Aires (Argentina), Medellin (Colombia), and Recife (Brazil).

The structure of this paper is as follows: Section 2 describes the methodology including
a description of the data and the three classification models that are utilized in this study. Section 3
provides the results and a discussion of the implemented approach. Section 4 presents the primary
conclusions, suggestions for future research and policy-making implications for local governments
and authorities.

2. Methods

Our goal is to design an algorithm that can automatically identify the areas of a city that possess
the urban characteristics of a Slum. This problem can be defined as a binary classification problem
for which the inputs are features that have been extracted from GE images and the output is a binary
variable that assumes the value of 1 if a particular area of the city is a slum and 0 otherwise. Figure 1
summarizes the proposed approach for detecting slums. This process begins with collecting the input
data for the administrative boundaries. Data are obtained from Open Street Maps (OSM) and GE
images for two different time instances (upper portion of the figure). The second stage of the
process (middle portion of the figure) includes calculating spectral, textural and structural variables
(i.e., the image feature extraction) from the GE images. During this stage, the images are discretized
by overlapping a regular grid; the outer border is defined by the OSM boundary. This procedure
generates Spatial Datasets (one per year, per city) that are composed of regular polygons with their
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corresponding spectral, textural and structural variables. Finally, the third stage (lower segment
of the figure) includes a classification analysis. The data for the most recent year are used to train
the classification models and identify the best-performing model for slum identification. The optimal
model is then applied to images from prior years to identify urban changes in the most important
areas of each city.
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2.1. The Data

We selected three Latin American cities to test the transferability of this approach: Buenos Aires,
Argentina; Medellin, Colombia; and Recife, Brazil (Figure 2). These cities represent different climates,
environmental conditions, and cultures and the use of different building materials. Buenos Aires is
located at 34◦35′59” S, 58◦22′55” W at sea level and borders the La Plata river outlet to the ocean over
plain lands and has a dry climate with marked seasons. Medellin is located at 6◦14′41” N, 75◦34′29” W
in an intermountain valley at 1460 m above mean sea level and has a tropical, wet climate. Recife is
located at 8◦03′14” S, 34◦52′51” W at sea level in a hilly terrain and has a tropical, wet climate. Table 1
provides general descriptions of these cities.
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Table 1. City descriptions.

Variable Buenos Aires Medellin Recife

Population estimates for 2010 (people) 2,890,151 2,309,446 1,537,794
Area (km2) 200 105 218

Density (people/km2) 14,451 21,995 7040
Elevation (meters above sea level) 0 1480 0

Mean annual temperature (◦C) 18 24 25
Average relative humidity (%) 72.0 68.3 79.8

Data sources: [21–23].

We downloaded the most updated (up to March 2016) GE images for each city and used a zoom
level that was similar to VHR imagery with sub-meter pixel size. Google Earth imagery with very high
spatial resolution is available for almost all urban areas worldwide. The VHR images were obtained
from a number of providers or satellite platforms (e.g., Digital Globe, Geo Eye, and CNES/Astrium,
among others). Images are captured by different sensors on different dates using different spatial
resolutions; however, most of the images have a submeter pixel size and serve as natural-colored
images that have three bands: red, green and blue (RGB). Because of the differences in platforms and
different dates of acquisition, images captured at the same location on different dates will indicate
differences through illumination conditions and color intensities. The GE images were georeferenced
and rescaled between 0 and 255. We kept the preprocessing of the images to a minimum to gain speed
in the workflow and to maintain the ease of automation of the whole approach.

Prior studies state that block-level spatial units of analysis are the most useful for urban planning
purposes [13,24]. OpenStreetMap (OSM) data that layer streets and roads are useful to delineate urban
blocks. However, in developing countries, cities’ street networks are incomplete because of the high
density and complexity of slum areas [13] or because areas that have been recently occupied have
not been registered in all of the OSM datasets, as is the case for the northeastern section of Medellin
city. In these instances, the delineation of urban blocks would add considerable processing time to
the approach because it would require visual interpretation and manual digitalization of roads and
pedestrian paths.

A simple alternative that can be automated is using a regular grid to detect slums from remote
sensing imagery. Prior studies have used regular grids to extract, aggregate and classify image
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data [8,25,26]. A regular grid in a vector, or fishnet, format can be drawn using any GIS software;
the only necessary input is the boundary of the study area. This method could increase the speed of this
study. We tested the use of two fishnets with different polygon sizes (a fishnet with square cells of 100 m
on each side and another fishnet with square cells of 50 m on each side) for image feature extraction and
classification. The results that were obtained with the 100 m grid outperformed the results that were
obtained with the 50 m grid in regards to the correct classification of slum-like areas. The 100 m square
cells are similar in size to actual urban blocks and have been recognized as an appropriate spatial unit
of analysis to study intra-urban poverty for urban planning and policy making [24]. We downloaded
the administrative boundaries of each city from OSM using QGIS [27] to define the extent of the study
areas, and then created a regular grid of square cells with 100 m on each side over the urban areas
of each city to extract the image features. The use of administrative boundaries to select the study
areas could introduce bias in the identification of slums, as those areas located just outside the fringe
will not be included in the analysis. As the focus of this work is to test the ability to identify slums
from GE imagery in the three different Latin American cities using the same approach, rather than
identify all the slum areas in a particular city, we used the administrative boundaries to select the areas
in the same way for all three cases.

