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Abstract: High-resolution visible remote sensing imagery and thermal infrared hyperspectral
imagery are potential data sources for land-cover classification. In this paper, in order to make
full use of these two types of imagery, a spatial-spectral-emissivity land-cover classification method
based on the fusion of visible and thermal infrared hyperspectral imagery is proposed, namely,
SSECRF (spatial-spectral-emissivity land-cover classification based on conditional random fields).
A spectral-spatial feature set is constructed considering the spectral variability and spatial-contextual
information, to extract features from the high-resolution visible image. The emissivity is retrieved
from the thermal infrared hyperspectral image by the FLAASH-IR algorithm and firstly introduced
in the fusion of the visible and thermal infrared hyperspectral imagery; also, the emissivity is
utilized in SSECRF, which contributes to improving the identification of man-made objects, such
as roads and roofs. To complete the land-cover classification, the spatial-spectral feature set and
emissivity are integrated by constructing the SSECRF energy function, which relates labels to the
spatial-spectral-emissivity features, to obtain an improved classification result. The classification
map performs a good result in distinguishing some certain classes, such as roads and bare soil. Also,
the experimental results show that the proposed SSECRF algorithm efficiently integrates the spatial,
spectral, and emissivity information and performs better than the traditional methods using raw
radiance from thermal infrared hyperspectral imagery data, with a kappa value of 0.9137.

Keywords: image fusion; thermal infrared hyperspectral imagery; conditional random fields;
land-cover classification; emissivity

1. Introduction

Land-cover classification using remote sensing imagery enables us to recognize the physical
composition and characteristics of different land-cover types [1,2]. High-resolution visible imagery
has been the commonly used data sources for land-cover classification in recent years [3]. The spatial
characteristics of visible images reflect the contextual relationships, including the texture features [4],
morphological features [5], and object-based features [6], which are important for the classification
task. Nowadays, digital cameras are also mounted on the airplane or unmanned aerial vehicle and
are used to capture the visible imagery, which can provide detailed shape and texture information
with a fine resolution to distinguish the land-cover categories. However, the high spatial resolution
imagery acquired in the visible band may be limited at accurately distinguishing the land-cover
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types with similar spectral values, given that the three bands as R, G and B channels cannot provide
enough spectral information. Thermal infrared hyperspectral imagery is a very challenging data source
with high potential: it records the emissivity and temperature of the ground objects, regardless of
the illumination conditions [7]. The emissivity is closely related to the physical properties of ground
surface materials, so thermal infrared hyperspectral imagery is an additional data source for land-cover
classification, especially in mineral and urban areas. In addition, the spectral features of minerals in the
thermal bands are more salient than those in the visible bands [8], so thermal infrared hyperspectral
data can contribute to the urban materials mapping [9]. When conducting land-cover classification
fusing visible and thermal infrared hyperspectral imagery, it is intuitive to combine the respective
advantages of them efficiently to pursue the better land-cover classification results.

To encourage the fusion of visible and thermal infrared hyperspectral imagery to conduct urban
land-cover classification, a dataset was published in the 2014 edition of the IEEE Geoscience and
Remote Sensing Data Fusion Contest (DFC), involving coarse-resolution thermal infrared hyperspectral
imagery and fine-resolution visible imagery [10]. Based on this DFC dataset, research has been
carried out on fusion-based urban classification. Michaelsen [11] utilized self-organizing maps for
semi-supervised learning and visualization of the partially labeled data in order to properly fuse the
color and texture features from the visible imagery with the thermal spectra from the thermal infrared
hyperspectral imagery. Hasani et al. [12] carried out principal component analysis (PCA) transform on
the thermal infrared hyperspectral imagery and extracted the gray-level co-occurrence matrix (GLCM),
the morphological profile (MP), and the structural feature set (SFS) from the visible data. Finally, they
calculated the vegetation index (VI) by calculating the mean value of the thermal infrared hyperspectral
imagery bands and the red band of the visible imagery. Li et al. [13] used image gap inpainting to deal
with the swath inconsistency between the thermal infrared hyperspectral imagery and visible imagery,
and Li also developed a road extraction method through fusing the classification result of the thermal
infrared hyperspectral imagery and the segmentation result of the visible imagery to improve the
overall classification accuracy. Lu et al. [14] proposed a decision-level-based synergetic classification
method to improve the overall classification accuracy of the DFC dataset while minimizing the
misclassification of roofs and trees at the same time. In addition, feature extraction is an important
process to reduce the dimension of the DFC dataset before classification. Marwaha et al. [15] compared
the object-oriented and pixel-based classification approaches on the DFC dataset, and concluded
that the object-oriented image analysis technique obtains a high individual user’s accuracy for each
classified land-cover class. Akbari et al. [16] used only the thermal infrared hyperspectral imagery
of the DFC dataset to map urban land cover. In this method, a support vector machine (SVM)
algorithm was first adopted to classify the thermal infrared hyperspectral imagery data, and then
a marker-based minimum spanning forest (MMSF) algorithm was applied to increase the accuracy
of the less accurately classified land-cover types. Samadzadegan et al. [17] used a semi-supervised
local discriminant analysis (SLDA) method to extract features from the thermal infrared hyperspectral
imagery data, and extracted spectral and texture features from the visible data. After the spatial-spectral
feature space was constructed, a cuckoo search optimization algorithm with mixed binary-continuous
coding was adopted for feature selection and SVM parameter determination. To sum up, the existing
studies have deemed the thermal infrared hyperspectral data to be a multidimensional data input, and
they processed the thermal infrared hyperspectral imagery data of the DFC dataset in the traditional
way, where only the raw radiance was considered in the classification task. However, they did not
extract the emissivity information from the thermal infrared hyperspectral imagery nor utilize it in the
classification task.

