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Abstract: Cotton (Gossypium hirsutum L.) is an economically important crop that is highly susceptible
to cotton root rot. Remote sensing technology provides a useful and effective means for detecting
and mapping cotton root rot infestations in cotton fields. This research assessed the potential of 10-m
Sentinel-2A satellite imagery for cotton root rot detection and compared it with airborne multispectral
imagery using unsupervised classification at both field and regional levels. Accuracy assessment
showed that the classification maps from the Sentinel-2A imagery had an overall accuracy of 94.1% for
field subset images and 91.2% for the whole image, compared with the airborne image classification
results. However, some small cotton root rot areas were undetectable and some non-infested areas
within large root rot areas were incorrectly classified as infested due to the images’ coarse spatial
resolution. Classification maps based on field subset Sentinel-2A images missed 16.6% of the infested
areas and the classification map based on the whole Sentinel-2A image for the study area omitted
19.7% of the infested areas. These results demonstrate that freely-available Sentinel-2 imagery can be
used as an alternative data source for identifying cotton root rot and creating prescription maps for
site-specific management of the disease.

Keywords: cotton root rot; Sentinel-2A; ISODATA; spatial resolution; airborne multispectral imagery

1. Introduction

Phymatotrichum root rot, also known as cotton root rot or Texas root rot, is caused by
the soil-borne fungus Phymatotrichopsis omnivora. It is a major cotton pathogen in the southwestern
United States (mainly in Texas due to the many hectares of cotton grown there) as well as in northern
Mexico, and was first described by Pammel [1–3]. The fungus spreads from plant to plant and once
the roots are infected, the fungus blocks the vascular elements, inhibiting the movement of water to
the aboveground parts of the plant. The leaves of the infected plant first turn yellow or brown and
then wilt rapidly, and plant death occurs within a few days. Wilt is usually seen when cotton plants are
flowering or sometimes earlier in the season. A large number of plants may wilt simultaneously, but
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even within an affected area, wilting among plants is not simultaneous, sometimes occurring weeks
apart. It is also possible to see non-symptomatic plants surrounded by diseased plants. The fungus
kills plants typically in circular areas ranging from less than a square meter to several hectares in size.
The disease significantly reduces cotton yield and lowers lint quality [4,5]. Cotton root rot has plagued
the cotton industry for more than 100 years [6]. Recently, a commercial formulation of flutriafol
(Topguard®, Cheminova Inc., Wayne, NJ, USA) has been found to effectively control cotton root
rot [7–9]. It is necessary to define the cotton root rot-infested areas within the field, since only portions
of the field are affected. Remote sensing technology is a useful and effective means of recording
the extent of cotton root rot damage by detecting changes in the plant canopy. Such technology may be
the only practical means to effectively map this disease because of the large numbers of infected areas
and their irregular shapes within cotton fields [6].

Taubenhaus et al. [10] photographed cotton fields infested by the root rot fungus from an airplane.
They used an ordinary handheld camera equipped with panchromatic film and obtained fairly sharp
photographs that were used to locate root rot spots of various sizes and shapes within the fields.
Nixon et al. [11] used aerial colorinfrared (CIR) photography to document the distribution of cotton
root rot damage and to detect the change in root rot areas after chemical treatments. Nixon et al. [12]
evaluated multispectral video imagery for the detection of cotton root rot.

Yang et al. [5,6] successfully used airborne imagery to map the extent of cotton root rot
infestation near the end of the growing season when the cotton root rot is fully pronounced,
and to monitor the progression of the infection within cotton fields during a growing season.
In these studies, ISODATA (Iterative Self-Organizing Data Analysis) unsupervised classification
applied to multispectral imagery was used to identify root rot-infested areas. More recently,
Yang et al. [13] evaluated and compared two unsupervised classification techniques and six supervised
classification techniques for mapping and detecting cotton root rot from airborne multispectral imagery.
Song et al. [14] applied fuzzy set theory and nonlinear stretching enhancement to airborne multispectral
imagery for unsupervised classification of cotton root rot infestations. Yang et al. [15] examined
the consistency and variation of cotton root rot infestations within cotton fields over 10-year intervals
using airborne multispectral imagery and assessed the feasibility of using historical imagery to create
prescription maps for site-specific management of the disease.