In addition, we selected well known slum areas in each city and downloaded cloud-free GE
images for each sector from approximately a decade prior to test the approach’s ability to analyze
changes in slum areas. We attempted to capture images from the same city at two different points in
time that were roughly a decade apart to determine if the proposed approach could identify changes
that had taken place between the dates. This time span was restricted by the availability of Google
Earth’s VHR images for each city and by the quality of the available images, which can be affected by
the presence of clouds and shadows. Historical VHR imagery provided by GE is also restricted to the
availability of commercial VHR data, which was released after the launch of the Ikonos satellite in
1999. The most updated good quality VHR images available for Buenos Aires, Medellin, and Recife
are from 2006, 2008, and 2008, respectively. Although images from other dates are available for these
cities in GE, they were captured using medium spatial resolution platforms and are not suitable for
extracting spatial pattern descriptors at the intra-urban scale.

The historical GE images were resampled to the identical pixel size of the 2016 images of each
city, and we performed radiometric normalization between the historical images and the 2016 images;
the 2016 images were used as a reference. Resampling and radiometric normalization were performed
to obtain historical images with the identical pixel size and similar color intensity as the 2016 images
(i.e., pixel values in each RGB band). Preprocessing the historical images simplifies the process to
identify changes and differentiates between changes in intensity because of differences in illumination
and atmospheric conditions.

2.1.1. Feature Extraction

Different image texture measures and spatial pattern descriptors (structure measures) have been
used for differentiating slum areas from formal ones in several cities of developing countries around
the world [3,12,24,28,29]. We used current GE images (obtained in March 2016) and the regular grid of
each city to extract image information using FETEX 2.0. Figure 3 illustrates the outline of the urban
areas for each city and selected sectors (500 by 500 m) illustrate the regular grid over the 2016 GE
images. FETEX is an interactive software package that is used for image and object-oriented feature
extraction [30] and is available on the Geo-Environmental Cartography and Remote Sensing Research
Group website [31]. We calculated three sets of variables: a set of spectral features, a set of textural
features and a set of structural features. The image features are extracted from the image by processing
the pixels that are located within the same polygon without changing the image resolution or pixel
values. Spectral features provide information regarding color; texture and structural features provide
information regarding the spatial arrangement of the elements within the image. The urban layout of
slum-like neighborhoods often displays a more organic, crowded and cluttered pattern than for more
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formal and wealthy neighborhoods. Texture and structural features may help to differentiate between
slum and no-slum areas [3,12,32,33].Remote Sens. 2017, 9, 895  6 of 22 

 

 
Figure 3. Urban areas and selected sectors showing the regular grid over the 2016 GE images of each 
city. From left to right: Buenos Aires, Medellin, and Recife. 

Spectral features: Spectral features include the summary statistics of pixel values inside each 
polygon. These features provide information regarding the spectral response of objects, which 
differs for land coverage types, states of vegetation, soil composition, building materials, etc. [30]. 
We selected the mean and standard deviation for each RGB band and the majority statistic, to be 
extracted within this group. These features are easy to understand and provide better information 
about the spectral differences across the cities than other summary statistics (minimum, maximum, 
range, and sum). 

Texture features: Textural features characterize the spatial distribution of intensity values of an 
image and provide information about contrast, uniformity, rugosity, etc. [30]. FETEX 2.0 performs 
texture feature extraction based on the Grey Level Co-occurrence Matrix (GLCM) and a histogram of 
pixel values inside each polygon. The kurtosis and skewness features are based on a histogram of 
the pixel values inside the polygon; the GLCM describes the co-occurrences of the pixel values that 
are separated at a distance of one pixel inside the polygon and is calculated considering the average 
value of four principal orientations, 0°, 45°, 90° and 135°, to avoid any effects of the orientation of the 
elements inside the polygon [30]. The GLCM of FETEX 2.0 was utilized to calculate a set of variables 
that were proposed by [34] and are widely used for image processing, including uniformity, 
entropy, contrast, inverse difference moment (IDM), covariance, variance, and correlation. The 
edgeness factor is another useful feature that represents the density of the edges of a neighborhood. 
The mean and standard deviation of the edgeness factor (MEAN EDG, and STDEV EDG) are also 
computed within this set of texture features in FETEX 2.0 [30].  

Structural features: These features provide information regarding the spatial arrangement of 
elements inside the polygons in terms of the randomness or regularity of their distribution 
[30,35,36]. Structural features are calculated in FETEX using the experimental semivariogram 
approach. According to [30], the semivariogram quantifies the spatial associations of the values of a 
variable, measures the degree of spatial correlation between the different pixels of an image and is a 
suitable tool to determine regular patterns. FETEX 2.0 obtains the experimental semivariogram for 
each polygon by computing the mean of the semivariogram calculated in six different directions, 
from 0° to 150° in increments of 30°. Then, each semivariogram curve is smoothed using a Gaussian 
filter to reduce experimental fluctuations [30]. Structural features extracted from the semivariogram 
are based on the zonal analysis that is defined by a set of singular points on the semivariogram, such 
as the first maximum, the first minimum, and the second maximum [30]. For a full description of 

Figure 3. Urban areas and selected sectors showing the regular grid over the 2016 GE images of each
city. From left to right: Buenos Aires, Medellin, and Recife.

Spectral features: Spectral features include the summary statistics of pixel values inside each
polygon. These features provide information regarding the spectral response of objects, which differs
for land coverage types, states of vegetation, soil composition, building materials, etc. [30]. We selected
the mean and standard deviation for each RGB band and the majority statistic, to be extracted within
this group. These features are easy to understand and provide better information about the spectral
differences across the cities than other summary statistics (minimum, maximum, range, and sum).

