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Abstract: Ensemble learning is widely used to combine varieties of weak learners in order to
generate a relatively stronger learner by reducing either the bias or the variance of the individual
learners. Rotation forest (RoF), combining feature extraction and classifier ensembles, has been
successfully applied to hyperspectral (HS) image classification by promoting the diversity of base
classifiers since last decade. Generally, RoF uses principal component analysis (PCA) as the rotation
tool, which is commonly acknowledged as an unsupervised feature extraction method, and does
not consider the discriminative information about classes. Sometimes, however, it turns out to
be sub-optimal for classification tasks. Therefore, in this paper, we propose an improved RoF
algorithm, in which semi-supervised local discriminant analysis is used as the feature rotation tool.
The proposed algorithm, named semi-supervised rotation forest (SSRoF), aims to take advantage
of both the discriminative information and local structural information provided by the limited
labeled and massive unlabeled samples, thus providing better class separability for subsequent
classifications. In order to promote the diversity of features, we also adjust the semi-supervised
local discriminant analysis into a weighted form, which can balance the contributions of labeled and
unlabeled samples. Experiments on several hyperspectral images demonstrate the effectiveness of
our proposed algorithm compared with several state-of-the-art ensemble learning approaches.

Keywords: ensemble learning; hyperspectral; rotation forest; semi-supervised local discriminant
analysis

1. Introduction

Hyperspectral (HS) image classification always suffers from varieties of difficulties, such as high
dimensionality, limited or unbalanced training samples, spectral variability, and mixing pixels. It is
well known that increasing data dimensionality and high redundancy between features might cause
problems during data analysis, for example, in the context of supervised classification. A considerable
amount of literature has been published with regard to overcoming these challenges, and performing
hyperspectral image classification effectively [1]. Machine learning techniques such as artificial
neural networks (ANNs) [2], support vector machine (SVM) [3], multinomial logistic regression [4],
active learning, semi-supervised learning [5], and other methods like hyperspectral unmixing [6],
object-oriented classification [7], and the multiple classifier system [8] have been popularly investigated
recently as well.

Multiple classifier system (MCS), which is also sometimes named as classifier ensemble or
ensemble learning (EL) in the machine learning field, is a popular strategy for improving the
classification performance of hyperspectral images by combining the predictions of multiple classifiers,
thereby reducing the dependence on the performance of a single classifier [8–11]. The concept of
MCS, on the other hand, does not refer to a specific algorithm but to the idea of combining outputs
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from more than one classifier to enhance classification accuracy [12]. These outputs may result from
either the same classifier of different variants or different classifiers of the same/different training
samples. Previous studies have demonstrated both theoretically and experimentally that one of the
main reasons for the success of ensembles is the diversity among the individual learners (namely
the base classifiers) [13], because combining similar classification results would not further improve
the accuracy.

MCSs have been widely applied to HS remote sensing image classification. Two approaches
for constructing classifier ensembles are perceived as “classic”, bagging and boosting [14,15], and
afterwards numerous algorithms were successively derived from them. Bagging creates many
classifiers with each base learner trained by a new bootstrapped training data set [16]. Boosting
processes the data with iterative retraining, and concentrates on the difficult samples, with the goal of
correctly classifying these samples in the next iteration [17,18]. Ho [19] proposed random subspace
ensembles, which used random subsets of features instead of the entire feature set for each individual
classifier. The rationale of the random subspace is to break down a complex high dimensional problem
into several lower dimensional problems, thereby alleviating the curse of dimensionality. By integrating
bagging and random subspace approaches, Breiman [20] proposed the well-known random forest (RF)
algorithm [21,22]. The characteristics of RF, including reasonable computational cost, inherent support
of parallelism, highly accurate predictions, and ability to handle a very large number of input variables
without overfitting, make it a popular and promising classification algorithm for remote sensing
data [23–25]. Generally, decision tree (DT) is used as the base classifier in ensemble learning because
of its high computation efficiency, easy implementation, and sensitivity to slight changes in data.
Recently, some researchers incorporated several prevalent machine learning algorithms into ensemble
learning. Gurram and Kwon [26] proposed a sparse kernel-based support vector machine (SVM)
ensemble algorithm that yields better performance compared with the SVM trained by cross-validation.
Samat et al. [27] proposed Bagging-based and Adaboost-based extreme learning machines to overcome
the drawbacks of input parameter randomness of traditional extreme learning machines. For a more
detailed description about EL, refer to [28,29].

