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Abstract: Aggregation methods are the most common way of upscaling land cover maps. To analyze
the impact of land cover mapping error on upscaling agricultural maps, we utilized the Cropland
Data Layer (CDL) data with corresponding confidence level data and simulated eight levels of error
using a Monte Carlo simulation for two Agriculture Statistic Districts (ASD) in the U.S.A. The results
of the simulations were used as base maps for subsequent upscaling, utilizing the majority rule based
aggregation method. The results show that increasing error level resulted in higher proportional
errors for each crop in both study areas. As a result of increasing error level, landscape characteristics
of the base map also changed greatly resulting in higher proportional error in the upscaled maps.
Furthermore, the proportional error is sensitive to the crop area proportion in the base map and
decreases as the crop proportion increases. These findings indicate that three factors, the error level
of the thematic map, the change in landscape pattern/characteristics of the thematic map, and the
objective of the project, should be considered before performing any upscaling. The first two factors
can be estimated by using pre-existing land cover maps with relatively high accuracy. The third
factor is dependent on the project requirements (e.g., landscape characteristics, proportions of cover
types, and use of the upscaled map). Overall, improving our understanding of the impacts of land
cover mapping error is necessary to the proper design for upscaling and obtaining the optimal
upscaled map.
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1. Introduction

Knowledge about the area and spatial distribution of land cover is critical for geo-information,
environmental, and socioeconomic research [1–7]. Land cover maps are fundamental data for modeling
ecosystem services [8], agricultural management [9], climate change [10] and carbon cycles [11].
Various types of research and/or models require large area (continental or global scale) land cover
maps, over a range of spatial resolutions [12,13]. Many of these maps are generated from remotely
sensed imagery [14,15] and have been widely employed to serve scientific research [16].

However, researchers face issues with the availability of remote sensing data with specific
resolutions due to the capability of remote sensors [17–19]. Although diverse global or regional
land cover maps have been generated, the spatial resolutions of these maps are also limited [20].
For example, the spatial resolutions of Global Land Cover data set 2000 (GLC 2000) [21], Moderate
Resolution Imaging Spectroradiometer (MODIS) Land Cover [22] and Fine Resolution Observation and
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Monitoring of Global Land Cover data (FROM-GLC) [23] are 1 km, 500 m and 30 m, respectively. It may
be desirable to rescale these data to a specified resolution in order to fill data gaps or match preexisting
project requirements [24,25]. Upscaling and downscaling are two alternative methods for rescaling [26].
The former decreases the spatial resolution, while the latter increases the spatial resolution [5,19,27–29].
The focus of this research is the impact of land cover mapping error on upscaling.

To upscale land cover maps, the categorical aggregation method is widely used to transform the
land cover information to coarser scale maps [12,19,30,31]. This categorical aggregation method assigns
a class label to a coarse-resolution pixel according to the classes in the associated fine-resolution pixels
from the existing thematic map [32]. Three categorical aggregation methods exist: (1) the majority
rule-based (MRB) method (e.g., [33]); (2) the random rule-based (RRB) method (e.g., [32]); and (3) the
point-centered distance-weighted moving window (PDW) method [24]. MRB determines the class
type in the coarse-resolution map by selecting the most frequently occurring class of the fine-resolution
map [32,33]. When there is more than one major class, the dominant class is randomly selected from
the major classes [20]. MRB makes the dominant class more clumped while the dispersed class shows
a less clumped pattern in upscaling maps [19,20]. RRB is based on the random selection of a class from
the specified pixels of the fine-resolution map. The corresponding aggregated pixel is then assigned
to that class [32]. He et al. [32] reported that RRB maintains spatial patterns better than the MRB.
PDW conducts three steps to obtain an upscaled land cover map [20,24]. First, the center point, Cij,
of the pixel on the upscaled map is located. Second, a set of n sampling points (referred to as sampling
net [24]) is placed on the base map with its center at location Cij. The distance between two points,
r, is the resolution of sampling net. Last, the normalized frequency distribution of land covers, f,
is computed at each point in the sampling net. The class type will be assigned to the upscaled pixels
located at Cij according to the random selection of class from f. More details about PDW can be found
in Gardner et al. [24]. PDW provides a more consistent method for landscape comparison when maps
derived from multi-sources of classification imagery [24]. Recently, Raj et al. [20] compared these
three approaches. Their results showed that MRB can be used for agriculture planning, while PDW is
suitable for ecological resource management.