In the proposed method, to make full use of the characteristics of the thermal infrared
hyperspectral imagery, the emissivity information is used in the classification task. In addition,
to take full advantage of the spatial and spectral features of the visible imagery, a conditional random
field (CRF) algorithm fusing spatial, spectral, and emissivity information, namely SSECRF, is proposed
to integrate the visible imagery and the thermal infrared hyperspectral imagery. In the SSECRF
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algorithm, the spatial, spectral, and emissivity information is modeled by the potential function. The
main contributions of the proposed method are as follows.

(1) Multi-feature fusion framework for high-resolution visible imagery. In the proposed
classification framework, features from the high-resolution visible imagery are extracted
for different purposes. The spectral feature provides the fundamental information of the
ground-object categories, and the visible difference vegetation index (VDVI) [18] is adopted for
its effectiveness in green plant separation. In addition, texture features and object-based features
are extracted to utilize the spatial correlation between neighboring pixels. A multi-feature fusion
framework for the visible data is proposed to integrate the above features to form a spectral-spatial
feature set, to realize the feature representation of the high-resolution visible imagery.

(2) Emissivity retrieval from the thermal infrared hyperspectral imagery. The thermal infrared
hyperspectral imagery is a potential data source for the identification of man-made objects. In the
proposed approach, the emissivity information is retrieved using an automated atmospheric
compensation and temperature-emissivity separation (TES) method, called the FLAASH-IR (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes—Infrared) algorithm [19], and it is
used to construct the spatial-spectral-emissivity feature set. The feature set is then input to the
unary potential term in the SSECRF algorithm, leading to a better classification performance.

(3) Spatial-spectral-emissivity land-cover classification based on conditional random fields
(SSECRF). The CRF model can incorporate the spatial contextual information in both the labels
and observed data. In the proposed SSECRF algorithm, the spatial-spectral feature set from the
visible imagery and the emissivity from the thermal infrared hyperspectral imagery are integrated
by constructing the energy function to carry out land-cover classification. The spatial-spectral
feature and emissivity feature are fused in the unary potential by calculating the probability.
The pairwise potential is modeled to consider the spatial correlation of the given imagery, and
adjacent pixels can usually be assumed to be the same class. The pairwise potential aims to
solve the misclassified categories by utilizing the shape, texture, and spectral features. The
spatial, spectral, and emissivity information are fused efficiently in the SSECRF algorithm by the
potential terms.

The DFC dataset was adopted to confirm the effectiveness of the proposed SSECRF algorithm,
and it was found that the proposed algorithm outperforms the comparative methods in both visual
performance and quantitative assessment.

The rest of this paper is organized as follows. Section 2 provides some information related to the
experimental datasets. Section 3 introduces some of the basic concepts of emissivity retrieval and CRF,
and the proposed algorithm for fusing the visible and thermal infrared hyperspectral imagery data.
Meanwhile, we also describe the features extracted from these two types of imagery. In Section 4, we
discuss the classification results and parameter sensitivity. Finally, the conclusion is drawn in Section 5.

2. Materials

2.1. Study Site

The study site adopted for this research is located in the Black Lake area of Thetford Mines,
province of Québec, Canada (46.047927◦ N, 71.366893◦ W), with a variety of natural and man-made
objects. Thetford has a temperate marine climate with generally light precipitation throughout the year.
The world-famous Thetford mining district (which ceased operations in 2011) lies within an ophiolite
complex, an accreted remnant of ancient oceanic crust. Its igneous lithologies have been serpentinised
to provide large-scale occurrences of exploitable asbestos minerals. A large amount of chrysotile and
white asbestos can be mined from it, for which it has an international reputation. In nearby urban
areas, the roads are mainly made of concrete; asphalt shingles are used for the roofs and flat roofs are
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often covered with an elastomeric membrane. Materials used for roofs, such as garages or sheds, are
usually made of sheet metal.

2.2. Dataset Used

The experiments utilized two images with different resolutions covering the same urban area near
Thetford Mines in Canada: a coarse-resolution thermal infrared hyperspectral image (Figure 1a) with
a 1-m spatial resolution, and a fine-resolution visible image (Figure 1b) at a 0.2-m spatial resolution.
The coarse-resolution image was acquired by Hyper-Cam, which is an airborne long wave infrared
(LWIR) hyperspectral imagery. The imagery has a spatial dimension of 751 × 874 pixels and has
84 spectral bands between 868 and 1280 cm−1 (7.8 µm and 11.5 µm) at a spectral resolution of 6 cm−1

(full-width half-maximum). The fine-resolution image was acquired using a digital color camera,
mounted on the same airborne platform. This image is composed of a series of spatially disjoint
sub-images, and red, green, and blue spectral channels, with a spatial size of 3769 × 4386 pixels, which
is the uncalibrated digital data. The two sensors were integrated on a gyro-stabilized platform in
a fixed-wing aircraft. The images were acquired simultaneously on 21 May 2013, between 22:27:36 and
23:46:01 UTC at a height of 2650 ft (807 m). The training samples with seven land-cover classes are
provided using one data subset, as shown in Figure 1c, and the test samples are shown in Figure 1d.
Table 1 lists the number of training and test samples for each class.
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Figure 1. Experimental datasets. (a) The visible image. (b) Gray-scale representation of the thermal
infrared hyperspectral image. (c) The training samples. (d) The test samples.