In a paper by Rodriguez and Kuncheva [30], the authors proposed a new ensemble classifier called
rotation forest (RoF). By applying feature extraction (i.e., principal component analysis, PCA) to the
random feature subspace, RoF greatly promotes the diversity and accuracy of the classifiers. Thereafter,
several improved algorithms were proposed based on the idea of RoF, for example, Anticipative
Hybrid Extreme Rotation Forest [31], rotation random forest with kernel PCA (RoRF-KPCA) [32].
Chen et al. [33] proposed to combine rotation forest with multi-scale segmentation for hyperspectral
data classification, which incorporated spatial information to generate the classification maps with
homogeneous regions.

A massive number of research studies show that RoF surpasses conventional RF due to the
high diversity in training sample and features. Nevertheless, it is well documented in the literatures
that PCA is not particularly suitable for feature extraction (FE) in classification because it does not
include discriminative information in calculating the optimal rotation of the axes [30,34,35]. Although
the authors explain that PCA is also valuable as a diversifying heuristic, it is expected to achieve
better classification results if we try to find good class discriminative directions. Therefore, in this
paper, we present an improved ensemble learning method, which uses the semi-supervised feature
extraction technique instead of PCA during the “rotation” process of classical RoF approach. The
proposed algorithm, named semi-supervised rotation forest (SSRoF), applies the semi-supervised
local discriminant analysis (SLDA) FE method, which was proposed in our previous work [36], to
fully take advantage of both the class separability and local neighbor information, with the aim of
finding better rotation directions. In addition, to further enhance the diversity of features, we propose
to use a weighted form of SLDA, which can balance the values of labeled samples and unlabeled
samples. The main contributions of this paper are as follows: (1) an exploration of the benefit of the
unlabeled samples in conventional ensemble learning methods; (2) an adjustment of the previous
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SLDA technique to a weighted generalized eigenvalue problem; (3) the construction of an ensemble
of classifiers, in which the weights can be randomly selected, thereby reducing the human effort for
determining the optimal parameters.

The remainder of this paper is organized as follows. Section 2 describes the study data sets, and
elaborates the proposed semi-supervised rotation forest algorithm. For better understanding, the
SLDA feature extraction method is also briefly introduced. Section 3 reports the experiments and
results. Finally, the conclusions are drawn in Section 4.

2. Materials and Methodology

In this section, we first introduce the experimental data sets, then we elaborate the proposed
ensemble learning algorithm.

2.1. Study Data Sets

The experimental data sets include four HS images acquired by different sensors and resolutions.
Each HS image is attached with a co-registered ground truth image.

(1) The first data set is the well-known scene taken in 1992 by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines region in Northwestern Indiana. It has
144 × 144 pixels and 200 spectral bands with a pixel resolution of 20 m. Nine classes including
different categories of crops have been labeled in the ground truth image.

(2) The second data set was collected over the University of Pavia, Italy, by the Reflective Optics
System Imaging Spectrometer (ROSIS) system. It consists of 103 spectral bands after removing
the noisy bands, and 610 × 340 pixels for each band with a pixel resolution of 1.3 m. The ground
truth image contains nine classes [37,38].

(3) The third data set is a low-altitude AVIRIS HS image of a portion of the North Island of the
U.S. Naval Air Station in San Diego, CA, USA. This HS image consists of 126 bands of size
400 × 400 pixels with a spatial resolution of 3.5 m per pixel after removing the noisy bands. The
ground truth image has eight classes inside [39].

(4) The last data set is provided by the 2013 Institute of Electrical and Electronics Engineers (IEEE)
Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest (DFC). It was acquired
by the compact airborne spectrographic imager sensor (CASI) over the University of Houston
campus and neighboring urban area, and consists of 144 bands with a spatial resolution of 2.5 m.
A subset of size 640 × 320 is used, which contains 12 classes in the corresponding ground truth
image. Figure 1 shows the experimental data sets.

2.2. Weighted Semi-Supervised Local Discriminant Analysis

Semi-supervised local discriminant analysis is a semi-supervised feature extraction method that
has been applied in hyperspectral image classification. It combines the supervised FE method-local
Fisher discriminant analysis and unsupervised FE method-neighborhood preserving embedding, and
thus attempts to discover the local discriminative information of the data while preserving the local
neighbor information [36]. Compared with other typical semi-supervised FE methods, SLDA focuses
more on the exploration of local information, and gives a more accurate description of the distribution
of samples. For better illustration, we first briefly review the feature extraction methods.
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Let xi ∈ Rd be a d-dimensional sample vector, and X = {xi}n
i=1 be the matrix of n samples.