The literature on upscaling land cover map focuses on the evaluation of the effects of upscaling
on landscape patterns as a result of the aggregation (e.g., [24,32,34]). For example, Moody and
Woodcock [31,34] used statistical analysis to assess the relationship between landscape pattern and
proportional errors (PE) in the aggregated maps. Earlier studies imply that PE in the land cover
maps was greatly influenced by landscape characteristics (e.g., homogeneity and heterogeneity) [32].
Recently, efforts to reduce PE in aggregation methods have been emphasized [20]. For example, Hlavka
and Dungan [35] used a model-based method to correct the underestimation of fragmented areas.
The results showed that area correction led to inflated areal estimates. Wu [18] analyzed the effect of
changing scale on landscape pattern and reported that scaling relations were more variable at the map
class level than at the landscape level. These studies illustrate that the influence of upscaling is locally
dependent on landscape patterns.

Fine-resolution land cover maps, as the fundamental data for aggregation, play a critical role in
implementing upscaling. These maps, derived from remote sensing, have significant thematic and
spatial uncertainties [16,36,37]. For example, Gong et al. [38] reported that the overall accuracy of the
global land cover classification derived from Landsat data was 64.9%. Wickham et al. [39] reported the
overall accuracies of the 2011 National Land Cover Database (NLCD) at level II and level I were 82%
and 89%, respectively. Congalton et al. [16] state that accurately mapping land cover using remotely
sensed data is challenging because classification methods and remote sensing technology can be highly
influenced by every component of a mapping project.

Therefore, while land cover mapping error is important, the impact of these errors on cover
area and landscape characteristics in upscaled maps has not been quantitatively analyzed. Hence,
our research has investigated this impact using upscaled agricultural maps based on the majority
rule-based aggregation method (MRB) within two study areas with differing levels of landscape
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heterogeneity. A Monte Carlo simulation algorithm was employed to obtain a series of base maps
with differing amounts of mapping error that would then be utilized for upscaling. The differences in
impacts were evaluated at the various error levels and the results were analyzed.

2. Materials and Methods

This section describes the study areas, data descriptions, error simulation algorithm, aggregation
method (i.e., MRB), assessment of MRB and the landscape metrics used to describe the landscape
characteristics. Note that the CDL data were used to extract the initial main crop thematic maps.
For ASD1810, the main crop types are corn, sorghum, soybeans, winter wheat and alfalfa. For ASD4550,
the main crop types are corn, cotton, sorghum, soybeans and winter wheat. The CDL thematic maps
were used as the base map with an assumed error level of 0%. These maps were then used to generate
a series base maps with different error levels ranging from 5 to 40%. After creating these base maps,
the majority rule based aggregation method (MRB) was employed to create upscaling maps at different
resolutions ranging from 60 m to 960 m. To quantitatively evaluate the impact of base map error
level on the upscaling method, PE [31], overall consistency (OC) [19] and several landscape metrics
(i.e., PPU and SqP) were utilized.

2.1. Study Areas and Materials

Two Agricultural Statistics Districts (ASDs) with different heterogeneity in each were selected
to conduct the experiment (Figure 1). These districts are groupings of counties in each State and
defined by geography, climate, and cropping practices [40,41]. Two study sites, ASD1810 and ASD4550,
were selected. Both sites have high crop diversity (e.g., wheat, corn, soybeans, cotton, alfalfa, sorghum
and fruit trees). The first site, ASD1810, is located in the northwest part of Indiana, U.S.A. The other site,
ASD 4550, is located in the center of South Carolina, U.S.A. In describing each study site (containing
crops and non-crop), ASD1810 is more fragmented than the ASD4550. Table 1 shows the landscape
metrics describing the landscape pattern of each study district. Using a measure of fragmentation,
Patch-per-Unit area (PPU), ASD4550 has a PPU of 8.95 compared to 11.45 for ASD1810 (Table 1).
The lower PPU in ASD4550 is because the percentage of non-crop area for ASD4550 is greater, 87.8%
compared to 37.5% in ASD1810. However, if just analyzing the agricultural fields and not the entire
study area, then these two study areas show different landscape patterns for the crops. In ASD1810,
the crop area is 6.724 × 105 hectares (ha) or approximately 62.5% of area of ASD1810. The agricultural
fields appear more regular in shape. In ASD4550, crop covers 1.529 × 105 ha or about 12.2% of the
area. The agricultural fields are of smaller size and have more irregular shapes.

