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Abstract: In this work, an effective framework for landslide susceptibility mapping (LSM) is presented
by integrating information theory, K-means cluster analysis and statistical models. In general,
landslides are triggered by many causative factors at a local scale, and the impact of these factors is
closely related to geographic locations and spatial neighborhoods. Based on these facts, the main
idea of this research is to group a study area into several clusters to ensure that landslides in each
cluster are affected by the same set of selected causative factors. Based on this idea, the proposed
predictive method is constructed for accurate LSM at a regional scale by applying a statistical model
to each cluster of the study area. Specifically, each causative factor is first classified by the natural
breaks method with the optimal number of classes, which is determined by adopting Shannon’s
entropy index. Then, a certainty factor (CF) for each class of factors is estimated. The selection of the
causative factors for each cluster is determined based on the CF values of each factor. Furthermore,
the logistic regression model is used as an example of statistical models in each cluster using the
selected causative factors for landslide prediction. Finally, a global landslide susceptibility map
is obtained by combining the regional maps. Experimental results based on both qualitative and
quantitative analysis indicated that the proposed framework can achieve more accurate landslide
susceptibility maps when compared to some existing methods, e.g., the proposed framework can
achieve an overall prediction accuracy of 91.76%, which is 7.63–11.5% higher than those existing
methods. Therefore, the local scale LSM technique is very promising for further improvement of
landslide prediction.

Keywords: landslide susceptibility; logistic regression; causative factors; K-means cluster;
Three Gorges area

1. Introduction

As the water level in the reservoir fluctuates periodically, the famous Three Gorges Reservoir
is characterized by plentiful active and reactivated landslides with different scales, which seriously
threaten the local people’s lives and property. Up to 2009, more than 3800 landslides have been
recorded along this reservoir [1]. Therefore, it is very significant to perform landslide susceptibility
mapping (LSM) to dynamically monitor the unstable areas.

The spatial forecasting of landslides is more efficient and economical by integrating geographical
information systems (GIS) and statistical analysis, compared to the traditional field geological
surveying, and can provide an effective solution for landslide mitigation and management [2].
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This method has been widely documented in recent literature stating that remote sensing (RS) can be
used for landslide investigation. According to the three most comprehensive reviews [3–5], landslide
susceptibility and hazard assessment is one of the three hot topics in landslide investigation using RS.
Over the last three decades, many effective methods have been developed to investigate the role of
RS and GIS for producing landslide hazard zoning maps. These techniques are mainly divided into
two categories with different theoretical bases, i.e., qualitative and quantitative [6]. The qualitative
techniques are characterized by subjective assessments that describe the probability of landslide
occurrences based on expert experience and knowledge of landslide formation mechanism(s) [7],
including the analytical hierarchy process (AHP) [8–10], fuzzy mathematics [11], multi-criteria
evaluation [12,13], weighted linear combination (WLC) [14,15] and ordered weighted average [16,17].
The quantitative techniques represent landslide occurrences by exploiting mathematical models to
perform LSM on a continuous scale [14,18]. Landslides are typically complex processes triggered
by various causative factors, which have geomorphological, geological, hydrological, terrestrial,
meteorological or geotechnical properties. The quantitative methods are commonly divided into
two types, bivariate and multivariate. To estimate the weights for each variable in the bivariate
methods, each causative factor map is combined with a landslide distribution map. Various techniques
can be used with the bivariate methods, such as favorability functions [19–21], information
value [22,23], weights of evidence [24–29], the frequency ratio [30–32] and the Dempster–Shafer
method [2,33]. However, failure to consider the correlation of the causative factors is the main
shortcoming of such methods [34]. The multivariate methods assess the relationships between the
landslide distribution and a series the causative factors [35]. Specifically, all of the causative factors are
resampled for each terrain mapping unit (TMU), and the events of landslides are estimated through
the resulting matrix, which can be analyzed with logistic regression (LR) [18,36–38] using multiple
regression [39–43], discriminant analysis [44] or principle component analysis (PCA) techniques [45,46].
Apart from these statistical methods, data mining and machine learning techniques have drawn much
attention for LSM including decision tree (DT) [47,48], random forests [49–51], neural networks [52–56],
support vector machine (SVM) [57,58] and Bayesian network (BN) approaches [59]. Nevertheless,
it is improper to adopt all of the causative factors for LSM because the problem of overfitting
always occurs, and the model generalization is not well respected, without considering the issue
of data dimensionality [60]. Therefore, screening the factors through feature selection using filtering
methods [11,61] or wrapper methods [62–64] is a common step for producing more accurate landslide
susceptibility maps. However, the mentioned dimensionality reduction techniques are burdened with
a high computational cost. Furthermore, the same set of selected factors is exploited throughout the
entire study area, without taking the spatial dependence between TMUs into account.