Z = TT X, (Z ∈ Rr×n) is the low-dimensional representation of the sample matrix, where T ∈ Rd×r is
the transformation matrix, T denotes the transpose.

Many dimensionality reduction techniques developed so far involve an optimization problem of
the following form [40]:

T = argmax
T


∣∣∣TT SbT

∣∣∣∣∣∣TT SwT
∣∣∣
 (1)

Generally speaking, Sb (and Sw) corresponds to the quantity that we want to increase (and
decrease), for example, between-class scatter (and within-class scatter). Equation (1) is equal to the
solution of the following generalized eigenvalue problem:

Sbϕ = λSwϕ (2)

where {ϕk}d
k=1 is the generalized eigenvectors associated with the generalized eigenvalues

{λk}d
k=1 , (λ1 > λ2 > . . . > λd). T = {ϕk}r

k=1 is composed of the first r eigenvectors corresponding to
the largest eigenvalues {λk}r

k=1. Particularly, when Sb is the total scatter matrix of all samples, and
Sw = Id×d, where I denotes the identity matrix. Equation (1) turns into the PCA method.

2.2.1. Local Fisher Discriminant Analysis (LFDA)

Suppose yi = c , c ∈ {1, 2, . . . , C} is the associated class labels of the sample vector xi. C is the
number of classes. nc is the number of samples in class c, then ∑C

c=1 nc = n. Let Sb and Sw be the local
between-class and within-class scatter matrices, respectively, defined by [41],

Sb = 1
2

n
∑

i=1

n
∑

j=1
Wb

i,j
(
xi − xj

)(
xi − xj

)T
Sw = 1

2

n
∑

i=1

n
∑

j=1
Ww

i,j
(

xi − xj
)(

xi − xj
)T (3)
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then Equation (2) turns into a local Fisher discriminant analysis problem, where Wb and Ww are
n× n matrices,

Wb
i,j =

{
Ai,j(1/n− 1/nc), i f yi = yj = c
1/n, i f yi 6= yj

Ww
i,j =

{
Ai,j/nc, i f yi = yj = c
0, i f yi 6= yj

(4)

Ai,j is the affinity value between xi and xj. Ai,j is large if the two samples are close, and vice versa.
The definition of Ai,j can be found in [42]. Note that we do not weight the values for the sample pairs
in different classes. If ∀ i, j, Ai,j = 1, then LFDA degenerates into the classical Fisher discriminant
analysis (FDA or linear discriminant analysis, LDA) [43]. Thus, LFDA can be regarded as a localized
variant of FDA, which overcomes the weakness of LDA against within-class multimodality or outliers.

2.2.2. Neighborhood Preserving Embedding (NPE)

NPE is an unsupervised feature extraction method that seeks a projection that preserves
neighboring data structure in the low-dimensional feature space [44]. It can characterize the local
structural information of massive unlabeled samples. The first step of NPE is also to construct an
adjacency graph, and then compute the weight matrix Q by solving the following objective function,

min ∑
i
‖xi −∑

j
Qijxj‖2

s.t. ∑
j

Qij = 1
(5)

In other words, for each sample, we use its K-nearest neighbors (KNN) to reconstruct it. Thus, the
goal of NPE is to preserve this neighbor relationship in the projected low-dimensional space,

min ∑
i
‖zi −∑

j
Qijzj‖2

s.t. ∑
j

Qij = 1
(6)

where zi = TT xi. Then we have

mintrace
[
Z(I−Q)T (I−Q)ZT

]
(7)

By imposing the following constraint,

∑
i

zizTi = I =⇒ ZZT = I. (8)

the transformation matrix can be optimized by solving the following generalized eigenvalue problem,

XXT ϕ = λXMXT ϕ (9)

where ϕ denotes generalized eigenvectors, and M = (I−Q)T (I−Q).