More recently, satellite imaging systems such as Landsat 8 and Sentinel-2 have become freely
available. Sentinel-2 is the latest-generation Earth observation satellite of the European Space Agency
(ESA) for land and coastal applications [16]. It was launched in June 2015 and is part of Europe’s
Copernicus program aiming at independent and continued global observation [17]. Sentinel-2 offers
an increased spectral and spatial resolution with 13 spectral bands, from blue to SWIR (shortwave
infrared), including red-edge bands of 10- to 60-m spatial resolution [18], which have already proved
useful for forest stress monitoring [19], land use and land cover mapping [20], and biophysical variable
retrieval [21–24]. Sentinel-2 was also designed for a variety of land monitoring applications [25], such
as water detection and crop type and tree species identification [26]. Remote sensing techniques have
been used to detect cotton root rot for several decades. However, previous studies have focused on
the mapping of cotton root rot with airborne multispectral data [5,6,13–15]. Few studies have been
reported regarding the use of satellite imagery with a spatial resolution of 10 m or finer for cotton root
rot identification. Therefore, more research is necessary to evaluate this new type of satellite imagery
for cotton root rot identification and other agricultural applications.

The objectives of this research were to assess the potential of Sentinel-2 imagery and to compare it
with airborne imagery for the detection of cotton root rot. This information will be important not only
for a better understanding of the progression of the disease over a relatively large area, but also for
the formulation of site-specific strategies for effective control of the disease.
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2. Materials and Methods

2.1. Study Area

The study area was located in a cropping area near Edroy, Texas, USA (Figure 1). It covered
a rectangular area of about 42.30 km2 (4230 ha) with geographic coordinates of (28◦00′01” N, 97◦6′19” W)
at the upper left corner and (27◦8′43” N, 97◦00′26” W) at the lower right corner.Remote Sens. 2017, 9, 906  3 of 16 
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Figure 1. Location of the study area.

2.2. Image Acquisition and Processing

2.2.1. Airborne Multispectral Imagery

A two-camera airborne imaging system developed by scientists at the U.S. Department of
Agriculture-Agricultural Research Service’s (USDA-ARS) Aerial Application Technology Research
Unit in College Station, Texas, was used to identify infested areas of cotton root rot in this study.
The two-camera imaging system consisted primarily of two Nikon D810 digital CMOS cameras with
Nikon AF Nikkor 20-mm f/1.8 G lenses (Nikon Inc., Melville, NY, USA). One camera was used to
capture red-green-blue (RGB) images, and the other camera was modified to capture near-infrared
(NIR) images after the infrared-blocking filter in front of the sensor of the camera was replaced by an
830-nm long-pass filter (LDP LLC, Carlstadt, NJ, USA). Airborne images were taken from the study
area at an altitude of 3050 m (10,500 ft) above ground level (AGL) with a ground speed of 225 km/h
(140 mph) under sunny conditions on 20 July 2016. The images had a pixel array of 7360 × 4912 and
a spatial resolution of 0.81 m at this altitude.

In order to achieve at least 50% overlap along and between the flight lines, images were acquired
at 5 s intervals. Both cameras simultaneously and independently captured images during image
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acquisition. Each image was recorded in both 14-bit RAW format for processing and JPEG format for
viewing and checking. The free Capture NX-D 1.2.1 software (Nikon Inc., Tokyo, Japan) provided by
the camera manufacturer was used to correct the vignetting and geometric distortion in the images.
The corrected images were saved in 8-bit TIFF format to preserve image quality. Then the Pix4DMapper
software (Pix4D Inc., Lausanne, Switzerland) was used for automatic image mosaicking. To improve
the positional accuracy of the mosaicked image, 24 ground control points (GCPs), as shown in Figure 1,
were used when the images were mosaicked in Pix4DMapper software. A Trimble GPS Pathfinder
ProXRT receiver (Trimble Navigation Ltd., Sunnyvale, CA, USA), which provided 0.2 m average
horizontal position accuracy with the real-time OmniSTAR satellite correction, was used to collect
the coordinates from these GCPs. The mosaicked image was georeferenced or rectified to the Universal
Transverse Mercator (UTM), World Geodetic System 1984 (WGS-84), Zone 14, coordinate system.
Then the image was atmospherically corrected using the Quick Atmospheric Correction tools in
ENVI 5.3 (Harris Corporation, Jersey City, NJ, USA) and the normalized difference vegetation index
(NDVI) of the image was calculated. Figure 2 shows the RGB and color infrared (CIR) composite
of the four-band mosaicked image. The mosaicked 0.81 m airborne image was then resized to 10 m
spatial resolution by setting the output pixel size with 10 m through the Resize tool in ENVI 5.3.
Then the 10 m airborne image was used as the reference image for geometric correction and evaluation
of the Sentinel-2A image.
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2.2.2. Sentinel-2A Satellite Imagery

