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Abstract: Dry tropical forests undergo massive conversion and degradation processes. This also
holds true for the extensive Miombo forests that cover large parts of Southern Africa. While the
largest proportional area can be found in Angola, the country still struggles with food shortages,
insufficient medical and educational supplies, as well as the ongoing reconstruction of infrastructure
after 27 years of civil war. Especially in rural areas, the local population is therefore still heavily
dependent on the consumption of natural resources, as well as subsistence agriculture. This leads,
on one hand, to large areas of Miombo forests being converted for cultivation purposes, but on
the other hand, to degradation processes due to the selective use of forest resources. While forest
conversion in south-central rural Angola has already been quantitatively described, information
about forest degradation is not yet available. This is due to the history of conflicts and the therewith
connected research difficulties, as well as the remote location of this area. We apply an annual time
series approach using Landsat data in south-central Angola not only to assess the current degradation
status of the Miombo forests, but also to derive past developments reaching back to times of armed
conflicts. We use the Disturbance Index based on tasseled cap transformation to exclude external
influences like inter-annual variation of rainfall. Based on this time series, linear regression is
calculated for forest areas unaffected by conversion, but also for the pre-conversion period of those
areas that were used for cultivation purposes during the observation time. Metrics derived from linear
regression are used to classify the study area according to their dominant modification processes.
We compare our results to MODIS latent integral trends and to further products to derive information
on underlying drivers. Around 13% of the Miombo forests are affected by degradation processes,
especially along streets, in villages, and close to existing agriculture. However, areas in presumably
remote and dense forest areas are also affected to a significant extent. A comparison with MODIS
derived fire ignition data shows that they are most likely affected by recurring fires and less by
selective timber extraction. We confirm that areas that are used for agriculture are more heavily
disturbed by selective use beforehand than those that remain unaffected by conversion. The results
can be substantiated by the MODIS latent integral trends and we also show that due to extent and
location, the assessment of forest conversion is most likely not sufficient to provide good estimates
for the loss of natural resources.

Keywords: Landsat; time series analysis; Disturbance Index; dry tropical forest; Angola

Remote Sens. 2017, 9, 905; d0i:10.3390/1rs9090905 www.mdpi.com/journal /remotesensing


http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9292-3931
https://orcid.org/0000-0001-7325-6152
http://dx.doi.org/10.3390/rs9090905
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2017, 9, 905 2of 14

1. Introduction

Miombo forests are one of the most extensive, yet compact, dry tropical forest units of the
world [1]. They stretch from Tanzania at the east coast to Angola at the west coast of Southern Africa,
covering an area of 2.57 million km? [2,3]. They are a source for the commodification of products for
the local population, but also have an indirect value such as sustaining biodiversity by providing
floristic and faunal habitats or acting as a carbon sink [2,4]. The largest proportional area of Miombo
forest is located in Angola. Notwithstanding, there are still fundamental knowledge gaps due to the
civil war (1975-2002) and the according research difficulties [5,6]. Currently, smallholder agriculture
still dominates forest conversion processes. More recently, the Angolan government also invested in
agro-industrial production and due to its natural settings, the area has been identified as one of the
future hotspots for large scale agricultural production under foreign investments [7,8]. However, poor
and corruptive governance, as well as the insufficient power of public forestry agencies, will pose
challenges to sustainable forest management [9].

In contrast to the stand-replacing character of conversion processes, forest degradation in the
tropics is attributed to the non-sustainable extraction of timber and other forest products, but also to
over-hunting that leads to entry-logging and fires [10]. Wood products from Miombo forests are still
mainly consumed by the private sector since these forests are as yet of no importance for industrial
logging [11,12]. The various uses of plants within the Miombo forests in the Angolan highlands range
from construction material, firewood, food, and medicine to spiritual purposes [13]. Furthermore,
the production of charcoal and honey making are activities that generate direct cash income and are
coupled to the construction and improvement of infrastructure [12].