The agricultural maps, with their corresponding confidence level maps, were obtained from
National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL). These data are an annually
updated, raster-formatted, geo-referenced land cover map, which aims to improve the geospatial
predicative information of crops covering 48 states [42]. To identify the land cover accurately,
the spectral responses derived from a variety of remote sensing imageries (including Lansat-5
Thematic Mapper (TM), Landsat-7 Enhanced TM plus (ETM+), Landsat-8 Optical Land Imager
(OLI), Resourcesat-1 Advanced Wide Field Sensor (AWiFS), Disaster Monitoring Constellation (DMC)
DEIMOS-1 and UK2 sensors), were employed as training datasets for classification, and as reference
data for accuracy assessment for crop classes. The Multi-Resolution Land Characteristics (MRLC)
consortium’s National Land Cover Database (NLCD) for other non-crop classes [42]. As reported by
the United States, Department of Agriculture (USDA), the crop identification accuracies of 90% for
major commodities (e.g., corn, cotton, rice, soybeans and wheat) were obtained [42]. Besides the crop
distribution information, CDL also provides the information of other specific land covers. The CDL
products are widely used in various types of research [43] because the field crops have been accurately
identified and geo-located [44,45].
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Figure 1. Study areas: (a) Agricultural Statistics District (ASD) 1810 in Indiana; and (b) ASD4550 IN
South Carolina.

Table 1. Landscape characters of the study areas. All landscape metrics were produced by Fragstats
version 4.2, a spatial analysis software package for computing landscape metrics. TA means total
area. NP means number of patches, LPI means largest patches index, AI means aggregation index.
Dominance measures the extent to which one or a few classes dominate the landscape. PPU is a measure
of fragmentation. Square-pixel index (SqP) measures the complexity of landscape. More details about
these landscape metrics can be found in Section 2.5.

ASD TA (ha) NP
Mean, Median, and
Standard Deviation
of Parcel Size (ha)

LPI AI Dominance PPU SqP

Study
Area

1810 1,075,972.68 123,233 8.73, 0.18, 1102.49 35.93 90.55 0.3568 11.45 0.99
4550 1,253,235.96 30,502 11.17, 0.09, 3273.80 87.48 95.28 0.7179 8.95 0.989

Additionally, the confidence layer spatially represents the predicted confidence that is associated
with each output pixel in the CDL map [42]. Therefore, pixels with higher confidence will have
lower probability of misclassification. These values are the basis for the mapping error simulation
portion of this paper. NASS CDL agricultural maps at 30 m for 2016 were downloaded from the NASS
online geospatial application-CropScape (https://nassgeodata.gmu.edu/CropScape/). These data
were used to extract a crop thematic map to be used as the original base map for error simulation.
Note that the original base map at 30 m was assumed as the true data without error. The mapping
errors were then added to this true data to quantitatively produce the maps with different error levels
for analyzing the impact of land cover mapping error on the upscaling. The National confidence
layer for 2016 was downloaded from https://www.nass.usda.gov/Research_and_Science/Cropland/
-Release/index.php. The projection for all the data is Albers Equal Area.

2.2. Error Simulation

During a land cover mapping project, potential errors are introduced at each step in the process
(e.g., image acquisition, data processing, and error assessment [46–48]. The accumulation of these
errors, across all steps, results in misclassifications or location errors where the wrong land cover is

https://nassgeodata.gmu.edu/CropScape/
https://www.nass.usda.gov/Research_and_Science/Cropland/-Release/index.php
https://www.nass.usda.gov/Research_and_Science/Cropland/-Release/index.php
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assigned. This study seeks to understand the impacts of these misclassifications on upscaled land
cover products.

The probability-based Monte Carlo (MC) simulation method [8] was used to generate new
crop maps (i.e., base maps for upscaling) with varying levels of error as derived using the CDL
data. This numerical experimentation and statistical sampling technique has been widely used in
uncertainty analysis for various ecosystem models [49–51]. Errors in land cover maps occur most
frequently at the borders of different land cover types [52] and thus the assumption was made that
these boundary pixels have a higher probability of misclassification. Therefore, for this paper, MC was
employed to randomly introduce a specified amount of error into the map by randomly misclassifying
pixels at the boundaries of different crop patches. The process is described in more detail below.