Table 1. Class information for the datasets.

Class Training Samples Test Samples

Road 112,457 809,098
Tree 27,700 100,749

Red roof 46,578 136,697
Grey roof 53,520 142,868

Concrete roof 97,826 109,539
Glass 185,329 103,583

Bare soil 44,738 49,212
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3. Spatial-Spectral-Emissivity Land-Cover Classification Based on Conditional Random
Fields (SSECRF)

3.1. Background

3.1.1. Emissivity Retrieval from the Thermal Infrared Hyperspectral Imagery

Land surface emissivity (LSE), which can be retrieved from the thermal infrared hyperspectral
imagery, is an intrinsic property of natural materials, and is sensitive to the material composition,
especially to the silicate minerals [20]. The physical background is the fundamental spectral absorption
features of silicate minerals and carbonates, which are the major components of the terrestrial surface
and the primary constituent of man-made construction objects. The emissivity is critical data for
studying soil development and erosion, bedrock mapping, etc. [21], and it is also used to study the
relationship between LSE and surface energy budgets [22]. Emissivity data are widely used in mineral
mapping [23], gas detection [24], vegetation monitoring [25], etc. With the continuous improvement
of sensor manufacturing technology, the acquisition of airborne thermal infrared hyperspectral data
has been made possible by the Hyper-Cam and Thermal Airborne Spectrographic Imager (TASI)
instruments, which can help us to perform target detection and material classification, regardless of
illumination conditions. In the urban land-cover classification task, the thermal infrared hyperspectral
imagery is a potential data source for the identification of man-made objects.

3.1.2. Conditional Random Fields (CRF)

CRF is a probabilistic discriminative model, and is the statistical model first used to mark and
segment serialized data in 2001 by Lafferty et al. [26]. It directly models the posterior probability of
the given observation data so that the contextual information can be considered in both the observed
data and the labeled data. As a context classification model, Kumar and Hebert [27] successfully
extended this model to two-dimensional image classification and processing in 2003, and the CRF
method has also been successfully applied in hyperspectral imagery classification [28,29], man-made
scene interpretation [30], building detection from high-resolution interferometric synthetic aperture
radar (InSAR) data [31], change detection [32], and high-resolution image classification, integrating
the spectral, spatial, and location information by adding the additional higher-order potential in the
pairwise CRF model [33].

CRF constructs the conditional probability distribution model of the whole label variables under
the condition that the observation variable is given, i.e., to model the maximum a posteriori probability
(MAP) distribution directly. In order to build distributions over the combined set of input variables y
that are always called the observed field, and the output variables x that are the label field that we expect
to predict, the probabilistic discriminative model can model the posterior probability distribution
under the condition of the given observation data as a Gibbs distribution [34] with the following form:

P(x|y) = 1
Z(y)

exp

{
−∑

c∈C
ψc(xc, y)

}
(1)

where y represents the observed data from the input image, and x is the corresponding class labels
for the entire image. Z(y) = ∑x exp{−∑c∈C ψc(xc, y)} is the partition function, and ψc(xc, y) is the
potential function. Theoretically, the potential function based on the size of the variables in the cliques
can be divided into unary potentials, pairwise potentials, and even high-order potentials, and the
corresponding Gibbs energy function can be defined as follows:

E(x|y) = − log P(x|y)− log Z(y) = ∑
c∈C

ψc(xc, y) (2)
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In the classification of remote sensing imagery, the commonest model is called pairwise CRF,
which includes unary and pairwise potentials [35], as shown in the Figure 2 and following formula:

E(x|y) = ∑
i∈V

ψi(xi, y) + λ ∑
i∈V,j∈Ni

ψij(xi, xj, y) (3)
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Figure 2. Schematic diagram of conditional random fields (CRF) in image classification.

The unary potential ψi is a single point of potential energy which constructs the relationships
between observation variables and the corresponding label field. At the same time, pairwise potential
ψij, a two-position potential energy, considers the spatial-contextual interaction between the observed
variables and the label variables, so it can be regarded as a model that can establish the spatial
interaction of the paired random variables in the local neighborhood.

CRF is used to model the posterior probability P(x|y), as mentioned above. Based on the Bayesian
MAP rule, the image classification is designed to find the label image x by maximizing the posterior
probability distribution function P(x|y), and it can be defined as [35]: xMAP = argmaxxP(x|y). Thus,
the largest posterior category marker of the CRF can be expressed as:

xMAP = argmaxxP(x|y) = argminxE(x|y) (4)

Thus, maximizing the posterior probability distribution P(x|y) is equivalent to minimizing the
energy function E(x|y).