One Sentinel-2A multispectral instrument (MSI) L1C dataset acquired on 11 July 2016
(ID: 2A_OPER_PRD_MSIL1C_PDMC_20160712T012010_R069_V20160711T171110_20160711T171110)
was downloaded from the U.S. Geological Survey (USGS) Global Visualization Viewer at
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http://glovis.usgs.gov/. The 12-bit Sentinel-2A MSI image has 13 spectral bands in the visible, NIR,
and SWIR wavelength region with spatial resolutions of 10–60 m. In this study, the four Sentinel-2A
bands (i.e., blue, green, red, and NIR) with 10 m spatial resolution were selected to identify the cotton
root rot-infested areas (Figure 3).Remote Sens. 2017, 9, 906  5 of 16 
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Figure 3. Sentinel-2A multispectral instrument (MSI) image for the study area. (a) True color image;
(b) color infrared (CIR) composite image.

The Sentinel-2A dataset was resized to the study area using the ESA’s Sentinel-2 toolbox ESA
Sentinel Application Platform (SNAP) and then converted to ENVI format. The image was then
atmospherically corrected through the Quick Atmospheric Correction tools in ENVI 5.3. The automatic
registration module in ENVI 5.3 was used for the image geometrical correction, which referenced
the resized 10 m airborne image. More than 200 tie control points were chosen manually and
a two-order polynomial geometric model was used. The total root mean square (RMS) error for
the registration was 0.30 pixels.

2.3. Image Classification and Analysis

2.3.1. Cotton Field Identification

In order to determine the cotton root rot identification accuracy of the Sentinel-2A imagery,
the 0.81 m pixel size airborne multispectral image was used to distinguish the cotton fields through
visual interpretation with field verification. There were 24 cotton fields in the study area and the field
boundaries were digitized on the computer screen using the Editor tools of ArcGIS10.0 software
(Figure 4).

http://glovis.usgs.gov/
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Figure 4. Twenty-four cotton fields in the study area.

2.3.2. Classification of Cotton Root Rot

The original 0.81 m airborne multispectral images for each field were extracted from the mosaicked
image using the field vector boundaries, and each field subset image was then classified into root
rot-infested and non-infested zones using ISODATA unsupervised classification (ENVI 5.3, 2016).
The unsupervised method uses the minimum spectral distance to group each pixel into a class
based on the four spectral bands (i.e., blue, green, red and NIR) and the NDVI image. The process
began with arbitrary class means from the image statistics based on the 20–30 classes specified.
It repeatedly performed a classification and recalculated new class statistics, which were then used
for the next iteration. In all the classifications, the convergence threshold (0.99) was met before
the maximum number of iterations (100) was reached. The spectral classes in each classification map
were compared with the original imagery and field observations and grouped into root rot-infested
and non-infested zones.

For the Sentinel-2A image, the four bands (i.e., blue, green, red, and NIR) and the NDVI image
were selected for cotton root rot identification for all the fields. First, the Sentinel-2A images for each
field were extracted by the field boundary vector file, and each field subset image was then classified
into 10–20 spectral classes using ISODATA unsupervised classification. The cotton root rot areas for
all 24 cotton fields were distinguished using the visual interpretation method from the classification
maps. Second, the Sentinel-2A image for the whole study area, including all 24 fields, was classified
into 10 spectral classes using ISODATA unsupervised classification and the classification map was
regrouped into root rot-infested and non-infested zones.

2.3.3. Accuracy Assessment

The original 0.81 m airborne field subset image was used to detect the cotton root rot infested
area for each field. The cotton root rot classification results for all cotton fields were combined to
a cotton root rot reference map for the study area. In order to estimate the classification accuracy of
the Sentinel-2A imagery, the 0.81 m cotton root rot classification map was also resized to 10 m spatial
resolution using the ENVI Resize tool in this study.