2.2.3. Weighted SLDA

It has been demonstrated that the performance of LFDA (and all other supervised dimensionality
reduction methods) tends to degrade if only a small number of labeled samples are available [40],
while PCA or NPE (and other unsupervised feature extraction (FE) methods) will generally lose the
discriminative information of labeled information. Thus, combining supervised and unsupervised FE
methods [45] is believed to compensate for each other’s weaknesses. In this paper, we consider the
combination of the aforementioned LFDA and NPE methods. As mentioned above, feature extraction
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techniques can be transformed into eigenvalue problems, thus, a possible way to combine LFDA and
NPE is to merge the above generalized eigenvalue problems as follows [40],

βSb ϕ = λβSw ϕ

(1− β)XXT ϕ = λ(1− β)XMXT ϕ

⇓[
βSb + (1− β)XXT

]
ϕ

= λ
[

βSw + (1− β)XMXT
]

ϕ

(10)

where β ∈ [0, 1] is a trade-off parameter. Calculating the Sb and Sw of LFDA is time-consuming; an
efficient implementation can be used according to [41]. Let Sm denote the local mixture scatter matrix,

Sm = Sb + Sw =
1
2

n

∑
i=1

n

∑
j=1

Wm
i,j
(

xi − xj
)(

xi − xj
)T (11)

where

Wm = Wb + Ww =

{
Ai,j/n, i f yi = yj
1/n, i f yi 6= yj

(12)

Since Equation (3) can be expressed as

Sw =
n
∑

i=1

n
∑

j=1
Ww

i,jxixTi −
n
∑

i=1

n
∑

j=1
Ww

i,jxixTj

= X(Dw −Ww)XT
(13)

where Dw is the n-dimensional diagonal matrix with Dw
i,i = ∑n

j=1 Ww
i,j. Similarly, Sm can be expressed as

Sm = X(Dm −Wm)XT (14)

where Dm is the n-dimensional diagonal matrix with Dm
i,i = ∑n

j=1 Wm
i,j. Therefore, the generalized

eigenvalue problem of LFDA, namely Equation (2), can be rewritten as

XLbXT ϕ = λXLwXT ϕ (15)

where Lw = Dw −Ww, Lb = (Dm −Wm)− ( Dw −Ww), from which we can see that the eigenvalue
problem of LFDA has a similar form with NPE, i.e., Equation (9).

Suppose the training sample vectors are arranged by X =
[
XL, XU], where XL =

{
xL

i
}nl

i=1 denotes
the labeled samples, and XU =

{
xU

i
}nu

i=1 denotes the unlabeled samples, where n = nl + nu is the total
number of available samples. We can define the following matrices

P1 =

[
Lb 0nl×nu

0nu×nl 0nu×nl

]
, P2 =

[
Lw 0nl×nu

0nu×nl 0nu×nu

]

P3 =

[
0nl×nl 0nl×nu

0nu×nl Inu×nu

]
, P4 =

[
0nl×nl 0nl×nu

0nu×nl M

] (16)

Therefore, the weighted SLDA is equal to the solution of the following generalized
eigenvalue problem
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βXP1XT ϕ = λ βXP2XT ϕ

(1− β)XP3XT ϕ = λ (1− β)XP4XT ϕ

⇓
Srb = X[βP1 + (1− β)P3]XT

Srw = X[βP2 + (1− β)P4]XT

⇓
Srb ϕ = λSrw ϕ

(17)

and β is the trade-off parameter. In general, 0 < β < 1 inherits the characteristics of both LFDA
and NPE, and thus makes full use of both the class discriminative and local neighbor spatial
information. In practice, searching for the optimal β is time-consuming and sometimes impractical if
there are insufficient labeled samples available for validation. Several research studies suggest that
ensemble learning methods can be employed to avoid the huge effort of searching for the optimal
parameters [46,47]. On the other hand, different parameters also lead to diversity among features or
classifiers, which benefits the generalization performance of the ensembles. Hence, we present an EL
method based on the idea of RoF and the weighted SLDA algorithm.

2.3. Proposed Semi-Supervised Rotation Forest

Rotation forest was developed from conventional random forest to building independent decision
trees on different sets of features. It consists of splitting the feature set into several random disjoint
subsets, running PCA separately on each subset, and reassembling the extracted features [30,48].
By applying different splits of the features, diverse classifiers are obtained. The main steps of RoF are
briefly presented as follows:

1. The original feature set is divided randomly into K disjoint subsets with each subset containing
M features;

2. Use the bootstrap approach to select a subset of the training samples for each feature subset
(typically 75% of the total training samples);

3. Run PCA on each feature subset and store the transformation coefficients;
4. Reorder the coefficients to match the original features, rotate the samples using the obtained

coefficients (i.e., feature extraction);
5. Perform DT on the rotated training and testing samples;
6. The process is repeated L times to obtain multiple classifiers, followed by a majority voting rule

to integrate the classification results.