Texture features: Textural features characterize the spatial distribution of intensity values of
an image and provide information about contrast, uniformity, rugosity, etc. [30]. FETEX 2.0 performs
texture feature extraction based on the Grey Level Co-occurrence Matrix (GLCM) and a histogram
of pixel values inside each polygon. The kurtosis and skewness features are based on a histogram of
the pixel values inside the polygon; the GLCM describes the co-occurrences of the pixel values that
are separated at a distance of one pixel inside the polygon and is calculated considering the average
value of four principal orientations, 0◦, 45◦, 90◦ and 135◦, to avoid any effects of the orientation of
the elements inside the polygon [30]. The GLCM of FETEX 2.0 was utilized to calculate a set of variables
that were proposed by [34] and are widely used for image processing, including uniformity, entropy,
contrast, inverse difference moment (IDM), covariance, variance, and correlation. The edgeness factor
is another useful feature that represents the density of the edges of a neighborhood. The mean and
standard deviation of the edgeness factor (MEAN EDG, and STDEV EDG) are also computed within
this set of texture features in FETEX 2.0 [30].

Structural features: These features provide information regarding the spatial arrangement of
elements inside the polygons in terms of the randomness or regularity of their distribution [30,35,36].
Structural features are calculated in FETEX using the experimental semivariogram approach.
According to [30], the semivariogram quantifies the spatial associations of the values of a variable,
measures the degree of spatial correlation between the different pixels of an image and is a suitable tool
to determine regular patterns. FETEX 2.0 obtains the experimental semivariogram for each polygon
by computing the mean of the semivariogram calculated in six different directions, from 0◦ to 150◦
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in increments of 30◦. Then, each semivariogram curve is smoothed using a Gaussian filter to reduce
experimental fluctuations [30]. Structural features extracted from the semivariogram are based on
the zonal analysis that is defined by a set of singular points on the semivariogram, such as the first
maximum, the first minimum, and the second maximum [30]. For a full description of these features,
see [30,35,36]. Table 2 provides a list of the remote sensing variables that are used for this analysis.

Table 2. Image-derived variables.

Group Variable Name Description

Spectral features

MEAN1 Mean of pixel values in band 1
DEVST1 Standard deviation of pixel values in band 1
MAJORITY1 Majority of pixel values in band 1
MEAN2 Mean of pixel values in band 2
DEVST2 Standard deviation of pixel values in band 2
MAJORITY2 Majority of pixel values in band 2
MEAN3 Mean of pixel values in band 3
DEVST3 Standard deviation of pixel values in band 3
MAJORITY3 Majority of pixel values in band 3

Texture features

MEAN_EDG Mean of the edgeness factor
DEVST_EDG Standard deviation of the edgeness factor
UNIFOR GLCM uniformity
ENTROP GLCM entropy
CONTRAS GLCM contrast
IDM GLCM inverse difference moment
COVAR GLCM covariance
VARIAN GLCM variance
CORRELAC GLCM correlation
SKEWNESS Skewness value of the histogram
KURTOSIS Kurtosis value of the histogram

Structure features

RVF Ratio variance at first lag
RSF Ratio between semivariance values at second and first lag
FDO First derivative near the origin
SDT Second derivative at third lag
MFM Mean of the semivariogram values up to the first maximum
VFM Variance of the semivariogram values up to the first maximum

DMF Difference between the mean of the semivariogram values up to
the first maximum and the semivariance at first lag

RMM Ratio between the semivariance at first local maximum and
the mean semivariogram values up to this maximum

SDF Second order difference between first lag and first maximum

AFM Area between the semivariogram value in the firs lag and
the semivariogram function until the first maximum

2.1.2. The Dataset

After the image features are extracted, the next step is to create the dataset. This process includes
selecting a ground truth sample for each city. Each polygon of the sample is manually labeled as one
of two categories: slum or no-slum. Ancillary information and prior studies were used as reference to
identify slum areas in each city for sampling. A slum area can be considered a homogeneous zone
with specific characteristics, but it can exhibit different appearances depending on the context [37].
However, most slum definitions relate to physical aspects of the built environment, which makes them
comparable across settings. Although each city could have its own definition of slum, as pointed
out by Taubenböck and Kraff, “the term slum is difficult to define, but if we see one, we know it”
([13], p. 15). The location of slum areas in Buenos Aires were identified on the “Caminos de la Villa”
website [38] that provides an interactive map of the city and the location of recognized “villas” (slums).
For Medellin we used the delineation of urban slums from [3,39], which is based on survey data and
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the UN-Habitat global definition of slum [40]. The benchmark slum areas in Recife were identified
using the work of [41], which shows the delimitation of widely recognized slum areas or “favelas”
in that city. We visually checked the selected slum areas in each case to ensure that we were picking
similar slum-like areas in all three cities. We then labeled as “slum” all the 100 m cells that overlapped
with the slum areas from those already identified in the benchmarks. The sampling of no-slum areas
in each city included different formal urban layouts such as high and low rise residential areas, parks,
urban forests, green spaces, and commercial and industrial areas such as malls, transport facilities
and factories. This binary classification scheme is common practice in remote sensing object-oriented
approaches for identifying slum areas [13,28,29]. When benchmark information of slum areas is not
available to construct a ground truth sample, practitioners must find reference information from local
authorities or use an experienced interpreter who can visually determine slum and no-slum areas.
Figure 4 provides the sampling spatial distribution for each city.

The final step in this stage is to divide the dataset into two sets: the training set that includes
60% of the sampled polygons for training and tuning the classification models and the testing set that
includes 40% of the sampled polygons to evaluate the predictive capability of the classification models.
Table 3 summarizes the composition of the datasets.

After the ground truth sampling was complete, we used the Kolmogorov–Smirnov (KS) test [42]
and implemented the R package “kolmin” [43,44] to better understand the discriminating ability of
the image-derived variables to differentiate slum areas from no-slum areas in each city.
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Figure 4. Sampling scheme of slum and no-slum areas for each city. From left to right: Buenos Aires,
Medellin, Recife.

Table 3. Composition of the dataset (number of fishnet cells).