Classification accuracy statistics, including overall accuracy, producer’s accuracy, user’s accuracy,
and kappa coefficients, were calculated based on the error matrices. Kappa analysis was also
performed to test if each classification was significantly better than a random classification and
if any two classifications were significantly different. The test statistic for evaluating the significance of
a single classification was a standardized Z-value calculated from the overall kappa value and kappa
variance for the classification [27].
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3. Results

3.1. Airborne Multispectral Image Classification

Root rot-infested areas can be accurately differentiated from non-infested areas if there are
no other major stressors present that produce similar plant symptoms to those of root rot [5,28].
Field observations confirmed that cotton root rot was the dominant stressor and that there was
a minimal amount of interference from other biotic and abiotic factors in these cotton fields. Therefore,
the two-zone classification maps using the unsupervised classification and regrouping procedures
were accurate and reliable. Nevertheless, care was taken to ensure that infested areas were correctly
identified by visually comparing each classification map with its original NDVI and true color
images in this study. Figure 5 shows the combined cotton root rot classification map detected by
the airborne subset images for all the 24 cotton fields. The red color within each field represents root
rot-infested areas, while the background gray color depicts non-infested areas. The percentage of
the root rot-infested areas for all the fields in Figure 5 was 10.97%.
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Figure 5. Classification maps based on field subset 0.81 m airborne images for 24 cotton fields. The red
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Table 1 lists the field area and the root rot-infested area for all fields in Figure 5. The total infested
area for the 24 fields was 111.24 ha with an average infestation percentage of 10.81% for the whole
study area. It can be seen from Table 1 that Fields 7 and 15 were not infested with cotton root rot.
The percentage of root rot-infected areas for the other fields ranged from 0.79% for Field 17 to 56.46%
for Field 24.

Table 1 also shows the resampled 10 m classification map statistic results for the 24 cotton fields.
The differences for field area and cotton root rot-infested area between the 0.81 m and 10 m classification
maps were small. Correlation analysis showed that the correlation coefficients between the two types
of maps were 99.99% for field area and 99.97% for root rot-infested areas. Therefore, it was appropriate
to use the resampled 10 m airborne classification maps as reference for the evaluation of the Seninel-2A
classification maps.
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Table 1. Comparison of cotton root rot-infested areas for 24 cotton fields between the 0.81 m airborne
image classification maps and resized 10 m classification map.

Field ID
Field Area (ha) Cotton Root

Rot-Infested Area (ha) Field ID
Field Area (ha) Cotton Root

Rot-Infested Area (ha)

0.81 m 10 m 0.81 m 10 m 0.81 m 10 m 0.81 m 10 m

1 16.67 16.39 3.17 3.06 13 17.07 17.01 0.46 0.47
2 6.12 5.98 0.25 0.2 14 88.76 89.28 15.9 15.82

3 54.63 54.78 5.75 5.8 15 81.78 82.36 0 0
4 12.72 12.53 0.42 0.44 16 59.67 60.14 4.67 4.69
5 55.51 55.83 6.27 6.06 17 65.05 64.78 0.51 0.51
6 20.3 20.38 7.6 7.37 18 53.64 53.68 0.81 0.78
7 9.44 9.77 0 0.02 19 76.37 76.36 0.91 0.96
8 58.99 58.79 1.09 1.13 20 42.74 43.09 3.32 3.25
9 34.19 33.73 3.57 3.54 21 38.98 39.04 9.9 10.01

10 38.49 38.47 18.1 18.13 22 25.2 25.01 10.6 10.7
11 33.94 33.82 3.95 4.08 23 51.17 51.16 3.97 3.82
12 77.11 76.71 4.41 4.34 24 9.88 10.19 5.58 5.48

3.2. Sentinel-2A Image Classification

Figure 6 shows the classification maps generated from the Sentinel-2A image. Figure 6a presents
the cotton root rot infested areas identified by the field subset Sentinel-2A images for the 24 fields.
The total infested area estimated was 131.27 ha and the average infestation percentage was 12.75%.
No root rot was found in Fields 7 and 15. The percentage of root rot-infested areas for the other fields
ranged from 0.68% for Field 19 to 50.22% for Field 22.
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5 55.83 9.24 6.37 17 64.78 1.95 0 
6 20.38 5.26 3.46 18 53.68 0.86 0.09 
7 9.77 0 0.15 19 76.36 0.52 0.52 
8 58.79 3.12 4.24 20 43.09 6.03 1.24 
9 33.73 6.15 0.8 21 39.04 10.38 4.38 
10 38.47 16.69 25.77 22 25.01 12.56 15.19 
11 33.82 5.18 0.98 23 51.16 2.53 0.07 
12 76.71 8.74 2.22 24 10.19 4.72 5 