Eight new crops maps (all at the original 30 m resolution) with different levels of error, ξ,
were produced (5%, 10%, 15%, 20%, 25%, 30%, 35% and 40%) as base maps to be upscaled. The error
level denotes the percentage of misclassified crop pixels with respect to the original CDL map. Based on
Dong et al. [8], we ran a probability-based MC for our error simulations following three steps. Figure 2
shows a general process of the MC simulation. First, boundary pixels were identified and the
confidence level, CLi, for each were acquired from the confidence level data associated with the
CDL map. Second, the required number of misclassification Nξ , was calculated as Nξ = N × ξ, where ξ

is the desired error level and N is the total number of crop pixels. Third, a pair of boundary pixels,
BP1 and BP2, with confidence levels of CL1 and CL2, respectively, were chosen randomly. BP1 and
BP2, must not have been previously misclassified (referred to as unswapped pixels). Two numbers,
n1 and n2, from a uniform distribution ranging [0, 1] were randomly selected. If n1 > CL1 and n2 > CL2,
then the two selected pixels would be misclassified by exchanging their labels. These pixels were
then marked as swapped pixels. If the condition, n1 > CL1 and n2 > CL2, was not met, a different
pair of unswapped pixels would be chosen randomly and misclassified. After repeating 2N times [8],
the number of swapped pixels, Nsw, was computed. If Nsw < Nξ , then the desired error level ξ was
not acquired and the simulation was continued until Nsw = Nξ . To obtain reliable simulation results,
the simulation process was repeated a total of 100 times to acquire the error maps at the specified
error levels.
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level corresponding to BP1 and BP2. n1 and n2 are two numbers randomly generated from a uniform
distribution ranging [0, 1].
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Note that, due to variation in agricultural landscape characteristics, at some error levels, there were
not enough boundary pixels to meet the required number of misclassifications. When this occurred,
pixels at the center of patches were also selected for misclassification. In addition, the principle of
simulating mapping error is based on swapping the class type for the potential misclassified pixels
that meet the requirement of misclassifying, which is consistent with Dong et al. [8].

2.3. Upscaling Method

Aggregation is a common way to upscale thematic maps. The effect of spatial aggregation varies
using different methods, each of which is dependent on the aggregation logic [20]. The selection of an
aggregation approach depends upon the objective of the research. Raj et al. [20] reported that MRB is
useful for monitoring agriculture at regional or national levels. Therefore, we selected MRB to test the
influence of mapping error on the performance of upscaling maps. MRB determines the land cover
class for the coarse resolution pixels in the upscaled map by selecting the most frequently occurring
class from the finer resolution map contained within each coarse pixel [32,33]. When there is more
than one major class, the dominant class is selected at random [20].

The aggregation makes use of a non-overlapping series of windows, placed over the finer
resolution base maps produced in Section 2.2. Each window is assigned a class based on the
most frequently occurring class within it (corn, cotton, sorghum, soybeans, winter wheat, alfalfa
and non-crop). When more than one land cover type occurred with same frequency in a window,
the assignment was chosen randomly to one of those types. The size of the windows used was
determined by the desired spatial resolution of the output maps. For this study, ten different coarse
maps with spatial resolutions ranging from 60 m to 960 m (i.e., window sizes from 60 to 960 m) were
produced for each simulated base map (8 total) as well as the original agricultural map (error level is
0%).

2.4. Assessment of MRB

Proportional Error (PE) for each crop type measures the error produced by upscaling [31], which is
calculated by Equation (1).

PE = (Ae − Ab)/Ab (1)

where Ae is the estimated area derived from the coarse resolution agricultural map and Ab is the base
area calculated from the original 30 m resolution base map (finest resolution).

Overall Consistency (OC) for the land cover in the entire map is defined as the percent area
of the land that is labeled into the same cover class in both the coarse resolution and original land
cover maps [19]. To measure the overall accuracy of the MRB analysis, OC was used to assess
the performance.

2.5. Landscape Metrics

Area proportions are impacted by the landscape patterns [19]. In this study, the landscape pattern
of the base maps varies and thus potentially impacts the upscaling result. Additionally, it has been
found that landscape pattern can be influenced by upscaling land cover maps [30,31]. Therefore,
landscape pattern should be considered when analyzing the results of upscaling. To quantitatively
assess the landscape properties and the effect of mapping error on upscaling, landscape metrics
were employed.