By substituting SLDA for the PCA method, we propose the following SSRoF ensemble algorithm.
Apart from the different FE methods between Algorithm 1 and RoF, we use the different weights

(β) to balance the discriminative information and structure information, thereby enhancing the diversity
of features. Although the computation of the eigenvector matrix is repeated ten times (corresponding
to different β) for each feature subset, it can be noticed that since the within-class and between-class
scatter matrices are invariant for different weights, the computation cost is greatly reduced. Of course,
the discrete values of β can be set by different steps; we recommend the values above by considering
both the diversity and computation time.
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Algorithm 1: Procedures of SSRoF

Input: Training samples XL =
{

xL
i
}nl

i=1, testing samples XT =
{

xT
i
}nl

i=1, unlabeled samples XU =
{

xU
i
}nu

i=1,
ensemble classifiers L, number of feature subsets K, ensemble L = ∅
Output: Class labels of XT

For i = 1 : L
1. Randomly split the features into K subsets;
For j = 1 : K
2. Randomly select a subset of samples from XL and XU , respectively, (typically 75% of samples) using
bootstrap approach;
3. Perform the weighted SLDA algorithm by the subset of XL and XU to obtain the pairs of between-class
and within-class scatter matrices in Equation (17);
For β = 0.1 : 0.1 : 1
4. Obtain the eigenvector matrix Tj,β by solving Equation (17);
End for
End for
For β = 0.1 : 0.1 : 1

5. Construct the transformation matrix Tβ =
[

T1,β, T2,β, . . . , TK,β

]
by merging the eigenvector matrices,

and rearrange the columns of Tβ to match the order of original features;
6. Build DT sub-classifier using TTβ XL;

7. Perform classification for TTβ XT by using the sub-classifier;
End for
End for
8. Use a majority voting rule for the L× 10 sub-classifiers to compute the confidence of XT and assign a class
label for each testing sample;

3. Experimental Results and Discussion

In this section, we report the experiments on the four groups of hyperspectral images. First, the
presented method is compared with several other EL algorithms to show the advantages. Then, we
also introduce the performance evaluation of our method under different parameters.

3.1. Experimental Setup

In order to demonstrate the advantages of the proposed algorithm, we conducted the experiments
under different numbers of training samples, and compared with several state-of-the-art ensemble
learning methods, namely random forest (RF), semi-supervised feature extraction combined RF
ensemble method (SSFE-RF) [22], rotation forest (RoF) [30], and rotation random forest-KPCA
(RoRF-KPCA) [32]. For better comparison, the SLDA method was also used as a preprocessing
step that combined with the original RoF method (we refer to it as SLDA-RoF). Finally, the LFDA and
NPE methods were also used as rotation means like RoF method.

The numbers of trees were all set to L = 10, and the classification and regression tree (CART)
was adopted as the base classifier. The numbers of features in each subset were all set to M = 10 for
SSFE-RF, RoF, RoF-LFDA, RoF-NPE, and SSRoF. For RoRF-KPCA, Xia et al. [32] suggest that a small
number of features per subset will increase the classification performance, as such, we set M = 5.
For RF, the number of features considered at each node was set as the square root of the used feature
number. The numbers of extracted features were set equal to M for RoF, RoRF-KPCA, RoF-LFDA,
RoF-NPE, and SSRoF. For SLDA, the number of extracted features was set to half of the original
features, and other parameters were set to the same as RoF. For RoRF-KPCA, it is quite difficult to
select the optimal kernel parameters. Xia et al. [32] declares that parameter tuning is needed, but
different kernel functions (linear, radial basis function, and Polynomial) provide very similar results,
making this choice not critical in this context. Considering the performance enhancement and the
computation cost, in our experiments, we use the polynomial kernels with the degree equals to two.
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The performance is evaluated by the overall accuracy (OA), and Kappa coefficient. In all cases,
we conduct ten independent Monte Carlo runs with respect to the labeled training set from the ground
truth images. And the results are the average values of the 10 runs. The numbers of available samples
are listed in Table 1.

Table 1. Number of available samples in each data set.