3.2. Methodology of SSECRF

In this paper, in order to make full use of the spatial-spectral-emissivity information for precise
land-cover classification, the SSECRF algorithm is proposed to integrate the emissivity information
retrieved from the thermal infrared hyperspectral imagery and the spatial and spectral information
from the visible data. The emissivity and the spatial-spectral feature set are fused in the SSECRF
algorithm using different potentials. The main procedure of the proposed method is illustrated in
Figure 3. Firstly, the emissivity information is retrieved from the thermal infrared hyperspectral
imagery data, and is upsampled to the same spatial resolution as the visible data. The spatial-spectral
feature set is then constructed by extracting the different features from the visible data. Furthermore,
the unary potential is modeled by integrating the emissivity and the spatial-spectral feature set, and the
pairwise potential is modeled to consider the spatial interactions of the visible data in the neighborhood
pixels. The final classification map is obtained when the SSE energy function is minimized.
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Figure 3. The proposed Spatial-Spectral-Emissivity Land-Cover Classification Based on Conditional
Random Fields (SSECRF) algorithm for fusing thermal infrared hyperspectral imagery and
visible imagery.

3.2.1. Feature Extraction from the Thermal Infrared Hyperspectral Imagery

1. Emissivity retrieval from the thermal infrared hyperspectral imagery

The emissivity retrieved from the thermal infrared hyperspectral imagery is often seen as
an indicator of material composition, i.e., the intrinsic property description of natural materials [20].
The emissivity information can help us to classify and identify minerals more accurately. In this
paper, the FLAASH-IR [19] algorithm is used to transfer the raw radiance value of thermal infrared
hyperspectral imagery to emissivity. The algorithm suppresses the influence of the atmosphere in
the radiance spectra, and it can obtain a competitive emissivity result from the thermal infrared
hyperspectral imagery.

2. Feature Dimensionality Reduction for the Emissivity Imagery

PCA is widely used for feature dimensionality reduction in remote sensing imagery preprocessing,
and it can be described as a multidimensional orthogonal linear transformation method based on
statistical features. However, the PCA transform is sensitive to image noise [36], i.e., a principal
component with a large amount of information may have a lower signal-to-noise ratio. Therefore,
it is not the best method to transfer the emissivity imagery from a high-dimensional feature space
to a lower one. The minimum noise fraction (MNF) transform, as proposed by Green et al. [37],
consists of principal component analysis with two stacking treatments. The noise in the transformation
process has unit variance, and the band is not relevant, so the MNF transform is superior to the PCA
transform [38].

3.2.2. Multi-Feature Extraction from the Visible Imagery

In general, the texture, spatial, and object-based features are extracted to complement the spectral
information. In this paper, the VDVI image, texture images, spectral feature, and object-based spatial
image are used to make up the feature map.

1. Spectral Feature

Although visible images are lacking in abundant spectral information, they can be used for the
identification of objects that have a large difference in spectral properties. The spectral feature is
expressed as follows:

Fspectral = [xi]
T =

[
xr

i , xg
i , xb

i

]T
(5)

where xi is defined as the spectral vector in site i.
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2. Visible Difference Vegetation Index (VDVI)

In remote sensing applications, there are more than 100 types of vegetation index (VI), but most of
the vegetation indices are calculated with the visible and near-infrared bands, including the normalized
difference vegetation index (NDVI), the ratio vegetation index (RVI), and the enhanced vegetation
index (EVI). Considering the spectral characteristics of visible imagery, Wang et al. [18] referred to the
construction principles and forms of the NDVI and proposed the comprehensive utilization of the red,
green, and blue bands to generate the VDVI, which is calculated as follows:

VDVI =
2× ρgreen − (ρred + ρblue)

2× ρgreen + (ρred + ρblue)
(6)

where ρgreen, ρred, and ρblue are the digital number or reflectance values in the green, red, and blue
bands for visible imagery.

3. Texture Feature

The texture feature of visible imagery plays a critical role in distinguishing the objects which have
similar spectral features. A texture feature which considers the spatial relationship of pixels is the
GLCM. The GLCM describes the texture of an image by calculating the frequency of the pixel pairs
with specific values and in a specified spatial relationship occurring in the image, creating a GLCM, and
then extracting statistical measures from this matrix. A total of 14 kinds of texture features are optional
in remote sensing applications. In urban classification, the object shape and material properties of the
ground objects are generally considered. The mean reflects the regularity of the texture. If the texture
is disorganized and difficult to describe, the value will be small. Contrarily, the texture is regular and
easy to describe when the value is larger. The homogeneity measures the local gray uniformity of
an image. If the texture of different regions lack of changes and the local gray level of the image is
uniform, then the homogeneity will be larger. The contrast directly reflects the brightness contrast
of a pixel and its neighboring regions. If the element far from the diagonal has a greater value, i.e.,
the brightness of this image change quickly, then the contrast will be larger. Meanwhile, the contrast
reflects the clarity and texture depth of the image. Therefore, in the proposed multi-feature fusion
framework, the texture features of mean, homogeneity, and contrast are obtained to describe the spatial
texture feature.