Various landscape metrics were developed in the past decades but many of them are
intercorrelated [20,53]. Two metrics, Patch Per Unit area (PPU) and Square-pixel index (SqP), were used
in this study. PPU and SqP, are two alternative metrics for the Contagion index (CI) and Fractal
dimension index (FDI), respectively. These two metrics were selected as they show more consistent
results through different aggregation levels compared to the actual contagion and fractal dimension
metrics [54,55]. PPU can quantify the clumping and fragmentation of the landscape [54]. As the
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landscape becomes fragmented, PPU increases. SqP measures the complexity of landscape [54].
The SqP considers the perimeter-area relationship for raster data structure and normalizes the ratio
of perimeter and area to a value between 0 (for a square) and 1 (maximum perimeter-edge deviation
from that of a perfect square). PPU and SqP are estimated by Equations (2) and (3) [54], respectively.

PPU = m/(n × λ) (2)

SqP = 1 − (4 × A1/2/P) (3)

where m is the total number of patches, n is the total number of pixels, λ is a scaling constant equal to
the area of a pixel, A is the total area of all pixels, and P is the total perimeter of all pixels in the study
area [54].

Besides exploration of the influence of upscaling on the land cover map, the impact of the changes
in landscape pattern (CLP) for base maps derived from error simulation should be investigated.
As recommended by O’Neill et al. [56], a three-dimension Euclidean distance (Equation (4)) should be
used to evaluate the CLP.

CLP = ((Xb − Xe)2 + (Yb − Ye)2 + (Zb − Ze)2)1/2 (4)

where X is the Dominance index (DI), Y is CI, Z is FDI [56], b means base map, and e means
estimated map. For example, Xb is the DI of the base map. The DI measures the extent to which
one or a few classes dominate the landscape [57]. However, Turner et al. [58] reported the DI is not
suitable for assessment of spatial aggregation effect due to its inconsistent results through different
aggregation levels of thematic maps. Therefore, we just used the DI to evaluate changes in the
landscape after increasing the base map error level. Additionally, CI and FDI are very dependent
on spatial resolution [54], hence, we used these two alternative metrics, PPU (Equation (2)) and SqP
(Equation (3)), to replace the CI and FDI, respectively.

To obtain the parameters for evaluation of the impact of upscaling on landscape pattern (i.e., PPU
and SqP), and the impact of error simulation on the landscape pattern of the base maps (i.e., CLP),
Fragstats version 4.2 [59], a widely-used spatial analysis software package [30,59], was employed.

3. Results

The primary objective of this study was to quantitatively analyze the impact of mapping error
on upscaled maps. To obtain base maps at eight different error levels for each study site, MC was
implemented successfully. The upscaled maps were then generated using these base maps and assessed
using PE, OC, and landscape metrics. The specific results of this analysis are presented in this section.

3.1. Error Simulation

Our error simulation successfully misclassified crop pixels according to their confidence levels
and their locations. Figure 3 shows the simulated base maps produced at the eight error levels for both
study areas. A sub-region within each study area is marked with a red rectangle and shown in the
second row of each panel. With increasing error level, the number of misclassified boundary pixels
increases. Pixels beyond the boundary, visible in Figure 3, were also involved in misclassification when
the error level ranged from 30 to 40% in ASD1810 and 40% in ASD4550. In ASD1810, non-boundary
pixels made up about 0.8%, 4.6% and 9.5% of the error in the simulated maps at error levels of 30%,
35% and 40% respectively. In ASD4550, non-boundary pixels produced about 1.1% of the error for the
simulated map at an error level of 40%.
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The landscape pattern of the fields changed within the different error levels. Figure 4 shows
an increasing trend in landscape change (Equation (4)) with increasing error level for both study areas.
For ASD1810, at error levels between 15% and 30%, the landscape change shows a decreasing trend
with increasing error level. Additionally, the changes in landscape in ASD4550 are consistently lower
than changes in ASD1810 for all error levels.
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3.2. Impacts of Upscaling and Map Error on PE and OC

Nine base maps, the original base map with error level 0%, and the base maps with error ranging
from 5 to 40%, were acquired. These base maps were upscaled, respectively, to be assessed by the
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assessment methodologies elaborated in Sections 2.4 and 2.5 to analyze the influence of mapping error
on the upscaling.

The results of upscaling in ASD1810 at selected error levels and spatial resolutions are illustrated
in Figure 5. Comparison of upscaling results in sub-regions under different error levels shows that
errors in the base map impact the results of the upscaling. Additionally, the PE for each crop increased
with increasing base map error and spatial resolution of the aggregated maps (Figures 6 and 7).