The use of Miombo results in large areas of forest disturbance and only a small amount of
old-growth forest being left [11]. Slash-and-burn agriculture is widespread and is further increasing due
to population growth and the ongoing lack of food supply [14]. This has resulted in immense trade-off
processes in south central Angola between wood products and food and an annual deforestation rate
of 5.6% for all forested areas between 1989 and 2013 [15]. As a result, large gaps in the canopy of the
surrounding forests can be observed, also because agricultural expansion is usually accompanied by
selective felling for different purposes [1].

Apart from slash-and-burn, fires are very common in the area but are generally considered as
surface fires that mainly burn grass and litter [16]. While trees and woody plants can be regarded to be
fire resistant, the herbaceous layer is highly flammable and fires are used in addition to clearcutting for
the preparation of new fields [17,18].

While the detection of stand-replacing conversion of forest to agriculture has been studied most
intensively in general, e.g., [19], and to a lesser degree in Angola [15,20], forest degradation is a
subtle modification process [21] that is largely understudied [22,23]. Forest modification is more
prevalent than conversion; however, the increased temporal and spatial complexity of measurements
has resulted in a far lower number of case studies [24]. Forest degradation has been studied less for
most tropical dry forests, especially for the Angolan Miombo [10,25]. Nevertheless, degradation via
selective logging can be considered the most dominant disturbance of tropical forests, with a slow
subsequent recovery [25].

The importance of carbon stocks in forests for the global climate was recognized by the United
Nations framework convention on climate change in 2005. The program “Reducing Emissions from
Deforestation and Forest Degradation and the role of conservation, sustainable management of forests
and enhancement of forest carbon stocks in developing countries” (REDD+) aims at reducing the
impact on climate change, conserving biology, and protecting ecosystem services by increasing carbon
reductions [26]. However, one general method to measure carbon across the landscape does not yet
exist and the aspect of forest degradation in this context has long been disregarded [26,27]. Remote
sensing in combination with ground data has been identified as being one of the key methods to
map and monitor forest dynamics [28], partially because historical trends (including deforestation,
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afforestation, forest degradation, and regeneration) can only be identified with space-based remote
sensing time series due to the poor ground data availability in many developing countries [29].

We use a remote sensing approach that we adapt to study area specific characteristics to analyze
the following objectives:

e Assess the extent and location of forest degradation areas and differentiate between
modification processes;

e  Identify the main underlying drivers of forest degradation;

e  Assess the difference in degradation on later cultivated areas and on non-converted forest areas.

We assessed degradation processes within Miombo forests of different densities in a study area
in south central Angola, characterized by highly dynamic land use changes and pressure on natural
ecosystems. While the population is expected to grow rapidly, the use of natural resources is already
beyond sustainability [12]. We used annual Landsat time series covering the period from 1989 to 2013
and the Disturbance Index to identify stable forest areas, as well as areas of forest degradation. We also
assessed selective forest use before the conversion to agricultural areas. The results were compared to
MODIS phenology and burned area products to substantiate our results and to identify the impact of
fire on the local forest ecosystem.

2. Study Area

The study area is located in south-central Angola at a mean altitude of 1500 m a.s.l. and covers
various land use types with an area of 48,600 km?Z. Parts of the three provinces Bié, Cuando Cubango,
and Moxico, and their corresponding municipality administrations, are covered by the extent of the
study site. According to the census of 2014, Menongue is the largest city and the local center of the
region (pop. of 306,622), followed by Chitembo (pop. of 68,581) and Cuchi (pop. of 42,899) [30].
Two paved roads cross the study area, one running from east to west, connecting Menongue and Cuchi
and the other one, connects Chitembo and Menongue in the north-south direction (Figure 1). After
these connections were destroyed during the civil war (1979-2002), the roads were reconstructed and
paved between 2007 and 2010. In addition, a dense network of earth tracks covers the study area [31].

The climate of the study area is subhumid, with a mean annual temperature of 20.4 °C and a
distinct rainy season from October to April (average amount of precipitation of about 900 mm) [32].
The soils are mainly deep, sandy Arenosols in the eastern part of the study area and shallow soils
on granitic bedrock in the western part [33]. The landscape is traversed by large floodplains, mainly
Parinari capensis grasslands on the sandy, leached soils in the eastern part and Cryptosepalum maraviense
grasslands in the western part [34]. The floodplains are subject to frequent fires, generally man
made [35]. On the slopes to the hilltops, there is a gradient from shrubland and open forests to dense
Miombo [34].