Landslide are triggered by many causative factors at a local scale, and the impact of these factors
is closely related to geographic locations and the nearest neighborhood. Recently, Das et al. [65]
proposed to obtain landslide susceptibility maps using homogeneous susceptibility units (HSUs),
which is an effective local-scale analysis method. In this work, we develop an alternative framework
to solve the previously-mentioned issues by integrating the techniques of information theory, K-means
cluster analysis and statistical models. The proposed framework consists of the following steps.
First, each causative factor used in the study area is classified by the natural breaks method with the
corresponding optimal number of classes, which is determined by using Shannon’s entropy index.
Then, a certainty factor (CF) for each class of factors is estimated. It is observed that the impact of
each causative factor may occur at a local scale for a certain study area in practice [66]. To address
this fact, each TMU in the study area is assigned with an appropriate combination of the causative
factors represented by a unique binary encoding, according to expert experience and knowledge of the
CFs. By performing the K-means cluster analysis on the new encoded TMUs, the spatial dependence
between these units is considered. Therefore, the TMUs where the landslides are affected by a similar
set of the causative factors are aggregated together. The final binary-encoded centroid of each cluster
is employed for choosing the optimal combination of the causative factors shared by all of the TMUs
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in the same cluster. Next, the weights of the selected factors for each cluster are computed, and the
proposed predictive method is constructed for accurate LSM at a regional scale by applying an LR
model to each cluster of the study area. On this basis, a global landslide susceptibility map is created
by integrating the regional maps. The proposed framework was validated in the Zigui-Badong section
of the Three Gorges area by using the LR method implemented by SPSS Clementine 12.0, which can
effectively integrate remote sensing datasets with field surveying data. IBM SPSS Statistics 19.0 was
used for the computation of the proposed framework, and ESRI ArcGIS 10.0 was used for producing
the resultant maps.

2. Methodology

2.1. Study Area

2.1.1. General Characteristics and Geological Setting

The study area is located in the Zigui-Badong section of the middle and lower reaches of the
Yangtze River and covers 446.32 km2 in the southwest of Hubei Province. Its latitudes and longitudes
lie between 30◦54′59”N to 31◦03′32”N and 110◦18′44”E to 110◦52′30”E, respectively, while its highest
point reaches 2000 m above sea level, as shown in Figure 1. This study area belongs to the subtropical
monsoon climate zone and is characterized by abundant rainfall and humidity. The average annual
precipitation for the period from 2001–2010 in Badong County and Zigui County in Hubei Province
is 1069.2 mm and 944.5 mm, respectively, while the highest annual precipitation reached 1148.7 mm
in 2008. Furthermore, most of the rainfall in this area is concentrated from May–September of each
year, accounting for 70% of the annual precipitation.
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mudstone and marlstone, which are the main components of natural hazards. The geological map of 
the study area is shown in Figure 2. Several main faults and lineaments can be identified in this figure, 
including the Xiannvshan Fault, the Jiuwanxi Fault, the Niukou Fault and the Xiangluping Fault, 
which may promote or mitigate landslides. 

Figure 1. Location of the study area. Site maps of (a) China, (b) Hubei province and (c) the study area
(a true color composite image using Bands 4, 3 and 2 of Landsat-8 OLI data).

All forms of rock, including igneous, sedimentary and metamorphic, can be observed in this area.
The strata from the Middle Triassic to Jurassic are mostly composed of sandstone, shale, mudstone
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and marlstone, which are the main components of natural hazards. The geological map of the study
area is shown in Figure 2. Several main faults and lineaments can be identified in this figure, including
the Xiannvshan Fault, the Jiuwanxi Fault, the Niukou Fault and the Xiangluping Fault, which may
promote or mitigate landslides.Remote Sens. 2017, 9, 938  4 of 27 
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Figure 2. A geological map of the study area.