Moreover, the influence of error level on upscaling varied from one study area to another for
each crop type (Figures 6 and 7). For example, the PE of corn in ASD4550 is higher than in ASD1810.
In addition, the OC decreased with increases in either the error level or spatial resolution (Figure 8).
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3.3. Landscape Changes Based on Different Error Level

Compared to the landscape characteristics of the base map for each error level (i.e., the 30 m maps
at each level of error), increasing the spatial resolution resulted in decreasing trends in PPU and SqP
(Figure 9); however, beyond a resolution of 240 m, changes in PPU were negligible for both study
areas. Similarly, decreasing error level resulted in lower PPU, but again, this relationship stops at
resolutions beyond 240 m (Figure 9a,b). SqP exhibited the opposite trend to that of PPU. For ASD1810,
when the pixel size was less than 360 m, increasing error level of base maps resulted in increasing
SqP, while when the pixel size was larger than 360 m, increasing error level of the base map led to
decreasing SqP (Figure 9c). In ASD4550, when the pixel size was larger than 240 m, the SqP was
reduced due to an increase in the base map error level (Figure 9d).
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4. Discussion

Higher levels of error in the base map resulted in higher PE in the upscaled maps with further
significant impacts on calculated landscape characteristics. Additionally, due to differences in localized
landscape characteristics, the effect of the error level on the upscaling results differed between the
two study areas. The implications of these findings are analyzed further below.

4.1. Error Simulation Issues

During the error simulations, non-boundary pixels were involved when simulated error levels
neared the high end of the tested values (30% and 40% for ASD1810 and only 40% for ASD4550).
This occurred because the number of boundary pixels in each study area did not meet the number
necessary to reach the desired error level. For example, the misclassified non-boundary pixels
accounted for 9.5% of the error in ASD1810 at an error level of 40% (Figure 3). These errors derived
from non-boundary pixels can be treated as “salt and pepper”, a common issue when implementing
classification algorithms to obtain crop maps [60,61]. Therefore, errors produced by non-boundary
pixels were considered satisfactory in obtaining the thematic maps used in this study.

Additionally, the error simulation is based on misclassifying crop pixels. In reality, misclassification
can occur between crop and non-crop as well. For example, Shao and Lunetta [62] reported that crop
was misclassified as other land cover types, such as forest and urban. However, per Congalton [52,63],
error occurs most frequently at the boundaries of agricultural patches, which was the basis of our
simulation. In addition, it is difficult to define the probability of misclassification between different
types of non-crop and crop types. Future work should consider constructing a general probability of
misclassification table for land cover maps based on the derived expertise knowledge database.

4.2. Impacts of Upscaling and Map Error on PE and OC

The PE in coarse-scale aggregated maps is affected by the amount of error in the base maps.
Base maps with higher levels of error led to greater PE for each crop after upscaling (Figures 6 and 7).
For example, at a spatial resolution of 600 m, the PE of sorghum in ASD4550 increases from 77.3 to
83.0% as the error level increases from 0 to 40%. This is due in part to changes in the frequency of each
class in the coarse maps. CLP is another possible reason for the increase in PE when increasing the
amount of error in the base maps according to the difference of performance in two study areas with
different landscape characteristics, which is illustrated in Section 4.4.

As would be expected, OC decreases with increasing base map error (Figure 8). For example,
in ASD1810, OC decreased from 92.45 to 82.41% when error level of base map increased from 0% to 40%.
This result is consistent with a previous study [19]. Although the PE of each crop type showed a general
increasing trend as the error level increased, the PE of non-crop showed a more fluctuating trend when
the resolution was between 60 m and 120 m in ASD1810 (Figure 6). These results demonstrate that one
must consider the level of thematic error within the base map prior to implementing MRB. The base
map should be as accurate as possible to avoid greater impacts in the rescaled maps.

The PE was also sensitive to the initial proportional area of each crop in the base map. This has
been reported in previous studies [19,20,31,32,34,64]. Crops making up a lower proportion of the
landscape generally obtained higher PE when the base maps were upscaled. For example, in ASD4550,
the proportions of corn, soybeans, cotton, sorghum, and winter wheat were 5.22%, 4.50%, 2.36%, 0.10%
and 0.03%, respectively. At an error level of 0%, the PE of corn, soybeans, cotton, sorghum, and winter
wheat increased by 49.06%, 61.63%, 65.14%, 65.65% and 85.64%, respectively, when the base map was
upscaled to 960 m. ASD1810 demonstrated a similar trend. Thus, in addition to being cognizant of the
amount of thematic error, we should be aware of the proportional area of each map class.