City Total Labeled No Labeled L. Slum L. No Slum Training Testing

Buenos Aires 21,516 6558 14,958 369 6189 3934 2624
Medellin 10,255 2891 7364 602 2289 1734 1157

Recife 22,037 11,218 10,819 1274 9944 6730 4488

2.2. Classification Model

Classification literature is broad and multiple methods and algorithms have been proposed over
recent decades [45]. In general, the primary goal is to develop a quantitative classification method
that is capable of determining and generalizing the relationships between a set of variables (X) and
a categorical variable (Y). For our specific classification problem, X is a matrix that includes the
spectral, textural, and structural values of each polygon in the grid and Y is a categorical variable that
assumes the value of either 1 or −1 if a polygon is a slum or no-slum, respectively. The capability of
the classification method is determined by two factors: (i) the theoretical definition of the classification
boundary of the classifier (e.g., linear and nonlinear); and (ii) the complexity of the data.



Remote Sens. 2017, 9, 895 9 of 23

Based on the classification boundary, classifiers are commonly designated as either linear or nonlinear.
Linear classifiers, such as logistic regression and linear SVMs, assume that the categorical variable (Y) can
be obtained by exploiting a linear combination of the input features (X). Nonlinear classifiers generalize
the boundary by adjusting polynomial boundaries, Gaussian kernels, or algorithmic criteria based on
feature thresholding. Figure 5 illustrates a linear and nonlinear decision boundary. Nonlinear classifiers
can capture more complex patterns from the data, but as a consequence, are more computationally
complex than their linear counterparts and may be able to memorize the training data (overfitting).Remote Sens. 2017, 9, 895  9 of 22 

 

 
(a) (b)

Figure 5. Linear and nonlinear classification boundary in 2D: (a) Linear Boundary on separable data; 
and (b) Nonlinear Boundary on separable data. 

The intrinsic complexity of the data cannot be easily understood or described, particularly for 
high dimensional datasets. The most intuitive method to understand the data complexity is by 
visualizing its features and the respective classes. This approach is generally restricted to low 
dimensional data (2D or 3D) or simplified versions of the feature space that are obtained using 
manifold algorithms such as Principal Components Analysis (PCA), IsoMaps, or Self Organizing 
Maps [46]. A common approach that is used when working with dimensional data is to determine its 
complexity by comparing the capabilities of different classification algorithms to capture known 
patterns. To clarify, a simple classifier (linear) will perform poorly when using complex data 
(nonlinear) and complex classifiers (nonlinear) are able to use more complex data but have a large 
risk of overfitting. This risk is referred to as the bias–variance tradeoff [47], and it is commonly faced 
by adding a theoretical strategy known as regularization. The regularization strategy depends on the 
classification method and goes from the inclusion of additional terms in the error functions (e.g., 
Logistic Regression, SVM) to random disturbances in the training step and/or training data (e.g., 
Deep Neural Networks). In regards to the size of the training sets, there is no definitive number of 
observations that are required to train the models; this issue is commonly noted as a consequence of 
the complexity of the problem that is to be solved. Recent advances in data-science and 
deep-learning frequently refer to the benefits of large datasets; however, when data collection is 
expensive and time-consuming, a common practice is to observe changes in the evaluation criteria 
and sequentially increase the number of observations that are used to train the models. If the 
evaluation criteria do not improve (converge) as the number of training samples increases, then it is 
not necessary to collect additional training data. 

Because our data have high dimensionality (30 features extracted per polygon) with unknown 
distributions and include data for three different cities, we explored two approaches for training our 
model to identify slums: (i) train a unique classifier on an unified dataset (i.e., without differentiating 
the cities) and then evaluate if the resulting slums are reliable; and (ii) use a multi-model approach 
by training the classifier in each city. Given the geographic and cultural differences as well as in the 
appearance of slums in these cities, fitting one method for slum identification in all the cities is a 
huge challenge. However, it is important to test its feasibility in the search of robust tools for rapid 
urban slum detection with good performance in different settings. We analyze the performance of 
linear (Logistic Regression, linear SVM) and nonlinear classifiers (Polynomial and Radial Basis 
Kernel SVMs and Random Forests), which are available in the Python library Scikit-learn by [48].  

The Logistic Regression (LR) is the most common linear classifier and is frequently used by 
policy makers in the econometric literature. This classifier is a mathematical approach whose 
primary goal is to use the logistic function to estimate the probability of a categorical value, Y, given 
the input features, X. For this classifier we used the Ridge regularization (known as L2), which 
compared to the Lasso regularization (known as L1) is less computationally expensive, provides a 

Figure 5. Linear and nonlinear classification boundary in 2D: (a) Linear Boundary on separable data;
and (b) Nonlinear Boundary on separable data.

The intrinsic complexity of the data cannot be easily understood or described, particularly for high
dimensional datasets. The most intuitive method to understand the data complexity is by visualizing
its features and the respective classes. This approach is generally restricted to low dimensional data (2D
or 3D) or simplified versions of the feature space that are obtained using manifold algorithms such as
Principal Components Analysis (PCA), IsoMaps, or Self Organizing Maps [46]. A common approach
that is used when working with dimensional data is to determine its complexity by comparing
the capabilities of different classification algorithms to capture known patterns. To clarify, a simple
classifier (linear) will perform poorly when using complex data (nonlinear) and complex classifiers
(nonlinear) are able to use more complex data but have a large risk of overfitting. This risk is referred
to as the bias–variance tradeoff [47], and it is commonly faced by adding a theoretical strategy known
as regularization. The regularization strategy depends on the classification method and goes from
the inclusion of additional terms in the error functions (e.g., Logistic Regression, SVM) to random
disturbances in the training step and/or training data (e.g., Deep Neural Networks). In regards to
the size of the training sets, there is no definitive number of observations that are required to train
the models; this issue is commonly noted as a consequence of the complexity of the problem that is to
be solved. Recent advances in data-science and deep-learning frequently refer to the benefits of large
datasets; however, when data collection is expensive and time-consuming, a common practice is to
observe changes in the evaluation criteria and sequentially increase the number of observations that
are used to train the models. If the evaluation criteria do not improve (converge) as the number of
training samples increases, then it is not necessary to collect additional training data.