The main land cover units are the Miombo forests, a dry tropical forest type, which are dominated
by Brachystegia, Julbernadia, and Cryptosepalum species [6]. These forests mainly occur on soils with
a medium nutrient content and are largely disturbed, forming woodlands of different densities and
various species composition [33,36]. While woodland regeneration after slash-and-burn agriculture is
fast in terms of species richness, species composition might not recover at all [37].

Large areas in the eastern part are covered by undisturbed forests, whereas the current
deforestation frontier is located in the western part [38]. Since the study site has been severely
affected by the civil war, by population movements, and by a subsequent strong population growth,
it is likely that the pressure on forests has changed over time and that degradation is spatially and
temporally connected to population dynamics. During the civil war, people affiliated with UNITA
(“Uniao Nacional para a Independéncia Total de Angola”) were settled deep in the forests and were
moved close to roads and existing settlements by the MPLA (“Movimento Popular de Libertacao de
Angola”) shortly after the ceasefire [39]. It is assumed that deforestation and forest degradation rates
are unprecedentedly high, especially close to cities and infrastructures due to easy access and market
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opportunities [12]. While deforestation for agriculture has already been quantified [15], more subtle
forest dynamics, like degradation processes in the study area, remain unstudied [37].
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Figure 1. Location of the study area (top right) and distribution of stable forests/woodlands (green),
as well as the location of cultivation areas (pink) that were established between 1989 and 2013 [15].
Furthermore, the municipality centres and the connecting paved roads are shown.

3. Data

Annual Landsat time series were generated for the period from 1989 to 2013. For this purpose, all
available Level 1T data from the Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM+)
were processed to Bottom-of-Atmosphere (BOA) reflectance using the Framework for Operational
Correction for Environmental Modelling (FORCE) software [40].

A detailed description of the derivation of these inputs can be found in [40] and only a brief
summary will be given here. The employed radiometric preprocessing chain is based on radiative
transfer theory [41], featuring integrated corrections for atmospheric, topographic, and adjacency
effects. The atmospheric correction accounted for multiple atmospheric scatterings with variable
illumination/view geometry, and produced a combined image-, database-, and object-based estimation
of aerosol optical depth over temporally persistent dark targets. Water vapor correction was performed
using the MODIS precipitable water product [42]. Topographic normalization was achieved with a
modified image-based C-correction with 1-arc-Second SRTM data [43]. Clouds and cloud shadows
were identified with a modified version of the Fmask algorithm [40,44-46]. All data were prepared in
a regular grid (30 km x 30 km tiles), and share a single projection (Lambert Azimuthal Equal Area),
allowing the immediate usage of the full archive depth. Overall, 54 tiles were needed to fully cover the
study area (i.e., 180 km x 270 km = 48,600 km?). The tasseled cap transformation [47] was applied to
all radiometrically normalized BOA reflectance images using the Crist [48] reflectance data coefficients.

We compiled a reliable annual time series using all available images within a narrow phenological
window. For each year, we computed the average reflectance for the period May to June, which is the
optimal point of year to avoid cloud cover and fires in the wet and dry seasons, respectively [32,35].

The study area was split into areas of presumably stable forest and those areas that were
under cultivation during the observation time—based on data from Schneibel et al. (2016) [15].
This was conducted to assess long term trends of supposedly stable forests—potentially including



Remote Sens. 2017, 9, 905 5o0f 14

forest degradation and regeneration, that are too subtle to be detected using methods tailored
to deforestation—as well as to derive information about forest use before the stand-replacing
slash-and-burn events.