Indian Pines University of Pavia San Diego University of Houston

Class Samples Class Samples Class Samples Class Samples
corn-no till 1434 asphalt 6304 tarmac1 7044 healthy grass 449

corn-min till 834 meadow 18146 tramac2 4721 stressed grass 454
grass-pasture 234 gravel 1815 concrete roof 5771 synthetic grass 505

grass-trees 497 tree 2912 tree 4851 tree 293
hay-windrowed 747 metal plate 1113 brick 873 soil 688
soybeans-no till 489 bare soil 4572 bare soil 1748 residential 26

soybeans-min till 968 bitumen 981 bitumen roof 2454 commercial 463
soybeans-clean 2468 brick 3364 tree 2135 road 112

woods 1294 shadow 795 parking lot 1 427
parking lot 2 247
tennis court 473

running track 367

3.2. Performance Evaluation

The comparison of different EL algorithms is presented here. We randomly selected 1%, 2%, and
5% samples of each class as training samples for the first three data sets, and 5%, 10%, and 20% for the
last data set. The remaining samples were used for testing purposes. Table 2 lists the classification
results of the four algorithms under different numbers of samples. The upper line in each cell denotes
the overall accuracies, and the lower line is the Kappa values. For clarity, the best results are shown in
different colors.

From the table, it can be seen obviously that all the other methods yielded much higher accuracies
than the conventional RF method. SSFE-RF achieved higher accuracies than RF due to the increment
in the number of classifiers and the semi-supervised feature extraction method. Particularly, it had
splendid performance on the San Diego data set. Moreover, except for the SLDA-RoF, all of the other
RoF-based approaches also surpassed the RF-based methods in most cases, which demonstrates the
promotion of diversity owing to the random feature extraction. RoRF-KPCA yielded similar results
with RoF, although it considers the nonlinear characteristics of hyperspectral data, and would have
constructed reliable rotation matrices to generate high precision classification results. A probable
reason may be the selection of sub-optimal parameters for kernel functions. However, as we have
mentioned, searching for the optimal parameters remains problematic, and RoRF-KPCA is not sensitive
to the changes of the kernel function. A smaller value of M may also affect the classification accuracy,
although a smaller M means a larger K, which leads to a higher computational complexity due to
the construction of the kernel matrix. Regardless of the computation time, it can be expected that
RoRF-KPCA can surpass RoF to some extent. It can also be seen that RoF-LFDA and RoF-NPE also
produced similar results as RoF. RoF-LFDA sometimes performed better than RoF and RoF-NPE when
more samples were available, since it only uses the discriminative information of the labeled samples.
In fact, no matter which simple rotation method was used in RoF, it seems that the results were very
close to each other on the whole. However, the SLDA combined RoF method has relatively lower
accuracies compared with other RoF-based method, although it has been demonstrated to perform
well for other conventional classifiers [36] (e.g., MLC, SVM). Thus, it seems to be not suitable for
rotation forest algorithms.

By contrast, the proposed SSRoF outperformed the others clearly in most cases from both OA and
Kappa values, especially on the Indian and Pavia data sets (4.35% and 1.45% higher than RoF for the
Indian and Pavia data sets on average, respectively). Although the conventional RF and RoF-based
algorithms performed well on the last data set, the proposed algorithm still showed slight superiority.
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The main reason why the proposed SSRoF method surpasses RoF-LFDA and RoF-NPE is that SSRoF
uses a weighted form to better explore the discriminative information and structure information of the
available samples, thus greatly promoting the diversity of features.

Table 2. The overall accuracies (%) and Kappa coefficients of different algorithms.