The features can be represented as the following forms:

Ftexture_r, Ftexture_g, Ftexture_b =
[

xmean
i , xhomogeneity

i , xcontrast
i

]T
(7)

4. Object-Based Feature

Visible imagery has abundant spatial, texture, and spectral characteristics. In order to alleviate
the effect of the within-class spectral variability and noise in the feature space, a segmentation
prior is essential. Generally speaking, object-based feature extraction can be divided into object
construction and feature extraction. The quality of the segmentation is related to the scale of the
mergence and segmentation options, and the performance of the segmentation has a direct influence
on the classification map. Considering the distribution of the land-cover types and the description
rules of the spatial attributes, compactness, roundness, form factor, and rectangular fit are defined as
the object-based features in our method. The object-based features we extract from the visible image
can be shown as:

Fspatial =
[

xcompactness
i(m,n) , xroundness

i(m,n) , x f orm_ f actor
i(m,n) , xrectangular_ f it

i(m,n)

]T
(8)

where xi denotes the pixel site of the image, and (m, n) is the optimum scale of the mergence and
segmentation in the above formula.



Remote Sens. 2017, 9, 910 9 of 19

3.2.3. Construction of the Spatial-Spectral-Emissivity (SSE) Feature Set

For visible imagery, the digital number (DN) value ranges from 0 to 255, but the emissivity value
varies from 0 to 1, and the other feature information changes from 0 to 0.0001, etc. If all the original
feature images are integrated directly, some of the characteristics will have an exaggerated influence,
while some will be completely ignored. Normalization preprocessing of the feature images can sum up
the statistical distribution to uniform samples and does not change the nature of the image. In view of
this situation, it is necessary to balance the contribution degree of each feature map to the final fused
image with the following formula:

DNnormalized =
DNi − DNmin

DNmax − DNmin
(9)

where DNi records the feature value at site i, and DNmin and DNmax represent the maximum and
minimum feature values of the whole feature image. The SSE feature set can be written as a vector:

FSSE =
(

Fthermal_emissivity, Fspectral , FVDVI , Ftexture, Fspatial

)
(10)

3.2.4. Classification Based on SSECRF

As noted in Section 2, in the remote sensing imagery classification task, the most widely used
model is the pairwise CRF model, which can be written as a sum of the unary potential term and
pairwise potential term. It is equivalent to the Gibbs energy in Equation (3), where ψi(xi, y) is the
unary potential term and ψij(xi, xj, y) is the pairwise potential term. The latter item is defined on the
local neighborhood Ni of site i. The non-negative constant λ is the adjusting parameter of the pairwise
potential term, which weighs the influence of these two potential terms. After modeling the basic
framework, how to model the potential function needs to be considered, as well as optimizing the
energy function to find the final class labels.

1. SSECRF Energy Function

Here, we redefine Equation (3) in the SSECRF algorithm, so the unary potential can be written as
ψi(xi, SSE), integrating the SSE feature obtained in the multi-feature extraction from the visible and
thermal infrared hyperspectral imagery data, where SSE is an observation field representing the SSE
feature set, and the pairwise potential is ψij(xi, xj, SVIS), representing the spatial interaction in the
visible imagery, where SVIS is also an observation field representing the spectral and spatial contextual
information of the visible imagery. Therefore, the well-studied pairwise CRF can be reformulated with
the sum of the unary and pairwise potentials, and the energy function can be shown as follows:

E(x|y) = ∑
i∈V

ψi(xi, SSE) + λ ∑
i∈V,j∈Ni

ψij(xi, xj, SVIS) (11)

2. Unary Potential

The unary potential ψi(xi, SSE) is modeled to integrate the emissivity information with the
spatial-spectral feature set from the visible imagery. The complementary information in the two types
of imagery is then used to conduct the identification of land-cover types. The unary potential models
the relationship between the label image and the observed image. In other words, it considers the
calculation cost of each pixel belonging to each specific class. Therefore, under the condition that
the given image feature vector is known, the classification algorithm can be used to calculate the
probability estimation of each pixel independently. Here, the “given image feature vector” is defined
as the “fusion image”, which makes full use of the emissivity and spatial-spectral feature set of the
visible imagery to help discriminate the various land-cover types. Therefore, the different features
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that are sensitive to the different ground classes are considered in the classification task. The unary
potential can be defined as [39]:

ψi(xi, SSE) = − ln(P(xi = lk| fi(SSE))) (12)

where fi(SSE) represents the feature vector consisting of the emissivity and other feature information
at site i, and P(xi = lk| fi(SSE)) is the probability of pixel xi belonging to class label lk, based on the
feature vector. Minimizing the unary potential function can be considered as image classification. Due
to the SVM algorithm being known to perform well in remote sensing imagery classification in the
case of limited samples [40], the probability estimation is obtained by SVM.

3. Pairwise Potential

Due to the spectral variability and image noise in the visible imagery, the spectral vectors of
adjacent pixels in the homogeneous regions of the image are not equal. Based on the spatial correlation
of the ground features, adjacent pixels can usually be assumed to be the same object. The pairwise
potential ψij(xi, xj, SVIS) is modeled to consider the a-priori smoothness and the spatial patterns of
the land-cover types, such as the shape and size information, etc. The abundant spatial features of
the visible imagery play an important role in identifying the types of certain pixels. In our algorithm,
the pairwise potential energy simultaneously considers the observed image and the label image to
model the spatial-contextual relationship of each pixel and its associated neighborhood [41]. This can
ensure that the adjacent pixels in the homogeneous areas obtain the same label, while retaining the
boundaries of adjacent areas at the same time. The pairwise potential function take the form of [39,42]
and can be defined as:

ψij(xi, xj, SVIS) =

{
0 if xi = xj
gij(SVIS) + θ otherwise

(13)

gij(SVIS) = dist(i, j)−1 exp(−β‖SVIS_i − SVIS_j‖2) (14)

where gij models the spatial interaction of adjacent pixels xi and xj, measuring the difference in
appearance between them, and where dist(i, j) is the Euclidean distance between the adjacent pixels,
and SVIS_i and SVIS_j represent the spectral feature vector in sites i and j, respectively. The parameter
β is set to the mean square deviation of the feature vector variance between the adjacent pixels in the

image, which is written as β = (2
〈
‖SVIS_i − SVIS_j‖2

〉
)
−1

, where 〈.〉 indicates the mean calculation
over the image.