Because our data have high dimensionality (30 features extracted per polygon) with unknown
distributions and include data for three different cities, we explored two approaches for training our
model to identify slums: (i) train a unique classifier on an unified dataset (i.e., without differentiating
the cities) and then evaluate if the resulting slums are reliable; and (ii) use a multi-model approach
by training the classifier in each city. Given the geographic and cultural differences as well as in
the appearance of slums in these cities, fitting one method for slum identification in all the cities is
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a huge challenge. However, it is important to test its feasibility in the search of robust tools for rapid
urban slum detection with good performance in different settings. We analyze the performance of
linear (Logistic Regression, linear SVM) and nonlinear classifiers (Polynomial and Radial Basis Kernel
SVMs and Random Forests), which are available in the Python library Scikit-learn by [48].

The Logistic Regression (LR) is the most common linear classifier and is frequently used by policy
makers in the econometric literature. This classifier is a mathematical approach whose primary goal
is to use the logistic function to estimate the probability of a categorical value, Y, given the input
features, X. For this classifier we used the Ridge regularization (known as L2), which compared
to the Lasso regularization (known as L1) is less computationally expensive, provides a unique
combination of coefficients, and, in case of correlated features, shrinks the estimates of the parameters
but not to 0 [49–51]. The Support Vector Machine (SVM) is a popular non-probabilistic classification
algorithm and is commonly recognized for its capability to maximize the margins between a decision
boundary and the observations belonging to the particular categories. SVM, as a logistic regression,
relies on a mathematical formulation to express the classification task as an optimization problem.
This algorithm is highly popular in machine learning literature because of its ability to use nonlinear
boundaries (kernels) from the theoretical formulation and its explicit goal of locating the boundaries
as far as possible of the training data. In the experiment section, we use the polynomial kernel
(SVMk), with k ranging from 1 to 5, and the radial basis kernel (SVMrbk). See [45] for a complete
overview of the optimization procedure and more detailed information regarding the kernel functions.
The regularization, in the case of the SVM, is defined as a constant that can be tuned to reduce
overfitting. Finally, the Random Forest (RF), contrary to the Linear Regression and the SVM, makes
a decision based on a sequential set of thresholding rules on the input space. Theoretically, a RF
is an ensemble method that is formed by multiple decision trees. The RF decision is the average
of the individual decisions of its trees, each of which is trained on bootstrap subset taken from
the complete training data [52]. A decision tree is an algorithmic strategy that sequentially divides
a feature space to fit the output variable [53]. For the results section we use the Least Squared Error
(LSE) as the optimization function, the maximum depth of the trees is set to 10, and each random
forest includes 10 decision trees. The use of the average to obtain the final decision endows RF, and
in general all the ensemble methods, with an intrinsic robustness to overfitting. This is frequently
pointed out as one their most significant advantages in Machine Learning literature.

2.3. Model Performance Assessment

Our comparison of the classifiers is based on the β score (Fβ), which is a numeric performance
defined by Equation (1), where the precision and recall are defined by Equations (2) and (3), respectively.
Generally, precision measures the reliability of the slums that are detected (the purity of the regions
that are detected as slum areas) and recall measures how efficiently the classifier retrieves the areas
that are defined as slum areas (the number of slums that are detected). The Fβ score, precision, and
recall are bounded between 0 and 1; 1 represents a perfect classifier. The value of β must be selected
according to the problem to be solved and is generally set to 0.5, 1 or 2. A value of β = 0.5 gives a larger
weight to the precision and a value of β = 2 prioritizes the recall. In the remaining sections of this paper,
β is defined as 2 (i.e., Fβ=2) to give more importance to recall. This implies that, when classifying areas
as slum or no-slum, we prefer type I errors over type II errors to prevent the vulnerable population
from being ignored in the consideration.

Fβ =
(

1 + β2
)
· precision · recall
(β2 · precision) + recall

(1)

precision =
TruePositives

TruePositives + FalsePositives
(2)

recall =
TruePositives

TruePositives + FalseNegatives
(3)
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Once we have defined the best performing approach (unified or multi-model) and the best
classifier, the next step is to tune the regularization constant to avoid overfitting the data and fine-tune
the decision threshold to obtain the final F2-scores. The regularization constant is exhaustively tuned by
evaluating the F2-score that is obtained while changing the regularization constant. The regularization
constant that results in the highest F2-score is defined as the final choice. The decision threshold is
the value for which the classifier decides whether a particular observation is classified as slum or
no-slum. The decision threshold is selected by using the Receiver Operating Characteristic (ROC)
curve, which is a visualization of the False-Positives rates (X-axis) and True-Positives rates (Y-axis)
while changing the decision thresholds. The machine learning bibliography suggests that the threshold
is defined as the closest point to the upper-left corner of the ROC curve. It is important to note that
the decision thresholds of the logistic regression reported in Section 3 are not bounded between 0 and 1,
which is equivalent to using the X-axis for the final decision.

To ensure the tuning process is fair (regularization constant, decision threshold), only observations
are used in the training dataset, which is accomplished by using cross-validation F2-scores. To obtain
the cross-validation F2-scores, the first step is to divide the training dataset into k equal sized parts.
On a single iteration, a classifier (with a specific regularization constant and decision threshold) is
trained on k − 1 parts and tested in the remaining part to keep the F2-score. This process is repeated k
times to ensure that each part is used once for testing. The final cross-validation F2-score is the average
of the obtained F2-score for each iteration. Our parameter selection is based on 10-fold cross-validation.