2.1.2. Slope Failures and Causative Factors

The geological conditions and human activities in the study area, such as urbanization,
deforestation and construction of the reservoir, have caused widespread distribution of landslides,
which have brought a serious threat to the lives and property of the local residents. The landslide
inventory map of the study area was constructed by using Google Earth 7.1 along with extensive
field surveys, historical and bibliographical landslide data. Next, 202 landslide polygons were
identified and mapped with total areas of 23.40 km2, covering 5.24% of the study area, as shown
in Figure 1c. It can also be observed from Figure 1c that the area of these landslides varies widely,
e.g., the largest Fanjiaping landslide has an area of 1.51 km2, while the smallest Kuihua street landslide
is only 2068.8 m2.

In this work, the Yangtze River was excluded from the study area because the values of the
Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model
(ASTER GDEM) data always change dramatically at the junction between this river and its sides [67].
It is known that landslide occurrences are greatly relevant to causative factors. Considering the
landslide distribution and the characteristics of the study area, a total of 17 causative factors was
selected for the LSM, including the four main categories of geological, geomorphological, hydrological
and land cover factors. To extract these causative factors for landslide prediction, some ancillary data
were used, including:
√

A Landsat-8 OLI image obtained on 14 April 2015, with the path/row number of 125/38.
To perform feature extraction, we have performed a series of operations on this multispectral
image. This process includes radiometric correction to avoid radiometric errors or distortions
over the whole image, geometric correction to avoid geometric distortion due to Earth’s rotation
and other imaging conditions from the image and atmospheric correction to remove the effects of
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the atmosphere on the reflectance values of the image. Meanwhile, Bands 4 and 5 of the image
are used for computing the normalized difference vegetable index (NDVI), whereas Bands 3 and
6 of the image are used for computing the normalized difference water index (NDWI).

√
The 1:50,000-scale geological maps provided by Hubei Geological Bureau for the exaction of
geological factors, including lithology and distance to fault.

√
ASTER GDEM Version 2 (V2) data, representing the surface in raster format, for the extraction of
geomorphological and hydrological factors, including elevation, distance to rivers, the terrain
roughness index (TRI), the terrain position index (TPI), slope gradient, catchment area, catchment
slope, terrain curvature, the topographic wetness index (TWI), terrain surface convexity, terrain
surface texture, slope aspect and slope form.

The selection of the TMU is very significant for LSM. In this work, grid cell terrain units were
exploited to model the landslide susceptibility of the study area, and a value was assigned to each grid
cell unit per causative factor. The landslide map and other factor layers were extracted with grid cells
having a spatial resolution of 28.5 × 28.5 m, to match the remote sensing data considered here.

2.2. The Proposed Framework

The flowchart of the proposed framework is shown in Figure 3. In the following subsections,
we present the foundations of our framework.
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2.2.1. Information Coefficient Based on Shannon’s Entropy Index

Shannon’s entropy model has been commonly used to measure the amount of information in
a signal or event [68], and landslide occurrence can be estimated using this approach. Shannon’s
entropy model was used to estimate the density of landslides within each class per factor. With respect
to the i-th class of the j-th factor, let pij denote the probability density, Aij and Bij the area percentage
and the landslide percentage, respectively, Cj the total number of classes of the j-th factor and Mj
and Mjmax the entropy value of the j-th factor and its maximum, respectively. The calculation of the
information coefficient Ij can be implemented using a series of formulas given below [69,70]:

pij =
Bij

Aij
(1)

pij =
pij

cj

∑
j=1

pij

(2)

Mj = −
cj

∑
i=1

pij log2 pij (3)

Mjmax = log2 cj (4)

Ij =
Mjmax −Mj

Mjmax
(5)

Since the entropy value is constantly above or equal to 0, the range of the information coefficient
is restricted to the domain of [0, 1]. Specifically, the amount of extracted information increases as the
information coefficient ranges from 0–1.

2.2.2. Certainty Factor

The CF method has been commonly used for landslide prediction because it is capable of dealing
with the challenge of the combination of different vector layers, the heterogeneity and the uncertainty
of the input data. The certainty factor can be expressed as follows [19,71]:

CF =


PPa − PPs

PPa(1− PPs)
PPa ≥ PPs

PPa − PPs

PPs(1− PPa)
PPa < PPs

(6)

where PPa is the condition probability of a landslide event occurring in a certain class a, while PPs

is the prior probability of a landslide event occurring throughout the study area. From Equation (6),
a certainty is defined in the range of [−1, 1]. If the CF value is larger than zero, the certainty of
a landslide occurrence is high, while if this value is smaller than 0, the certainty of a landslide
occurrence is low. In particular, if a CF value equals 0, this means that no indication is available about
the contribution of a certain class for a causative factor.