The pairwise potential energy makes it possible to consider the spatial interaction between local
pixels in the classification. When minimizing the energy function E(x|y), it is still expected to retain
the continuity of the labels and make the adjacent pixels in the homogeneous regions have the same
label in the classification map.

4. Inference Algorithm

After the construction of the potential function in SSECRF, it is critical to optimize the energy
function E(x|y) and obtain the final labels. The inference algorithm is designed to predict the optimal
class labels, which correspond to calculating the minimum value of the energy function. A number
of different approximate inference algorithms have been put forward to obtain the optimal labels,
including iterated conditional modes and graph cuts. In this paper, the α-expansion algorithm based
on graph cuts [43] is used for the multi-class labeling problem. A local search strategy is designed to
solve the problem of the small moving space easily falling into local optima for the energy function
satisfying the multivalued variables. The local search strategy of the algorithm continues to calculate
the global minimum values in the binary labeling problem through the graph cuts algorithm in the
loop. The graph cuts based on the α-expansion algorithm can be considered to simplify the multi-class
labeling problem to a sequence of optimization subproblems with binary labels, which can be easily
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optimized by the graph-cut method. Also, the α-expansion inference algorithm is described in the
following. The current label is initialized as xp =

{
xp

i , i ∈ V
}

, and the α-expansion algorithm gives
each pixel the following choices: keeping the current label unchanged or converting to a specific label
α ∈ L = {1, 2, . . . , K}. All the pixels of the image make a choice simultaneously; the algorithm has
exponential-level moving space with respect to any particular α, which ensures that the algorithm has
a strong local minimum property. For particular α, the binary labeling problem in the α-expansion
algorithm can obtain the optimal value xn =

{
xn

i , i ∈ V
}

through the graph cuts algorithm to optimize
the objective function Eα(xp).

4. Experiments and Analysis

4.1. Experimental Description

The multi-feature set extracted from the visible imagery and the emissivity retrieved from the
thermal infrared hyperspectral imagery using FLAASH-IR were used to form the SSE feature set. In
this paper, the VDVI is calculated with the red and green band from the visible image. The GLCM
texture, that is Haralick measures (mean, homogeneity, contrast), is used to characterize the texture
information with a window size 3, considering the time efficiency when calculating the GLCM texture
of a large imagery. For the object-based feature, the scale of mergence and segmentation is selected
based on some additional experiments. The object-based feature image is obtained with the different
scales; then, they were input to the classifier to get a classification map. A high classification accuracy
represents the optimal scales. In the paper, the scale of mergence and segmentation is (80, 90). At the
same time, the emissivity information was resampled to the same resolution with the visible imagery
and the first five components of the MNF was used in the SSE feature set. All the classification
experiments were conducted by supervisor classification method using the training samples, and these
samples are shown in Figure 1c, and the classification results were assessed by calculating the overall
accuracy and kappa coefficient using the test samples shown in Figure 1d.

4.2. Experimental Results and Analysis

Experiments were undertaken to verify the classification performance of the proposed SSECRF
algorithm. At the same time, the SSECRF result was compared with the result of the SSE feature
set input into the SVM classifier, and the SSECRF result was also compared with the other
existing methods.

4.2.1. Validity Analysis of the Multi-Feature Fusion Framework for the High-Resolution
Visible Imagery

In order to verify the effectiveness of the features extracted from the visible imagery (VDVI,
texture feature, and object-based feature map), the features were individually fused with the visible
data and classified by the SVM algorithm.

From Table 2, it can be seen that the use of only the visible imagery can obtain a desirable
classification result. However, the overall accuracy (OA) and kappa coefficient are improved greatly
using the composite of VIS + Tex. + Obj. + VDVI (i.e., the spatial-spectral feature set), indicating that
the extracted features are effective in the classification task.

Table 2. Accuracy assessment for the visible imagery with different combinations of extracted features,
classified by support vector machine (SVM).

VIS 1 VIS + VDVI 2 VIS + Obj. 3 VIS + Tex. 4 VIS + Tex. + Obj. VIS + Tex. + Obj. + VDVI

OA 82.3218 82.4446 81.8945 81.7489 84.9826 85.1477
Kappa 0.7438 0.7452 0.7427 0.7401 0.7835 0.7857

1 VIS is visible imagery. 2 Visible Difference Vegetation Index (VDVI) is regarded as the VDVI feature map.
3 Obj. represents the object-based feature map. 4 Tex. represents the texture feature map calculated with the
visible imagery.
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After separate fusion of some of the features extracted from the visible data, the accuracy of certain
classes increases or decreases slightly, as shown in Figure 4. This indicates that some combinations
of feature maps are sensitive to specific classes. For instance, when adding the object-based feature
in visible imagery, trees and grey roofs can be identified well, but the accuracy of vegetation is
decreased. Finally, it can be expected that the OA will be further improved by integrating the emissivity
information retrieved from the thermal infrared hyperspectral imagery data.
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Figure 4. Accuracy of the classification results for each class when fusing the visible imagery with
different combinations of extracted features.