Based on the results presented, both the level of error in the base map and/or the proportional
area of the crops in base map have impacts on the PE in the upscaled maps. To obtain a relatively
accurate upscaled map, the analyst must not only consider both of these factors, but also the objective
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of the project. Reducing the classification error typically results in higher costs to the project; however,
the benefits may not always outweigh this cost. To accurately obtain the distribution of a crop with low
proportional area, reducing the base map error may not be an optimal choice, as it may not contribute
much towards decreasing the PE after upscaling. For example, if the distribution of winter wheat
in ASD4550 from a map with a resolution of 720 m is required, reducing the base map error would
have little effect. The PE for winter wheat across all error levels tested was very similar (Figure 7),
thus reducing base map error is not recommended as it would not change the PE. Additionally, PE
cannot be greatly reduced when the dominant land cover constituting a very high proportion of the
landscape is upscaled to a very coarse resolution. For example, the PE of non-crop (occupying about
87.8% area of the landscape) was reduced only approximately 1.46% despite reducing the error level
from 40 to 0% when the coarse map was created at 960 m grids for ASD4550. It is not a wise choice to
reduce the base map error to obtain a lower PE from the coarse maps. Hence, in addition to the base
map error level and the proportional area, the decision to implement MRB should also consider the
intended application of the coarse map.

4.3. Comparison of Landscape Changes Based on Different Error Level

The fragmentation of the landscape increased with increasing base map error (Figure 4) when
pixel sizes were less than 240 m (Figure 9a,b). As the pixel size increased, the influence of the error
on fragmentation was reduced. When the pixel size was larger than 240 m, there were no discernible
differences between each coarse maps. For example, in ASD1810, the PPU was reduced 6.70% at
a resolution of 60 m, while the PPU was only reduced 1.56% at 120 m. These results demonstrate
that if the coarser maps at a relatively large pixel size are produced by MRB, considerable care must
be taken when these maps are used for analysis concerning the landscape characteristics since the
larger pixel size reduces the fragmentation. In addition, if the coarse maps are used for analysis in
models that are not related to landscape characteristics, reducing the base map error should not be
considered as an important issue in this analysis. Furthermore, landscape characteristics highly affect
the performance of the upscaling, as illustrated in Section 4.4. Therefore, one should be aware that
MRB changes the landscape patterns, especially, when used to obtain coarse maps at a relatively small
pixel size.

Increasing base map error level did not have a considerable impact on the shape complexity
in the resulting coarse maps (Figure 9c,d); however, the trends in shape complexity varied across
the two study areas. In ASD1810 (the more homogeneous study site), when the pixel size was less
than 240 m, increasing error lead to an increase in SqP in the coarse maps, while the opposite was
exhibited when the pixel size was larger than 240 m. In ASD4550 (the more heterogeneous study site),
the base map error level impacted the shape complexity in the coarser maps more seriously than in the
finer resolution maps. For example, increasing the error level resulted in a reduction of about 0.09 in
SqP when pixel size was 960 m, while the reduction was only about 0.01 when the pixel size was
360 m. Although the influence of base map error on SqP does not show an obvious trend or conclusion,
these results demonstrate that the base map error level does result in uncertainty regarding the shape
complexity in the coarse maps. This analysis further strengthens our confidence that base map error
impacts the coarse maps seriously in terms of PE and landscape characteristics.

4.4. Comparison of the Performance Based on Different Study Areas

A comparison of the OC in the two study areas shows that increasing the base map error resulted
in a greater reduction in OC for ASD1810 than in ASD4550 (Figure 8). The reason for this difference
is that changes in the landscape caused by the introduction of error in ASD1810 were greater than
in ASD4550 (Figure 4). For example, increasing the error level from 0 to 40% reduced OC by 14.30%
in ASD1810, but only 2.57% in ASD4550. The change in landscape (CLP) of 34.33 in ASD1810 was
about 2.7 times that of ASD4550. These results demonstrate that the degree of CLP produced by crop
mapping error is an additional factor that affects the performance of MRB. Consequently, we suggest
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that pre-existing land cover maps with relatively higher accuracy should be used to assess the error
level as well as the changes in landscape of the current thematic maps at the start of the project.
Therefore, to reduce PE of upscaled maps, three factors must be considered: (1) the objective of the
project; (2) the level of thematic map error; and (3) the change in landscape as a result of thematic
errors compared to the distribution of land cover in the original, unscaled map.