2.4. Slum Changes in Time

As stated above, we downloaded historical GE images for specific sectors of each city from roughly
a decade ago (period t − 1) to perform change analysis. We selected identified slum sectors of 1 km2 in
the recent GE images (2016), and downloaded historical images of those sectors, from one decade ago,
using historical imagery functionality in Google Earth. We applied relative radiometric normalization
between the t − 1 image and the most recent image in each city. This process minimizes the differences
in image data due to changes in atmospheric conditions, solar illumination, and view angles between
images acquired at different dates. We extracted image features using the same regular grid of square
cells and used the classifier model trained with the 2016 image-extracted data (period t) to classify
each cell within the sector as either slum or no-slum. Then, cell by cell, we compared the results of
the two dates (t vs. t − 1) and assigned different colors to differentiate the areas that were classified as
slum for both dates, areas that were classified as no-slum for both dates, areas that were classified as
no-slum for the t − 1 date but were classified as slum for the t date, and areas that were classified as
slum for the t − 1 date and no-slum for the t date.

Following this rationale, we tested if the proposed approach could be useful to analyze slum
dynamics over time by detecting areas that became slum areas, stable areas (no change), and areas that
were slum areas and became no-slum areas by upgrading or through urban renovation processes.

3. Results and Discussion

3.1. Discriminating Image Features

The results of the Kolmogorov–Smirnov test indicate that the distributions of all image-derived
variables are significantly different for the slum areas when compared to the no-slum areas. Figure 6
provides the boxplots for the five most discriminant image-extracted variables for each city (the results
for the other variables are available upon request). It is notable that two of these five most
discriminating variables were present for all three cities (SDF and CONTRAS) and all five variables
are identical for Buenos Aires and Medellin (SFD, CONTRAS, IDM, MEAN EDG and FDO).
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Figure 6. Boxplots of the distributions of the five most discriminant image-derived variables for each
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the right.

These variables include textural and structural features, with the exception of MEAN1, which
belongs to the spectral group and provides information about the mean of the intensity values in band
1, which corresponds to the red channel. SDF is a structure variable that provides information about
homogeneity at short distances [35,36]. Slum areas demonstrate lower homogeneity than no-slum areas
because they often include a variety of small dwelling units with different roof colors in close proximity
to each other [3]. CONTRAS is a texture variable that provides information about the differences
in color and intensity of the objects that are present in the image [34]. For the three cities that were
included in this analysis, the slum areas had higher values for this variable than the no-slum areas.
MEAN EDG is an aggregated measure of the density of edges present in an image [30]; the slum areas of
these cities had higher values for this variable than no-slum areas because of the smaller sized dwelling
units, narrower roads, and the presence of shadows between housing units and their surroundings.
IDM is a texture measure that provides information about the general homogeneity [30,34]; slum areas
are characterized by lower values of this feature than no-slum areas [3]. FDO is a structural feature that
provides information about the variability of changes at short distances [35]; slum areas had higher
values for this variable than no-slum areas because pixel values can change abruptly at short distances.
AFM and DMF are structural features that are also related to the variability of the pixel values in the
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image [35]; Recife slum areas had higher values for both of these features than no-slum areas, which
implies that slum areas often display more variability and less homogeneity than no-slum areas.

3.2. Classification into Slum and No-Slum

For the first step in our experimental analysis, we use data for three cities to build a unified model.
Table 4 provides the F2-score for each type of classifier in the testing set for each city. It is evident
from the table that SVMrbk is the best performing model. Regarding the polynomial SVMs (SVM2, ...,
SVM5), signals of underfitting occurred, particularly for the higher order models. The linear models
(Logistic Regression and SVM1) obtained a good classification score and did not show any signals of
overfitting/underfitting. However, the Gaussian kernel of the SVMrbk performs considerably better in
all the cities. Finally, the poor performance of the Random Forest is noteworthy. The low classification
scores provided by certain algorithms suggest the existence of singularities within cities that may
complicate the identification of slums using a unified model. An additional boost in the performances
can be obtained by carefully tuning each of the classifiers. For simplicity, this tuning is only applied to
the best performing algorithms in the final part of this section.

Table 4. Unified Model for Slum Detection (F2-scores).

City Log. R SVM1 SVM2 SVM3 SVM4 SVM5 SVMrbk RF

Buenos Aires 0.649 0.581 0.472 0.419 0.226 0.134 0.671 0.277
Medellin 0.757 0.516 0.794 0.817 0.821 0.841 0.872 0.550

Recife 0.671 0.552 0.559 0.565 0.564 0.592 0.803 0.516

Because of the differences in the cities’ urban structures, we train a classification model for each city.
Table 5 provides the testing F2-score for each model and each city. In this case, the best classification
score is obtained by Logistic Regression and SVMrbk; both models achieved F2 improvements
between 2 and 5 points with respect to the unified model. The remainder of the models indicated
certain improvements against their unified counterpart; however, their performance is still poor when
compared to the Logistic Model and the SVMrbk. These results confirm the intuition of structural
differences in the features of the slums for each city that preclude the implementation of a unified
model, which is in line with [33] who found morphological differences in spatial, spectral and textural
characteristics of deprived areas in Mumbai. Figure 7 shows the distribution of the time required by each
algorithm to classify a cell. As expected, the Logistic Regression is the fastest approach. The speed of
the SVMs is comparable among them, even for those with complex kernels. Finally, the Random Forest
is the slowest of the proposed algorithms. The results do not show significant differences between cities.

The next step is to remove signs of overfitting/underfitting of the best performing models and tune
the decision threshold (th). This step only includes the Logistic Regression and the SVMrbk. As explained
in Section 2.2, the regularization term is selected by an exhaustive incremental search and the best
threshold is selected by using the ROC curve. Table 6 provides the F2-scores of the default configuration
(default), using only the tuned regularization term (Reg.) and using the tuned regularization term
and the best threshold (Reg + th). The table confirms the benefits of the final tuning and allows us to
conclude that the best strategy is to use a single model per city, include the regularization parameter
and tune the decision threshold.