The forest cover mask defines stable areas for the study area from 1989-2013. It has been created
based on a spectral angle mapping approach and by defining areas that can be considered stable
for the observation time. The process of how the mask was derived with an overall area-adjusted
accuracy of 0.92 &£ 0.06 can be found in Schneibel et al. (2016) [15]. This mask was applied to the
study area imagery to identify areas of stable forest. A further mask was applied that incorporates
agricultural areas and that is based on the same study. Cultivation areas for the time between 1989
and 2013 were reliably detected with an area-adjusted accuracy between 0.96 £ 0.04 and 0.99 + 0.02.
The time of disturbance was taken from Schneibel et al. (2017) [49], where time series segmentation
allowed the derivation of the year of disturbance with an accuracy of 72% (&1 year of tolerance). For
the derivation of the accuracy measures, please see [15,49,50]. The cultivation mask allowed us to
analyze forest disturbance before the actual slash-and-burn, which is a likely scenario and has not yet
been assessed [49].

We compare our results to results from the analysis of MODIS phenology and burned area
products (ignition points). A description about the derivation of the MODIS phenology product can be
found in Frantz et al. (2016) [51]. Ignition points were derived from the MODIS burned area product
using the fire spread segmentation algorithm described in Frantz et al. (2016) [52].

4. Methods

We used an annual time series of the Disturbance Index to derive linear trends and time series
parameters like error, trend significance, or variability measures. We used (1) the full time series of
25 years to analyze these patterns regarding the presumably stable forest and (2) the pre-slash and
burn part of the time series to derive information about degradation processes that took place before
agricultural usage. The workflow is shown in Figure 2 and the single sections are described in the
following text.

Input data Processing Classification Final Classes
| May/luneannual | ; Derivation of time series Stable areas
i fl ) Calculation of X
| aVerag%;gre zeodgnce i Tasseled Cap parameters: - Undisturbed forest/
| ([EED=ZUEY | woodland
________________ N Trenj sdlgnlflcance - Stable forest/
Mask 3 Calculation of . rl{loe; méjrfts‘gzare orror woodland, regularly
i (itgzbgle fc;:]els;) ; Dis’tu;bance Mean absolute error disturbed
i = ] ndex
L SRR EEEREE I 2 .
s Degradation areas
Mask 3 Stratification to: CI§55|f|cat|onhbased OTW R Steady degradation of
i cultivation areas | Stable forest & statistical class characteristics forest
i (1989-2013) i Cultivation areas ¥ - Degradation with
7777777777777777 Comparison of spatial and selective use
""WI\;I;)’D’{S 777777 temporal patterns to:
| - phenology Linear regression e Trend of latent integral Regeneration areas
b iston el ! of time series *  Position of ignition points - Regeneration

Figure 2. Flowchart of applied methodology from input data over processing and classification to the
final set of classes.

We found that mean annual rainfall (African Rainfall Climatology 2” (ARC2), [53]) is correlated
with tasseled cap wetness (r = 0.67), and to a certain extent, also to tasseled cap greenness (r = 0.46).
As forest degradation is a subtle process that may be masked by climatic variability, we selected
an index that reduces these influences using spatial benchmarking; a class of techniques that is
commonly applied for monitoring subtle landscape modifications, e.g., [54,55]. Spatial benchmarking
uses minimal disturbed reference areas, from which rescaling statistics are derived as it is assumed
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that influences like climatic variability occur on the regional scale (and vary between years), whereas
management effects are superimposed onto that, and can thus only be extracted if separated from
climate effects [54].

The Disturbance Index (DI) was specifically developed for forest-related disturbances [56] and
was successfully used for detecting forest loss with Landsat data, e.g., [56-60]. The DI is designed
to highlight bio-physical changes in forest stands in response to partial canopy loss [61]: i.e., higher
reflectance of soil/litter compared to healthy canopies, as well as lower water absorption, and greater
shadow fraction [62]. The DI is a linear transformation of the rescaled Tasseled Cap indices [47]
and thus indicates increases of brightness with simultaneous decreases of greenness and wetness
values [56] (Equation (1)).

DI =B, — (Gr+wr) (1)

with B, being the rescaled Tasseled Cap Brightness, G, the rescaled Greenness, and W, the
rescaled Wetness.

By rescaling the values with the mean and standard deviation of a reference population, the DI
measures the difference of a certain pixel to the mean state of this reference population (Equation (2)),
as follows:

B—B,
B, = ( B”%)
G, = &5 @)
W, = (W;VZVP)

where B, G;, W), are mean values and B,, G, W are the standard deviation of Brightness, Greenness,
and Wetness of the reference population, respectively. It is assumed that the Miombo forest covered
by the presumably stable forest mask is largely intact, and thus was used to obtain y and ¢. The
DI was computed for the complete forest, including the areas that were cultivated sometime during
this period.