Figure 6. Classification maps generated from Sentinel-2A image. (a) Map generated from field subset
Sentinel-2A images; (b) map generated from whole sentinel-2A image for the study area.
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Figure 6b presents the two-zone classification map generated from the whole study area Sentinel-2A
image. The total cotton root rot-infested area in Figure 6b was 164.06 ha and the average infestation
percentage was 15.94% for all 24 fields. Table 2 lists the field area, the root rot-infested area for each
field in Figure 6a,b. It can be seen from Figure 6 and Table 2 that some small infested areas detected by
the airborne imagery were sieved in the Sentinel-2A imagery. In contrast, some small non-infested areas
distributed in large cotton root rot areas were clumped into the root rot area in the Sentinel-2A image.

Table 2. Estimates of cotton root rot-infested areas based on the classification map generated by field
subset Sentinel-2A images for 24 cotton fields.

Field ID Field Area (ha)
Cotton Root Rot-Infected

Area (ha) Field ID Field Area (ha)
Cotton Root Rot-Infected

Area (ha)

Subset Images Whole Image Subset Images Whole Image

1 16.39 2.98 15.73 13 17.01 0.64 1.31
2 5.98 0.18 0.59 14 89.28 19.84 22
3 54.78 6.79 6.18 15 82.36 0 42.22
4 12.53 0.2 0.4 16 60.14 6.7 5.15
5 55.83 9.24 6.37 17 64.78 1.95 0
6 20.38 5.26 3.46 18 53.68 0.86 0.09
7 9.77 0 0.15 19 76.36 0.52 0.52
8 58.79 3.12 4.24 20 43.09 6.03 1.24
9 33.73 6.15 0.8 21 39.04 10.38 4.38

10 38.47 16.69 25.77 22 25.01 12.56 15.19
11 33.82 5.18 0.98 23 51.16 2.53 0.07
12 76.71 8.74 2.22 24 10.19 4.72 5

Figure 7 illustrates the differences in cotton root rot infested area percentage for the 24 fields
based on the field subset airborne images, the field subset Sentinel-2A images and the whole
Sentinel-2A image.
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Figure 7. Comparison of cotton root rot area for 24 cotton fields in different classification maps:
(a) map generated by field subset airborne images; (b) map generated by field subset Sentinel-2A
images; (c) map generated by whole study area Sentinel-2A image.

Although there were some obvious differences in the percentage values for some of the fields
between lines a and b in Figure 7, such as Fields 6, 10, and 22, the two lines had a similar trend for all
the fields. However, the percentage values for Fields 1 and 15 in line c were dramatically higher than
the corresponding values on lines a and b, indicating a significant classification error for these two fields.

3.3. Classification Accuracy Assessment

Table 3 presents an accuracy assessment error matrix for the classification map that combined
the field subset classification maps based on the Sentinel-2A imagery (Figure 6a). The error matrix
was generated by comparing the classified categories with the aggregate airborne image classification
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map. The overall accuracy (i.e., the probability of an image pixel being correctly identified) of
the classification map was 94.06%. The producer’s accuracy (a measure of omission error), which
indicates the probability of actual areas being correctly classified, was 83.23% for the root rot category
and 96.65% for the non-infested category. In other words, 83.23% of the root rot areas were correctly
identified as root rot, while 96.65% of the non-infested areas were correctly identified as non-infested
in the classification map. This omission error was due to the small inclusions of non-infested areas
within large root rot areas. The user’s accuracy (a measure of commission error), which is indicative of
the probability that a category classified on the map actually represents that category on the ground,
was 73.59% for the root rot areas and 97.51% for the non-infested areas, which means that 26.41% of
the root rot areas on the classification map were actually non-infested areas.

Table 3. Error matrix for classification map generated by field subset Sentinel-2A images for
24 cotton fields.