Table 5. Individual Model for Slum Detection (F2-scores).

City Log. R SVM1 SVM2 SVM3 SVM4 SVM5 SVMrbk RF

Buenos Aires 0.737 0.642 0.649 0.678 0.652 0.642 0.688 0.596
Medellin 0.928 0.886 0.783 0.839 0.809 0.832 0.909 0.687

Recife 0.775 0.734 0.702 0.644 0.585 0.576 0.821 0.532
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Table 6. Tuning the best classification models (F2-scores).

Log. Regression SVMrbk

City Default Reg. Reg + th Default Reg. Reg + th

Buenos Aires 0.737 0.759 0.715 0.688 0.813 0.817
Medellin 0.928 0.949 0.957 0.909 0.937 0.976

Recife 0.775 0.767 0.827 0.821 0.870 0.872

Figure 8 provides the F2-score for each SVMrbk while changing the regularization term.
The regularization value that maximizes the F2-score is set as the regularization term of the model.
Figure 9 illustrates the ROC curves given the best regularization term. As previously explained, the
decision threshold is set as the regularization term that generates the closest point to the upper-Left
corner of the curve. Using the data from Medellin, we found that the area below the ROC curve when
using the 100 m fishnet was about 2% greater than the area below the ROC curve when using the 50 m
fishnet (i.e., the ROC curve is slightly closer to the upper-left corner when using the 100 m fishnet).
Finally, Table 7 provides the parameters that were selected for Table 6.
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Recife. For visualization purposes, the x-axis is reported in logarithmic scale. The final regularization
term is reported in Table 7.
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Table 7. Final parameters of the logistic regression and the SVMrbk. The values of the decision threshold
for the logistic regression are reported in the x-axis, and are not bounded between 0 and 1. For both
cases (Logistic Regression and SVM), more negative thresholds indicate the classifier is more prone to
set an observation as slum.

Log. Regression SVMrbk

City Reg. Term Threshold Reg. Term Threshold

Buenos Aires 12.618 −3.111 394.42 −0.969
Medellin 20.092 −1.494 16.681 −0.464

Recife 225.70 −1.788 18.307 −0.992

Figure 10 provides the maps of detected slum areas using the classification process of the 2016 GE
images for each city. The percentage of urban areas that are covered by slums is 24% for Buenos Aires
and 36% for both Medellin and Recife. The spatial patterns changes in slums areas across the cities is as
follows. In Buenos Aires, the slums are dispersed in little pockets throughout the territory. The slums
emerge in intra-urban vacant lots and even in the periphery of industrial areas. In Medellin, slums are
located in peripheral green areas adjacent to existing slums. This pattern is one of the consequences of
armed conflict with guerrillas in rural areas; large groups of individuals were forced to move to the
periphery of major cities in Colombia. In Recife, the slums are distributed in large clusters throughout
the city and near highways (e.g., Highway BR-101) and rivers (the Capibaribe River).
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Figure 10. Classification results for 2016 GE images of each city to slum and no-slum areas.

3.3. Accuracy Assessment of Classification Results

The confusion matrix of the classification results presented in Table 8 illustrates the magnitude of
the overestimation (no-slum areas classified as slum areas) and underestimation (slum areas classified
as no-slum areas) for the testing dataset for each city. Buenos Aires resulted in less than 3% of
overestimation and approximately 1% of underestimation; Medellin was the best case, with 2%
overestimation and no underestimation; and Recife indicated 4.5% overestimation and less than 1%
underestimation. Figure 11 provides the known slum sectors for each city using an identical spatial
scale: Villa Zavaleta (21–14) in Buenos Aires, Comuna Santa Cruz in Medellin, and Chao de Estrelas
in Recife. Table 9 provides a general characterization of slum areas for each city in terms of the
image-derived features to better understand the classification results. The slums in all three cities are
composed of clusters of small dwelling units and very few vegetated areas.
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Table 8. Confusion Matrix of the SVMrbk with the parameters reported in Table 7.

(a) Buenos Aires (b) Medellin (c) Recife

Predicted No-Slum Predicted Slum Predicted No-Slum Predicted Slum Predicted No-Slum Predicted Slum

No-Slum 2387 84 903 27 3800 203
Slum 17 136 0 227 32 453Remote Sens. 2017, 9, 895  17 of 22 
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Table 9. General characteristics of slums in the analyzed cities.

Observable Feature Buenos Aires Medellin Recife

Short distance heterogeneity high High medium to high
Large distance homogeneity very high very high medium to high
Roofing material diversity high High medium to high
Vegetation coverage very low Low low
Urban layout pattern organic very organic regular
Crowdedness very high High medium to high
Dwelling size very small (<60 m2) very small (<60 m2) small (<80 m2)
Roads material not paved Paved not paved
Roads width very narrow (<6 m) narrow (5–10 m) narrow (5–10 m)

However, as expected from the boxplots of Figure 6, the slums in Buenos Aires and Medellin
are similar when compared to slums in Recife. The slum areas in Buenos Aires and Medellin are
characterized by high heterogeneity at short distances, high homogeneity at large distances and similar
organic patterns. This means that there are different objects in close proximity (centimeters or few
meters), but the same pattern is observed at larger distances across the territory (tens of meters);
e.g., settlements that are made up of small dwellings with different building and roofing materials,
which are located very close to each other, and with the same general pattern over the settlement or
neighborhood. However, the slums in Buenos Aires are more cluttered than in Medellin. The slums
in Recife have more homogeneity in color because most of the roofs are made of clay tiles or similar
products, which explains the high discriminating power of the variable MEAN1 for this city because
band 1 records the intensity values of the red channel in the visible spectrum and slum areas have
many pixels with the same red tone in this city. Furthermore, the slums in Recife have more regularity
in the spatial pattern of the urban layout than the slums in Buenos Aries and Medellin.