This results in negative DI values for overperforming pixels (relative to the reference population)
and positive DI values for underperforming pixels. Degradation processes would thus be expressed as
an increase of DI values, while areas of regenerating biomass show a decrease in DI values.

For each available and temporally suitable Landsat dataset, the DI values were calculated on a
per pixel basis, which results in annual time series. Linear regressions were computed for each pixel’s
DI time series and the intercept, significance of trend, mean absolute error (MAE), and maximum
residuum were obtained. They are expressed in DI values, i.e., in standard deviations. While areas
without cultivation were assessed for the whole observation period, trends in areas that were used for
cultivation purposes were only assessed until one year before the onset of cultivation. The parameters
are connected to processes like previous usage or disturbance (intercept), strong, regular, or absent
disturbances (mean absolute error and maximum residuum), and the general development of an area
(significance and sign of trend) (Table 1). The thresholds are as follows:

Table 1. Thresholds & classes of statistical parameters of linear regression.

Significance Intercept
Insignificant min-0 overperforming
Sign. negative 0-3 underperforming
Sign. positive 3-max strongly underperforming
Mean Absolute Error Maximum Residuum
min-1 steady trend -3-3 no disturbances
1-3 medium deviations <—3or>3 additional disturbances

3—-max strong deviations
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By using these thresholds, we described the dominant processes within the study area (Table 2).
Dense, stable forests, for example, would show an insignificant trend, with a low intercept (high
performance of DI), low mean absolute error (MAE), and no extreme residuum. We derive two stable
forest classes, with and without regular disturbances. The same applies for the less dense stable
woodland classes. Degradation is separated into steady degradation (low maximum residuum) and
degradation with selective use (high maximum residuum). For regenerating areas, all pixels with a
significant negative trend were grouped into one class.

Table 2. Exemplary description of how different processes are expressed by the Disturbance Index
time series.

Class Parameters Example

- No significant trend

Stable, dense - Low Intercept
forest/woodland - Low MAE
- Low maximum residuum .

Disturbance Index

- Significant positive trend

Steady forest - Low intercept é o e ==
degradation - Low MAE g
- Low maximum residuum ° e
Year
- Significant positive trend 5.
Steady forest - Low intercept § o A e Ao fdT
degradation with ) Low MAE g e

selective use . . .
- High maximum residuum
P IS LSS

Year

For stable areas, we also identified those pixels without a significant trend, but where selective
use is prevalent, which is either expressed in high MAE or high maximum residuum values.
Additionally, those areas with a significantly negative trend were grouped into one “regeneration”
class. We differentiated between dense forests and less dense woodlands by their intercept. Originally,
underperforming pixels were considered as woodland, while overperforming pixels were labeled
as forests.

5. Results and Discussion

Almost 74% of the Miombo forests did not show any significant trend and were thus considered
as stable. The remainder of the forest either had significant positive trends (13.3%), thus being regarded
as degrading, or negative trends (12.8%), which suggests accumulating biomass. We considered
regenerating areas as currently undisturbed and since we had no information on previous use, we
only included those areas in a more detailed analysis that showed no significant or a significant
positive trend.

Figure 3 shows the spatial patterns of stable forest and of degradation areas. Along settlements and
roads, there is a clear pattern of degrading forest with selective use (pink areas). This pattern follows
the spatial arrangement of cultivation areas. These areas thus describe pixels that were converted
for cultivation during the observation period and might indicate previous selective use before the
actual slash-and-burn. In the southern part, woodlands are more open than in the north-eastern
part of the study area, which is expressed in more abundant woodland areas in the southern part.
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The deforestation frontier moves from north-west to east and is roughly located around Chitembo.
To the east, more dense and undisturbed forest is retained. Large areas do not show a significant
trend, but disturbances are prevalent. However, these areas are already highly fragmented by areas
of regular disturbances or even degradation. Of most interest are those degrading areas that occur
within closed forests without any spatial proximity to infrastructure or settlements. Since cultivation
areas are usually established along streets or in close distance to already existing fields, these areas
are less likely to be disturbed for cultivation purposes. We assume that these areas were either very
early fields (before the observation period) or were selectively used and are thus more susceptible to
recurring fires.