Classification Category
Actual Category

User’s Accuracy
Infested (pixels) Non-Infested (pixels) Total (pixels)

Infested (pixels) 9920 3561 13,481 73.59%
Non-infested (pixels) 1999 78,235 80,234 97.51%

Total (pixels) 11,919 81,796 93,715
Producer’s accuracy 83.23% 96.65%

Overall accuracy = 94.06%. Kappa = 0.9632.

Table 4 shows an accuracy assessment error matrix for the classification map generated from the
Sentinel-2A four band image and its NDVI image for the whole study area (Figure 6b). The overall
classification accuracy was 91.19%. The producer’s accuracy was 73.55% for the root rot category and
93.51% for the non-infested category. The user’s accuracy was 59.90% for the root rot areas and 96.41%
for the non-infested areas.

Table 4. Error matrix for classification map generated by the whole study area Sentinel-2A image.

Classified Category
Actual category

User’s Accuracy
Infested (pixels) Non-Infested (pixels) Total (pixels)

Infested (pixels) 8810 5899 14,709 59.90%
Non-infested (pixels) 3168 85,051 88,219 96.41%

Total (pixels) 11,978 90,950 102,928
Producer’s accuracy 73.55% 93.51%

Overall accuracy = 91.19%. Kappa = 0.9439.

3.4. Overlapped Root Rot Area between Airborne Image and Sentinel-2A Image

This research assessed the potential of Sentinel-2A imagery for detecting cotton root rot-infested
areas and compared its performance with finer resolution airborne images. Comparison of classification
maps generated from images with different spatial resolutions may reveal the omission and commission
errors caused by the spatial resolution. Figure 8a shows the overlaid classification map generated by
airborne imagery and field subset Sentinel-2A imagery. While Figure 8b is the overlaid map generated
by the airborne imagery and the whole study area Sentinel-2A imagery. The red zone in Figure 8 shows
the cotton root rot infested areas detected by both the airborne and Sentinel-2A images, indicating
the correctly classified areas in the Sentinel-2A image. The yellow zone in Figure 8 is the cotton root rot
infested areas only detected by the airborne image, which indicate the areas omitted by the Sentinel-2A
image. The blue zone depicts the cotton root rot infested areas detected by the Sentinel-2A image but
not detected by the airborne image, which indicate the commission area for the Sentinel-2A image.
Table 5 shows the area statistics for the cotton root rot-infested areas for the red, yellow and blue
zones in the overlaid classification maps generated by the airborne image and field subset Sentinel-2A
images as well as the airborne image and whole study area Sentinel-2A image.
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Table 5. Area statistics for the red, yellow and blue zones in the overlaid classification map generated
by airborne and field subset Sentinel-2A image as well as airborne image and whole study area
Sentinel-2A image.

Zone

Number of
Fragments Minimum

Area (m2)

Maximum Area (m2) Average Area (m2) Total Area (ha)

Subset
Images

Whole
Image

Subset
Images

Whole
Image

Subset
Images

Whole
Image

Subset
Images

Whole
Image

Red 499 337 100 102,100 105,400 1698 2243 84.72 75.58
Yellow 1268 1160 100 10,300 15,100 214 312 27.10 36.23

Blue 1028 664 100 15,900 259,700 500 1092 51.35 72.5

From Table 5 and Figure 8a, the total cotton root rot infested area in the airborne and field subset
Sentinel image classification maps was 163.17 ha (the sum of the areas for the red, yellow and blue
zones). The common infested area in both maps (red zone) was 84.72 ha (51.92% of the entire infested
area). There were 449 infested fragments in the red zone, and the average area for these fragments
was 1698 m2, while the minimum and maximum infected areas were 100 and 102,100 m2, respectively.
The area that was infested just in the airborne image (yellow zone) was 27.10 ha (16.60% of the entire
infested area). The average area for the 1268 infested fragments in the yellow zone was 214 m2, while
the minimum and the maximum infested areas were 100 and 10,300 m2, respectively. The infested
area identified only by the Sentinel image (blue zone) was 51.35 ha (31.47% of the entire infested area).
The average infested area for the 1028 blue fragments was 500 m2, while the minimum and maximum
infected areas were 100 and 15,900 m2, respectively.
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From Table 5 and Figure 8b, the total cotton root rot infested area for all the airborne and field
subset image classification maps was 184.31 ha. The common area in both maps (red zone) was 75.58 ha
(41.01% of the entire infested area). The average area for the red zone was 2243 m2 and the minimum and
maximum infected areas in both maps were 100 and 105,400 m2, respectively. The cotton root rot infested
area identified only by the airborne imagery was 36.23 ha (19.66% of the entire infested area), whereas the
infested area classified only by the Sentinel-2A imagery was 72.50 ha (39.34% of the entire infested area).