The lower score obtained for Buenos Aires may be explained by the quality of the input GE image
and because the no-slum areas of the city had similar characteristics to the slum areas. The Buenos
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Aires’ GE image indicates low contrast (differences in color intensity tend to be low across the image),
which could lower the quantifiable differences between the slum and no-slum areas. Figure 12 features
a Zavaleta villa next to a no-slum area. Both areas indicate that very few vegetated areas exist between
buildings and high heterogeneity occurs at short distances, but the no-slum sector has more regularity
in the spatial pattern of the urban layout and large homogeneous surfaces are interspersed with
clusters of smaller buildings.Remote Sens. 2017, 9, 895  18 of 22 
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Figure 12. Slum sector in Buenos Aires (Villa Zavaleta) compared to the adjacent no-slum area. The red
line indicates the slum boundary as mapped in [38].

3.4. Temporal Analysis

Figure 13 provides the results of the temporal analysis of the selected sectors of one square
kilometer for each city. This approach is useful to provide information from a global perspective
regarding areas that have changed from no-slum to slum and vice versa between the analyzed dates.
However, as in the implemented algorithm, recall was given priority over the precision for a good
identification of the more problematic regions within the city; we expected to obtain false positives
in the classification results. These false positives adversely impact the interpretation at a detailed
scale or on a cell-by-cell (of the regular grid) basis and can mask changes that an interpreter might see
when comparing the two GE images for each sector. Because of the lack of reference data, we assessed
the classification results of historic images by using on-screen interpretation. The obtained overall
accuracies were 92% for Buenos Aires, 90% for Medellin and 72% for Recife. However, the results
indicate certain interesting general trends: In Buenos Aires, slum areas tends to grow by using available
space that is adjacent to already existing slum areas (e.g., vacant spaces between existing structures,
zones adjacent to railroad tracks, and even parking lots in industrial areas). In Medellin, the slum areas
grow by occupying undeveloped land on the edge of the urban perimeter. In 2008, we note the first
part of the slum and, in 2016, the slum areas extend southwards over the adjacent “green” or “free”
areas. Finally, in Recife, certain slum areas disappeared between 2008 and 2016; certain slum areas
were located adjacent to the river and were removed to allow for a road on the riverbank. Certain other
areas, with green or bare soil, were occupied by either slum areas or formal developments.

The proposed approach is optimal for identifying recently informally occupied urban areas
that have slum characteristics versus changes due to slum upgrading processes. When slum areas
are upgraded, this process often includes improving dwelling units and offering public services [2];
this process less often includes the modification of an urban layout because that implies relocation
of a population and many slum residents fear that redevelopment will leave them homeless [54].
In this regard, upgrading processes that do not significantly change the spatial pattern and texture of
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the urban areas cannot be determined by this approach because most of the image-derived features
quantify aspects of the urban scene that are related to the spatial pattern and texture of the urban layout.

This workflow worked well for slum detection for a single date, but it did not work as well
for spatio-temporal analysis. Although the historical images were resampled to match the pixel size
of the updated reference images and they were normalized to match the color intensity, differences
still exist for view angles, lighting, and vegetation phenology cycles between images that can affect
vegetation appearance and shadow extent and affect the values of the image-derived features and
the classification results. To minimize the differences in view angles and vegetation phenology,
a practitioner must use historical images captured on the same day as the reference or an updated
image; however, this is nearly impossible to control using the data available from Google Earth.
Commercial satellite VHR imagery is more appropriate for this purpose because it can be acquired for
specific dates and can match the day of the original image and minimize differences. The use of transfer
learning methods recently introduced to remote sensing classification problems could overcome these
issues [55].
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4. Conclusions

This study explored implementing a low-cost standardized method for slum detection using
spectral, texture and structural features extracted from VHR GE imagery that was utilized as input data
and assessed the capability of three ML algorithms to classify urban areas as either slum or no-slum.
Using data from Buenos Aires (Argentina), Medellin (Colombia), and Recife (Brazil), we determined
that Support Vector Machine with radial basis kernel (SVMrbk) performed the best with a F2-score
over 0.81.

In addition, we determined that the specific characteristics of each city are important to consider
and preclude the use of a unified classification model. The ML algorithms performed best for Medellin
and Recife and resulted in F2-scores of 0.98 and 0.87, respectively. The image-derived features
performed better for slum detection in these cities because their slum areas have a different spatial
pattern and texture than no-slum areas and exhibit significant variations in the use of building and
roofing materials.

The proposed workflow requires more sophistication to properly track changes over time because
for the implemented ML algorithms, recall was given a higher priority than precision to obtain
a good identification of the more problematic regions within the cities; false positives occurred in
the classification results that adversely impact the change analysis between different dates. However,
the proposed approach did identify recently and informally occupied urban areas that possessed
slum characteristics, where the changes in local heterogeneity and the spatial pattern are clearly
identified and were different from occupied formal areas. Changes in the slum status of an area
because of upgrading processes would still be difficult to identify because those processes do not
significantly change the spatial pattern and texture of the urban areas, which are the aspects quantified
by the image-derived variables.

A suggestion for future studies is to use algorithms for object and scene recognition on images
that are obtained from Google Street View to generate a new set of features that can improve
the performance of our classification models. Street views and satellite imagery for slum identification
can also be an important tool for supporting programs such as the Trust Fund for the Improvement of
Family Housing that is led by the Development Bank of Latin America and the Foundation in Favor of
Social Housing.
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