1300'S
f

14°0'0"S
)

15°00"S
"

T T
17°00'E 18°00'E

I undisturbed forest I steady degradation of forest
[T stable forest, regularly disturbed I Degradation with selective use
I undisturbed woodland I Regeneration

l:l Stable woodland, regularly disturbed

@ Location of municipality centres [ Paved roads

Figure 3. Classification result of the linear regression analysis. The classes have been grouped to stable
areas, degradation areas, and regeneration areas. Furthermore, the municipality centers and the main
roads are shown for orientation reasons. Background image is a true color image of Landsat long term
average reflectance.

Ground truth data, especially for the past, is sparse in the study area. Furthermore, information on
cultivation practices, timber use, or forest product use in general is hardly available. The plausibility of
our results has thus to be estimated with a workaround and by indirect assessment methods. However,
since the Disturbance Index is based on a well-established transformation and only the main processes
are covered by statistical parameters, we assume that these main processes can be well separated.

We thus evaluated degradation areas against a temporal trend derived from the MODIS phenology
parameters. Among these, the latent integral describes the standing biomass that is not affected by
seasonality, and is thus optimal to derive long-term forest degradation. For those areas that we assessed
as degrading, the MODIS time series was in good agreement (85%). Mismatches might occur due to
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differences in spatial resolution (30 m Landsat vs. 250 m MODIS), the length of time series (1989-2013
for Landsat vs. 2000-2012 for MODIS), and different measures (Tasseled Cap-based DI vs. latent
integral of EVI), but the general pattern is confirmed.

To assess the difference between the previous degradation of areas where fields are established
during the observation time and other forest areas, we assessed the overall change in the DI magnitude.
Although the DI cannot be quantitatively connected to true biomass values, qualitative comparisons
between the classes are nonetheless possible. For this purpose, we separated the degrading forest
into areas that were converted for agricultural use and into those where no conversion took place
during the observation time. We consequently assessed the magnitude of change for the time from
1989-2013 (non-cultivated forest) and for a dynamic time range from 1989 until one year before a field
was established (Figure 4).

10

8

6

DI change

W

4

forest areas agricultural areas

Figure 4. Magnitude of DI change for forest areas (left) from 1989-2013. The DI change for agricultural
areas (right) has been estimated for the time from 1989 until one year before the disturbance, i.e., the
time where forest was still prevalent.

Although disturbances in stable forests are present to a large extent, their severity is smaller
than disturbances that took place in those forests that are cut and burnt for a later creation of fields.
The difference in magnitude is highly significant and is supported by the boxplots (Figure 4). This
also supports the hypothesis that forests are generally heavily used before they are converted to
field areas. This effect has also been observed by Cabral et al. (2011) [20], who studied deforestation
patterns in central Angola by using a multi-temporal supervised classification. They found that
people would rather extract wood from already degraded forests than from intact Miombos, where the
time and effort for wood extraction would be disproportionately higher. Furthermore, although the
disturbances in stable forests are characterized by a significant trend, their magnitude is lower, which
might indicate that the use of stable forests is less severe—if a future conversion is not planned. This
might also support the hypothesis that many forest areas are affected by fires, but that these mainly
affect the understory.

A once disturbed forest is more susceptible to recurring fires [63]. To evaluate the impact of
fires, we used fire ignition points derived from the MODIS burned area product. Ignition points that
were not in close distance to forest areas (>90 m), and that occurred in floodplains, were removed for
visibility reasons (Figure 5).