4.5. Limitations and Future Work

We are aware of three limitations with this research. First, our error simulation was based
on a mathematic method that assumed mapping error occurred randomly for boundary pixels of
agricultural patches, with lower confidence level. However, various factors, such as complexity
of the spectral response [65], classification algorithm [66], uncertainty of samples [67], and spatial
resolution of data [68], may affect the accuracy of thematic maps. As discussed in Section 4.1, error also
occurs between crop and non-crop, which may perform differently when upscaling maps. In addition,
combining upscaling method and the error analysis based on the classification of remote sensing
imageries is a potential way to reduce the uncertainty/error for processing the upscaling. Furthermore,
the MC simulation produced error based on swapping the class types of selected pixels that meet
the misclassification condition according to Dong et al. [8]. Besides this simulation principle, other
principles for simulating error probably can be applied. For example, assigning a random class type
to the pixel to be misclassified could also be used. This exploration should be investigated in future
work. Therefore, to acquire relatively realistic error maps, a definition of probability of error occurring
between different cover types should be constructed in any future work.

The second major limitation is that our analysis is just based on MRB. Various aggregation
methods (e.g., pointed-centered and distance-weighted moving window [24]) can be used to upscale
maps. Different methods may result in different performances according to the aggregation logic [64].
We selected MRB here as recommended by the literature for analyzing agricultural areas. Future
studies could perform this analysis on different aggregation methods to be compared with our results.

Last, although the study districts employed in the experiments have typical and contrasting
landscape patterns with different heterogeneity, numerous other landscape scenarios could be
employed to further extend the findings of this paper. Future work should focus on how to simulate
different landscape scenarios to further investigate the interactions between landscape pattern and
upscaling effects on characterization of land cover distribution.

5. Conclusions

This study presented an investigation on the impacts of upscaling on crop mapping error based
on the majority rule based aggregation method (MRB). We used Cropland Data Layer (CDL) for
2016 at a 30 m spatial resolution along with their corresponding confidence layers and Monte Carlo
simulations to generate eight new agricultural base maps, each with a different level of error (5%, 10%,
15%, 20%, 25%, 30%, 35% and 40%) at two different Agriculture Statistic Districts (ASDs). MRB was
used to upscale each base map to 10 coarser resolution levels (60 m, 90 m, 120 m, 240 m, 360 m, 480 m,
600 m, 720 m, 840 m and 960 m) for each study site. The results showed that three factors influence
the performance of MRB: (1) the base map error level; (2) the proportional area of the crop in the
base map; and (3) the change in landscape (CLP) as a result of increased error. The proportional error
(PE) for each crop is highly affected by crop mapping error. Using the base maps with lower error
can obtain lower PE for each crop. In addition, the uncertainty of shape complexity produced by
upscaling strengthens our confidence that reducing error level is a potential way to reduce the PE
when upscaling maps. The proportional area of the crop in the base map significantly impacts the
performance of upscaling. Crops with a relatively low proportional area are influenced more than the
crops with a relatively higher proportion. Greater changes in landscape characteristics produced by the
error maps resulted in higher PE in the upscaling maps. Additionally, the landscape characteristics in
coarse maps show that increasing error level leads to a decrease in the fragmentation of the landscape.
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Therefore, to obtain an upscaling map with lower PE and fewer changes in landscape characteristics,
we recommend that first, pre-existing land cover maps with the highest accuracy possible be employed
to assess the error level and the CLP of the thematic maps. Then, three factors should be considered to
upscale maps: (1) the objective of research or project; (2) the error level of the thematic maps; and (3)
the CLP of the thematic maps. The uncertainty/error information from upscaled maps should be used
to analyze the error level influence on the results of modeling performed using these upscaled maps
and guide any decisions to reduce the upscale map error on these models. Finally, future work should
concentrate on constructing a pre-definition of probability of error occurring between different cover
types to produce realistic error maps beyond just the agricultural crops used in this study. Various
aggregation methods should be then employed to explore the impact of error level of the thematic
map on the performance of upscaling and examine the applicability of each method for different land
cover types. Moreover, the interactions between landscape patterns and upscaling should be further
explored by employing numerous of landscape scenarios.
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