4.2.2. Validity Analysis for the SSE Feature Set

The emissivity imagery and the raw thermal infrared hyperspectral imagery data were both
upsampled to the same high resolution as the visible data. The first five components of these two
images were used for the integration with the spatial-spectral feature set from the visible imagery,
respectively, and they can be represented as the SSE feature set and the SSR feature set (integrating the
raw radiance image with the spatial-spectral feature set). The SSE feature set was constructed based
on the retrieved emissivity information from the raw thermal infrared hyperspectral imagery data.
The constructed feature sets were input into the SVM classifier separately, and the confusion matrices
were obtained using the test samples. As shown in Tables 3 and 4, by the use of the SSE feature set, the
OA is increased from 91.7864 to 91.8101, and the kappa is increased from 0.8775 to 0.8779. It can be
revealed that the classification results obtained using the SSE feature set improve the identification of
the bare soil compared with the results obtained using the SSR feature set, and the confusion between
bare soil and red roof is improved. In addition, the accuracies of the roof classes are improved slightly
when using the SSE feature set. Overall, the results show that the construction of the SSE feature set
leads to a better classification performance.

Table 3. Accuracy assessment of the classification results obtained with the SSR feature set.

Road Trees Red Roof Grey Roof Concrete Roof Vegetation Bare Soil

Road 92.83 0.18 0.04 1.84 0.79 1.33 0.63
Trees 0.05 89.32 0.13 0 0.03 20.65 0

Red roof 0.01 0.02 96.57 4.31 0.01 0.01 7.39
Grey roof 5.24 0.31 2.77 91.02 3.55 0.06 0.25

Concrete roof 1.84 0 0.22 2.84 95.62 0.01 0.13
Vegetation 0 10.03 0.21 0 0 77.93 2.37
Bare soil 0.03 0.14 0.07 0 0 0.01 89.22
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Table 4. Accuracy assessment of the classification results obtained with the SSE feature set.

Road Trees Red Roof Grey Roof Concrete Roof Vegetation Bare Soil

Road 92.9 0.19 0.03 2.26 0.72 1.16 0.5
Trees 0.04 89.23 0.1 0 0.01 19.97 0

Red roof 0.01 0.02 95.89 3.48 0.01 0.01 3.13
Grey roof 5.11 0.13 2.85 90.6 4.83 0.05 0.3

Concrete roof 1.83 0 0.11 3.65 94.37 0.01 0.39
Vegetation 0.01 10.35 0.12 0 0 78.46 1.96
Bare soil 0.1 0.07 0.91 0 0.05 0.35 93.71

4.2.3. Validity Analysis of the SSECRF Algorithm

For the classification task, the visual performance is of importance for the proposed method, so
the final classification map obtained by the SSECRF algorithm is shown in Figure 5. The classification
map exhibits a good appearance in some classes, except for the misclassification between trees and
vegetation. It preserves the more useful information and achieves a complete shape feature with
fewer meaningless regions and less salt-and-pepper classification noise. However, the over-fitting
phenomenon can be observed in the road area. On the whole, the proposed SSECRF algorithm shows
a pleasing visual performance.
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Figure 5. The classification map obtained by the SSECRF algorithm. The representative areas are
selected to show the details of the classification results in some specific classes. The black boxes 1 and 2
contain some roads, roofs and vegetation. A baseball field can be obviously seen in black box 3, and
a large-area mixture of concrete roof and road is shown in black box 4.

At the same time, the quantitative confusion matrix can also reflect the performance of the
classification result. The given test samples were used to evaluate the effectiveness of the proposed
method, and the corresponding quantitative results are reported in Table 5. The class accuracies are all
more than 90%, except for the trees and vegetation, which are confused. In summary, the quantitative
evaluation result shows an effective classification performance after the fusion of the visible and
thermal infrared hyperspectral imagery by SSECRF.

Table 5. Accuracy assessment of the classification map obtained by SSECRF.

Road Trees Red Roof Grey Roof Concrete Roof Vegetation Bare Soil

Road 94.58 0.01 0 2.30 0.25 0.94 0.80
Trees 0 91.42 0.07 0 0 12.89 0

Red roof 0 0 97.39 3.04 0 0 0.21
Grey roof 4.80 0.03 2.44 94.66 4.19 0 0

Concrete roof 0.62 0 0 0 95.56 0 0
Vegetation 0 8.54 0 0 0 86.16 0.05
Bare soil 0 0 0.20 0 0 0 98.93
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In the proposed algorithm, the SSE feature set is used to model the unary potential. In Section 4.2.2,
the SSE feature set was input into SVM (SSE-SVM) to obtain the classification map, obtaining a result
that was better than the results obtained using the SSR feature set. From the confusion matrices, it can
be seen that CRF performs well in distinguishing all the classes, especially grey roof, vegetation, and
bare soil.