RF SSFE-RF RoF RoRF-KPCA SLDA-RoF RoF-LFDA RoF-NPE SSRoF

Indian

1% 58.35
0.5018

66.87
0.5995

71.48
0.6587

70.54
0.6491

63.88
0.5660

66.17
0.5943

69.39
0.6337

74.38
0.6918

2% 64.55
0.5746

74.89
0.6971

75.80
0.7117

77.11
0.7272

70.22
0.6437

76.72
0.7214

76.45
0.7179

80.83
0.7710

5% 70.79
0.6502

81.04
0.7728

82.97
0.7971

82.96
0.7971

77.58
0.7330

83.01
0.7978

82.66
0.7936

86.84
0.8429

Pavia

1% 79.65
0.7143

84.93
0.7879

87.13
0.8223

87.02
0.8205

81.20
0.7373

87.09
0.8214

86.67
0.8152

88.98
0.8484

2% 82.38
0.7538

87.27
0.8220

89.54
0.8559

89.39
0.8537

84.34
0.7840

90.15
0.8645

89.61
0.8571

91.60
0.8846

5% 85.82
0.8029

90.26
0.8648

92.28
0.8943

92.10
0.8919

86.82
0.8186

92.52
0.8978

91.77
0.8871

93.67
0.9137

San
Diego

1% 86.08
0.8333

96.07
0.9529

95.28
0.9435

94.19
0.9305

93.25
0.9192

95.20
0.9426

95.55
0.9467

95.99
0.9520

2% 90.10
0.8814

96.78
0.9615

96.40
0.9569

95.88
0.9507

94.86
0.9385

96.50
0.9582

96.56
0.9589

97.02
0.9644

5% 93.10
0.9175

97.69
0.9724

97.64
0.9717

97.09
0.9652

96.40
0.9569

97.62
0.9716

97.61
0.9715

98.02
0.9764

Houston

5% 91.32
0.9034

95.97
0.9551

96.06
0.9561

96.08
0.9564

93.73
0.9302

96.06
0.9561

96.33
0.9591

97.43
0.9714

10% 94.40
0.9376

96.59
0.9620

97.08
0.9676

97.60
0.9733

94.98
0.9441

96.96
0.9662

97.33
0.9703

98.09
0.9787

20% 96.31
0.9590

98.03
0.9780

98.18
0.9798

98.42
0.9824

96.54
0.9615

98.22
0.9802

97.77
0.9752

98.60
0.9845

RF: random forest; SSFE-RF: semi-supervised feature extraction combined random forest; RoF: rotation
forest; RoRF-KPCA: rotation random forest with kernel principal component analysis; SLDA-RoF: RoF with
semi-supervised local discriminant analysis pre-processing; RoF with local Fisher discriminant analysis; RoF-NPE:
RoF with neighborhood preserving embedding; SSRoF: semi-supervised rotation forest.

Particularly, aside from the number of ensembles L and the number of features per subset (M),
the proposed approach needs fewer additional parameters, which makes the approach much easier
to implement.

3.3. Impact of Parameters

In this sub-section, we will discuss the impact of two basic parameters, i.e., the number of
ensembles (L), and the number of features in each subset (M). For brevity, we simply show the results
performed on the data sets of Indian Pines and University of Pavia by setting different number of
trees, i.e., L = 2, 5, 10, 20, and 30. Likewise, the experiments are conducted under different numbers of
training samples. The results are shown in Table 3. In order to give an intuitive evaluation, OAs and
Kappa values are shown in different colors.

From Table 3 we can see that, obviously, with the increment of ensemble number, the overall
accuracy and Kappa coefficient grow continuously, for instance, from nearly 67% to 75% under 1%
samples for the Indian Pines data set, which demonstrates the benefit of EL. An interesting factor is
that when the number of trees increases to 10, the classification accuracy grows slower and tends to
reach convergence. This makes our approach more promising, since we can use less ensembles to
achieve a relatively stable result, thereby reducing the computational burden.
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Table 3. The classification results of SSRoF under different number of ensembles (L). OA:
overall accuracy.

L = 2 L = 5 L = 10 L = 20 L = 30

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

Indian

1% 71.01 0.6516 74.16 0.6887 74.69 0.6955 74.65 0.6944 74.96 0.6978
2% 77.91 0.7359 79.56 0.7545 80.03 0.7600 80.54 0.7660 80.95 0.7710
5% 83.55 0.8039 85.63 0.8285 86.62 0.8403 86.87 0.8432 86.97 0.8443
10% 86.51 0.8392 88.44 0.8622 88.87 0.8672 89.24 0.8716 89.26 0.8718
20% 88.91 0.8682 90.71 0.8894 91.25 0.8958 91.67 0.9008 91.74 0.9016

Pavia

1% 87.71 0.8308 88.79 0.8456 89.13 0.8504 89.38 0.8538 89.45 0.8548
2% 89.74 0.8592 91.20 0.8794 91.35 0.8814 91.65 0.8856 91.75 0.8869
5% 92.13 0.8924 93.36 0.9094 93.70 0.9141 93.78 0.9151 93.86 0.9163
10% 93.07 0.9053 94.10 0.9195 94.46 0.9245 94.59 0.9263 94.59 0.9262
20% 94.48 0.9250 95.15 0.9341 95.31 0.9363 95.45 0.9382 95.46 0.9383