Figure 9 shows the overlaid cotton root rot classification maps for the airborne image and
the Sentinel-2A image for Fields 1, 5, 10 and 14. For the overlaid maps (Figure 8a and column 3 of
Figure 9), it can be seen that the cotton root rot classification error for the Sentinel-2A imagery was
mainly caused by the omission of small, infested areas and by the inclusion of small non-infested areas.
For the overlaid maps from the airborne image and the whole study area Sentinel-2A image (Figure 8b and
column 4 of Figure 9, the cotton root rot classification error for the Sentinel-2A imagery in the regional scale
was mainly caused by the differences in cotton growth and field management practices for different fields.Remote Sens. 2017, 9, 906  12 of 16 
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Figure 9. Field subsets for overlaid cotton root rot classification map between the airborne image
and the Sentinel-2A image. (a) Field 1, (b) Field 5, (c) Field 10, and (d) Field 14; (1) Field normalized
difference vegetation index (NDVI) subset for airborne image; (2) field normalized difference vegetation
index (NDVI) subset for Sentinel-2A image; (3) overlaid classification map for airborne image and field
subset Sentinel-2A image; (4) overlaid classification map for airborne image and whole study area
Sentinel-2A image.
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4. Discussion

The spatial resolution of remote sensing images and the size of landscape elements are the two key
factors for remote sensing detection. Many studies have been carried out to evaluate the minimum
spatial resolution required to detect small features [29–32]. For example, SPOT-5 imagery at 10 m was
found to be suitable to map small ponds in Senegal [33]. SPOT-5 resolution allowed the monitoring
of reed ecosystems in southern France and, in turn, provided potential distribution maps of species
that are relevant to ecosystem functioning. Townsend et al. [34] found that Landsat data resolution is
adequate for characterizing landscape patterns, although higher resolution data or multiple sensors
may be necessary for specific applications. Radoux et al. [35] analyzed pre-operational Sentinel-2
images to rigorously evaluate their potential for detecting sub-decametric landscape features of
environmental interest. Their results confirm that Sentinel-2 data combine the spectral resolution of
Landsat-8 with the spatial resolution of SPOT-5.

This study revealed that small cotton root rot infestation fragments close to 100 m2 can barely
be detected by the Sentinel-2A sensor. Of the cotton root rot-infested area, 16.60% was omitted
by classification with the field subset Sentinel-2A image, and 19.66% cotton root rot-infested area
was omitted by classification with the Sentinel image for the whole study area. Generally, spatial
resolution involves the interaction between the ground sample distance and the point spread
function, which models the blurring effect due to all elements of the imaging system [35]. The spatial
quality of an optical remote sensing instrument involves more aspects of the imaging system than
just the pixel resolution [36]. Schowengerdt [37] provides extensive definitions and examples of
aspects of spatial resolution that represent the cumulative optical properties of the sensing system.
In addition, atmospheric effects, such as molecular and aerosol scattering and absorption by gases,
and the adjacency effect are caused by complicated multiple scattering in the atmosphere/land-surface
system. The pixel values of high-resolution imagery over a heterogeneous landscape are affected
by their neighboring pixels. As a result, dark pixels look brighter and bright pixels look darker [38].
The practical implication to remotely sensed data is that imagery typically looks hazy and lacks
contrast, thus resulting in more classification commission errors for cotton root rot-infested areas with
the Sentinel-2A image. Compared with the field NDVI images in the first and second columns of
Figure 9 the boundaries of the cotton root rot-infested areas in the Sentinel-2A image were blurrier
than those of the airborne image. As a result, the classification map had more infested areas for the
Sentinel-2A image. Compared with the airborne image, the Sentinel-2A imagery identified 31.47%
more root rot by the field subset classification and 37.26% more by the whole study area classification.

This study also indicates that the performance for the Sentinel-2 field subset image classification
was better than that of the Sentinel-2A regional image classification for cotton root rot detection.
For some fields, such as Fields 1 and 15 in Figure 8a, the classification commission error increased
dramatically when they were classified at the regional scale (Figure 8b). Therefore, it is necessary
to determine the regional field conditions, such as irrigation and other management practices, for
different fields before classification.