Although the different observation times between the MODIS product (2000-2012) and the
Landsat time series (1989-2013) do not allow a direct, quantitative comparison, two aspects become
evident: (I) fires are highly prevalent in the study area, also within the forests. Although fires are
generally not stand replacing, they can consume large parts of the understory and make forests more
susceptible to recurring fire events [63]; (II) the spatial patterns of forest degradation are related
to ignition points. Around 15% of the ignition points occur in close distance to degrading areas.
Regarding that these degraded areas only account for roughly 5% of the study area, a relationship
is likely but cannot be quantitatively stated due to the different observation times. In both subsets
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shown in Figure 5, the distribution of ignition points concentrates on those areas that were labelled as
degradation. In those cases where no ignition points are in close distance to degradation pixels, the
fire might have taken place before the MODIS observation time or degradation is caused by another
reason. Fires in the study area are usually man made. So far, fires have been considered to mainly
affect floodplains for hunting and visibility reasons [35]. The presented results suggest that Miombo
forests might also be strongly affected, especially by recurring fires. Since the biomass in these forests
is known to recover slowly [15], recurring fires might have a strong and long lasting effect on Miombo
forest stands.

4
°
©
)

- lgnition points
2000 -2012
derived from MODIS burned area

13°45'0"S

undisturbed forest
- 1989 - 2013

- forest degradation
1989 - 2013

Figure 5. Comparison of forest degradation areas (1989-2013) with fire ignition points derived from
the MODIS burned area product (2000-2012).

Although fires are used as a stand replacing management method, mapping only conversion is
insufficient to holistically describe forest cover dynamics in tropical dry study areas. The degradation
of dry tropical forests significantly contributes to the loss of natural resources and has a high impact on
the functioning of ecosystems [64,65]. Furthermore, only reporting complete forest losses substantially
underestimates the true carbon losses as areas affected by forest degradation are not less important
than those used for land conversion. This has immediate implications for national to global budgeting
programs like REDD+, and thus one cannot overemphasize the inclusion of forest degradation
processes in the assessment of forest dynamics for tropical dry forests. The outcomes of this study
might thus be connected to well-established global products like the forest cover map from [38]
to provide estimations of carbon dynamics. In this regard, the next step would be to link remote
sensing-based forest dynamics assessments with biomass measurements, either through extensive
ground-based forest inventory or by using other remote sensing sources like data from the upcoming
Earth Explorer Biomass Satellite.

6. Conclusions

The aim of this study was to spatially and temporally identify historical degradation processes
for a study area in south central Angola that is poorly studied. We found that the forests are, to a large
extent, undisturbed, mainly due to difficult accessibility and resettlement actions by the government.
Nevertheless, large areas of Miombo forests are also exposed to degradation processes due to various
reasons. The results of degradation extent and severity can contribute to understanding the status and
dynamics of forest loss, especially in the context of the REDD+ incentive.
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We found that a main driver of forest degradation in remote areas seems to be recurring fires. Fires
in the Miombo forests have been expected to only be used for slash-and-burn conversion. Although
this hypothesis might still hold true for the study area, there is evidence that once disturbed areas are
prone to subsequent fires although they are hardly stand replacing.

We could furthermore show that already degraded forests are more likely to be affected by
conversion processes. Additionally, we identify areas that are currently affected by selective use and
show degradation dynamics and thus have a high chance of being converted for agriculture, especially
if they are in close distance to existing fields.

Given the vast areas of degrading tropical dry forests, the isolated detection of forest conversion
falls short of meeting budgeting requirements of all carbon stored in forest stands. Regarding the
success of detecting forest loss with high certainty after decades of dedicated research, we conclude that
future remote sensing efforts need to focus on our ability to monitor subtle modification processes with
similar certainty. This study is a first step to accomplish this bold undertaking in an area characterized
by data scarcity and political unrest. In this regard, it will be key to more closely integrate data from
different sensor types (like optical, SAR, and LiDAR data), as well as to invest in the development of
regular forest inventories that are currently hardly available for many countries covered by tropical
dry forests.

Future projections of the development of the study area and especially its forest dynamics are
vague, also due to the poor power of forestry management agencies. In addition, foreign investments
are expected to rise, but their extent cannot yet be assessed. Further remote sensing studies can
thus support the retrieval of the most basic information on land use change to support retrospective
analysis, as well as future scenarios. Overcoming these challenges cannot only contribute to the REDD+
program, but also to a sustainable management of natural resources in the study area in general.
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