At the same time, other experiments were conducted with SSECRF using the different feature sets
to model the unary potential term. The spatial-spectral feature set from the visible imagery and the
emissivity information used separately in the SSECRF algorithm are denoted as SS-CRF and E-CRF.
A comparison of the subset classification maps is shown in Figure 6, where it can be observed that
the SSE-SVM results contain much salt-and-pepper classification noise, and the SS-CRF and E-CRF
results lose much detailed information. At the same time, the kappa values of the classification results
are compared in Figure 7, which are all lower than the results obtained with SSECRF using the SSE
feature set.
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Figure 6. The subset classification results obtained by the SSECRF algorithm. The regions numbered 1,
2, 3 and 4 are the corresponding area subsets from the classification map in Figure 5.

In order to verify both the effectiveness of the proposed SSECRF algorithm and the effectiveness
of using the emissivity information to improve the classification accuracy, the kappa coefficients of the
top-six classification results [44] in the 2014 Data Fusion Contest, the published classification results
obtained with other methods, and the results of the proposed algorithm are compared in Figure 7.
All the experiments were undertaken under the same conditions, i.e., the same training samples and
test samples. The comparison shows that the classification results of the proposed method show
a competitive advantage, but the results are not as good as the results of 1st place in the 2014 Data
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Fusion Contest and the algorithms proposed later. It is possible that the results of the proposed method
could be improved when the misclassification of vegetation and trees is solved.
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Figure 7. The performance of the proposed SSECRF method compared with the existing methods,
by kappa coefficient.

4.3. Sensitivity Analysis

The final experimental results demonstrate that the SSECRF algorithm efficiently integrates the
respective advantages of the visible and thermal infrared hyperspectral imagery, and it shows a good
performance in land-cover classification. However, two parameters λ and θ are needed, as described
in the SSECRF energy function E(x|y), which have an effect on the final classification result. These two
parameters mainly relate to the spatial interactions in the pairwise potential function. An additional
120 experiments were conducted to make a sensitivity analysis. Parameter λ ranged from 0.2 to 6.8
with a step length of 0.6, and parameter θ varied from 1 to 5 with an interval of 1. Figure 8 shows the
relationship between the OA and the parameter selection in the SSECRF algorithm.
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Figure 8. Sensitivity analysis of parameters λ and θ. (a) The spatial-spectral feature set from the visible
imagery and the emissivity from the thermal infrared hyperspectral imagery input into the SSECRF
algorithm. (b) The spatial-spectral feature set from the visible imagery and the raw radiance of the
thermal infrared hyperspectral imagery input into the SSECRF algorithm.

For Figure 8a, the classification map was obtained integrating the spatial-spectral feature set
from the visible imagery and the emissivity from the thermal infrared hyperspectral imagery by the
SSECRF algorithm. The OA from 60 experiments exhibits a tendency to first rise and then decrease
slightly as parameter λ increases when keeping θ unchanged. It can be concluded that parameter λ
can make full use of the spatial-contextual information in the neighborhood, reducing the influence
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of the salt-and-pepper noise in the classification to improve the accuracy. However, when parameter
λ is increased beyond a certain value, the effect of the spatial smoothing is too much, resulting in
over-smoothing, so that the accuracy shows a downward trend. For parameter θ, which is a parameter
in the spatial smoothing term, it has a similar function to parameter λ. In addition, it has a fine-tuning
effect on the classification accuracy when keeping parameter λ constant.

For Figure 8b, the same experimental conditions were repeated with the same ranges of the two
parameters λ and θ, but the emissivity feature was replaced by raw radiance data of the thermal infrared
hyperspectral imagery when constructing the unary potential in SSECRF, and another 60 experiments
were conducted. It is worth noting that the OA of the best classification result is no better than the
best classification result obtained with the SSE feature set. Therefore, it can be proved that SSECRF is
a relatively stable algorithm, and the classification performance changes regularly with the change of
the parameters.

5. Conclusions

In this paper, the SSECRF algorithm has been proposed to efficiently integrate visible imagery and
thermal infrared hyperspectral imagery for land-cover classification. The existing methods of fusing the
visible and thermal infrared hyperspectral imagery do not take into account the emissivity information,
and only the raw radiance information of the thermal infrared hyperspectral imagery is employed. The
SSECRF algorithm considers the spatial-contextual information and spectral variability, and makes full
use of the emissivity to improve the final classification result. Firstly, features extracted from these two
types of imagery are used to fuse the SSE feature set. The unary potential and the pairwise potential are
then modeled as the SSE energy function. The unary potential is modeled to integrate the emissivity
information with the spatial-spectral feature set from the visible imagery, and the pairwise potential is
modeled using a spatial smoothing term to make full use of the spatial-contextual information. Two
parameters λ and θ have an influence on the pairwise potential term, and the choice of parameters
directly determines the classification results.

The experiments undertaken in this study confirmed that the proposed SSECRF algorithm can
efficiently integrate the visible and thermal infrared hyperspectral data, and a satisfactory classification
map can be obtained, where the spatial, spectral, and emissivity information are all considered to obtain
a better classification result. The final classification map shows a good performance and OA, especially
for certain classes, such as roads and bare soil, proving that the SSECRF algorithm is effective.

In the future, strategies will be investigated that could be applied in distinguishing the vegetation
and roofs class more accurately. Also, the temperature information retrieved from the thermal infrared
hyperspectral imagery will be also considered.
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