Remote sensing techniques have been used to detect cotton root rot for a very long time.
Most previous studies focused on the mapping of cotton root rot with airborne multispectral
data [5,6,13–15]. This research assessed the potential of Sentinel-2A imagery for the detection of
cotton root rot infestation and compared its performance with airborne images. In order to determine
the cotton root rot identification accuracy of the Sentinel-2A imagery, the 0.81 m pixel size airborne
multispectral image was used to distinguish the cotton fields from other fields through visual
interpretation with field verification, and then the field boundary was digitized through ArcGIS
software. This procedure is necessary in areas where no field boundaries are available. Kharat et al. [39]
used multispectral time series images of Landsat-8 to identify cotton crops for the Aurangabad
region (MH) in India through the pixel based Unsupervised K-Means classification technique.
Ustuner et al. [40] found that three different vegetation indices of RapidEye imagery could be used for
crop (corn and cotton) classification with satisfactory results. Wu et al. [41] proposed and evaluated



Remote Sens. 2017, 9, 906 14 of 17

a novel method for the identification of crop types (mainly corn, cotton, and sorghum) through
extracting the crop height from digital surface models (DSM) derived from aerial images. Sentinel-2A
images have potential for the identification of the cotton fields in large regions for its high spectral
resolution and high revisit rate.

In this study, the subset Sentinel-2A image for each cotton field was used to identify the cotton
root rot in the study area. Meanwhile, the whole regional Sentinel-2A image for the study area was
also used to detect the cotton root rot for the study area. Although the subset approach is not suitable
for large areas because it is time-consuming, it can improve the classification accuracy compared with
the regional approach. For a grower, the subset approach may be more appropriate because he or she
only has a limited number of cotton fields.

Since the airborne images only had four bands, for proper comparison, only the four 10 m
bands (blue, green, red, and NIR) of the Sentinel-2A image were used to identify the cotton root
rot-infected areas in this study. Although the additional bands of the Sentinel-2A image may have the
potential for root rot detection, but their coarse spatial resolution (20 m–60 m) may be less efficient.
More research can be conducted on this in the future. In addition, the multispectral airborne image
was acquired on 20 July 2016, while the Sentinel-2A image was acquired on 11 July 2016. The nine-day
interval between the two images should have caused some differences in the image classification
results. More classification methods should be evaluated for cotton root rot identification with Sentinel
imagery in the future.

5. Conclusions

This research assessed the potential of Sentinel-2A imagery and compared it with airborne imagery
for cotton root rot detection. The ISODATA unsupervised classification method was used to assess
the ability of Sentinel-2A to detect cotton root rot at both field and regional levels. Two classification
categories were used with the Sentinel-2A data. Cotton root rot-infested areas were detected for each
cotton field, first through field subset image classification and then through the whole study area
classification. The original 0.81-m pixel size airborne multispectral images for each field were also
classified into root rot-infested and non-infested zones and were then aggregated to 10 m spatial
resolution for comparison with the Sentinel-2A imagery.

Accuracy assessment showed that the classification maps from the Sentinel-2A imagery had high
overall accuracy, but some small cotton root rot areas were undetectable and some small areas of
non-infested areas within large root rot areas were incorrectly classified as infested due to its coarse
spatial resolution. The classification accuracy of the field subset Sentinel-2 images was higher than that
of regional Sentinel-2A imagery for cotton root rot detection. The results from this study demonstrate
that Sentinel-2 images can be used for cotton root rot identification if the imagery is taken during
the optimum root rot discrimination period for a given region.

This study is one of the first to evaluate Sentinel-2 satellite imagery for cotton root rot identification.
Considering Sentinel-2 imagery is freely available and has a 10-day revisiting period (5 days with
Sentinel-2B), it is more effective to use Sentinel-2 imagery for cotton root rot in a large region.
Although imagery taken shortly before harvest is more useful for creating prescription maps for
cotton root rot management, the high revisit frequency of Sentinel-2 enables time-series monitoring
of the progression of the disease over the growing season. More research is needed in the future to
evaluate Sentinel-2 imagery and to compare it with other types of remote sensing data for mapping
cotton root rot.
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