To investigate the impact of the number of features in each subset, we also performed tests on the
Indian Pines data set regarding different feature divisions. For better comparison, the same process was
also applied on RoF algorithm, and the results are shown in Figure 2, where the blue color denotes the
OAs, and the magenta color denotes the Kappa values. The solid lines denote the RoF method, while
the dot dash lines represent the SSRoF method. The figure indicates that when the number of features
involved in each subset increases, i.e., the number of feature subsets (K) decreases, the classification
results tend to degenerate for both RoF and SSRoF. In fact, this is also consistent with the conclusions
of [32], and that is why we selected a small number of M for the RoRF-KPCA method. Although when
the training set increased, this problem seemed to be alleviated in a manner (for instance, in Figure 2e,
91.48% for M = 5 and 90.94% for M = 30 (SSRoF), when 20% of training samples were used), a small
value of M is usually preferred. However, on the other hand, a smaller M means a larger K, which
means the rotation process will be executed more times, and this will lead to a huge computational
cost. Apart from the above analysis, we can also see that the proposed approach seemed to be more
stable than RoF with the increment in the number of features per subset.Remote Sens. 2017, 9, 924 11 of 14 

 

(a) (b) 

(c) (d) 

 
(e) 

Figure 2. Impact of the number of features in each subset ( ) under different numbers of training 
samples (1%, 2%, 5%, 10%, and 20% from (a–e), respectively). 

4. Conclusions  

Since existing rotation forest-based techniques fail to take account of the discriminative 
information of training samples during feature extraction, this paper proposed a semi-supervised 
rotation forest that uses the weighted semi-supervised local discriminant analysis method to jointly 
utilize the class discriminative information and local structural information provided by the labeled 
and unlabeled samples, respectively. The proposed algorithm aims to find the projection directions 
that provide better class separability, thus enhancing the performance of existing rotation forest 
algorithms. Furthermore, the proposed algorithm does not need additional parameters compared 
with the classical rotation forest method, which makes it easy to implement. Experiments have shown 
that the proposed algorithm outperforms several typical ensemble learning methods. Our future 
work will aim to reduce the computational time and assemble some other state-of-the-art machine 
learning algorithms. 

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grant 
61271348 and 61471148, and in part by the Foundation of Harbin Excellent Scholar under Grant 2015RAXXJ048. 

Figure 2. Cont.



Remote Sens. 2017, 9, 924 12 of 14

Remote Sens. 2017, 9, 924 11 of 14 

 

(a) (b) 

(c) (d) 

 
(e) 

Figure 2. Impact of the number of features in each subset ( ) under different numbers of training 
samples (1%, 2%, 5%, 10%, and 20% from (a–e), respectively). 

4. Conclusions  

Since existing rotation forest-based techniques fail to take account of the discriminative 
information of training samples during feature extraction, this paper proposed a semi-supervised 
rotation forest that uses the weighted semi-supervised local discriminant analysis method to jointly 
utilize the class discriminative information and local structural information provided by the labeled 
and unlabeled samples, respectively. The proposed algorithm aims to find the projection directions 
that provide better class separability, thus enhancing the performance of existing rotation forest 
algorithms. Furthermore, the proposed algorithm does not need additional parameters compared 
with the classical rotation forest method, which makes it easy to implement. Experiments have shown 
that the proposed algorithm outperforms several typical ensemble learning methods. Our future 
work will aim to reduce the computational time and assemble some other state-of-the-art machine 
learning algorithms. 

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grant 
61271348 and 61471148, and in part by the Foundation of Harbin Excellent Scholar under Grant 2015RAXXJ048. 

Figure 2. Impact of the number of features in each subset (M) under different numbers of training
samples (1%, 2%, 5%, 10%, and 20% from (a–e), respectively).

4. Conclusions

Since existing rotation forest-based techniques fail to take account of the discriminative
information of training samples during feature extraction, this paper proposed a semi-supervised
rotation forest that uses the weighted semi-supervised local discriminant analysis method to jointly
utilize the class discriminative information and local structural information provided by the labeled
and unlabeled samples, respectively. The proposed algorithm aims to find the projection directions that
provide better class separability, thus enhancing the performance of existing rotation forest algorithms.
Furthermore, the proposed algorithm does not need additional parameters compared with the classical
rotation forest method, which makes it easy to implement. Experiments have shown that the proposed
algorithm outperforms several typical ensemble learning methods. Our future work will aim to reduce
the computational time and assemble some other state-of-the-art machine learning algorithms.
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