2.2.3. K-means Clustering Analysis

K-means is widely used for solving clustering problems due to its efficiency and simple
implementation [72]. The main idea of this algorithm is to group a given dataset into K clusters,
in which each data point is assigned to the cluster with the nearest mean, thus serving as the centroid
of the cluster [73]. The iterative process is performed on the input dataset for re-clustering of all of the
data points and updating the location of the centroids until these centroids do not change any more.
This algorithm is applied to minimize the following objective function [74]:
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J =
k

∑
i=1

n

∑
j=1
‖xi

j − ci‖
2

(7)

where xi
j and ci represent the j-th data point and the i-th cluster center, respectively. ‖xi

j − ci‖means

the L2 norm of
(

xi
j − ci

)
.

2.2.4. Multicollinearity Analysis

To estimate the correlation between the causative factors, multicollinearity analysis has received
extensive attention. Multicollinearity refers to a statistical phenomenon in which there exists a high
relationship between two or more predictor variables in a multiple regression model [75]. When those
variables are highly correlated, it is difficult to obtain their respective coefficients accurately. To detect
multicollinearity, two diagnostic indices are commonly used, tolerance (TOL) and the variance inflation
factor (VIF) [76]. Let X = {X1, X2, . . . , XN} define a given independent variable set and R2

j denote the
coefficient of determination when the j-th independent variable Xj is regressed on all other predictor
variables in the model. The VIF value is computed as follows:

VIF = 1/
(

1− R2
j

)
(8)

The TOL measure is the reciprocal of the VIF value and represents the degree of linear correlation
between independent variables. From Equation (8), if R2

j = 0, then VIF = TOL = 1, meaning

that Xj is not linearly related to the others; if R2
j is close to 1, then VIF→ ∞ and TOL = 0,

indicating that Xj is highly related to the others. If the VIF value is above the threshold value of
5 or 10 [75], the corresponding regression coefficients are collinear and should be removed from the
predictive model.

2.2.5. Logistic Regression

Logistic regression is a multivariate statistical method to establish the relationship between
a dependent variable and several independent variables [6,35,38,77–79]. In recent years, the logical
regression model has been commonly used for LSM due to its simplicity and effectiveness [18,58,80–82].
The main idea of such a method is to perform maximum likelihood estimation to obtain the probability
of landslide occurrence after each independent variable is converted to a logical variable. The simplified
logical regression model can be quantitatively expressed as follows:

p = 1/(1 + e−z) (9)

where p denotes the probability of landslide occurrence and ranges between 0 and 1 and z is the linear
combination:

z = β0 + β1X1 + β2X2 + . . . + βN XN (10)

where β0 is the intercept of the model and (β1, β2, . . . , βN) are the regression coefficients representing
the impact of X = {X1, X2, . . . , XN}mentioned previously on the logit z.

2.3. Objective Evaluation Measures

To objectively assess the predictive methods, two measures were utilized. The first one is overall
prediction accuracy, evaluating prediction correctness, and defined as follows:

p =
a + b

S
× 100% (11)
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where a and b mean the numbers of correctly-predicted landslide and non-landslide TMUs in the
final susceptibility maps, respectively, and S indicates the total number of grid cells in the study area.
According to Equation (11), this measure can be directly applied to the LMS of the entire study area
to evaluate the global LR model. If this measure in Equation (11) is used to assess the proposed
framework, it should be measured in each cluster as follows:

p =

K
∑

i=1
(ai + bi)

S
× 100%, i = 1, 2, . . . , K (12)

where ai and bi are the numbers of correctly-predicted landslide and non-landslide grid cells in the i-th
cluster, respectively.

The second one is the commonly-used receiver operating characteristic (ROC) and the area under
the ROC curve (AUC). Since a test with perfect discrimination always produces a curve passing
through the upper left corner of the plot, the closer the ROC curve is to the upper left corner, the more
accurate are the landslide predictive results [83,84]. The AUC value ranges from 0.5–1, and it is close
to 1, representing that the model is perfectly reasonable for prediction [85].

3. Results

3.1. The Construction of the Proposed Framework

3.1.1. Choosing the Number of Classes for Each Causative Factor

This step is to determine the number of classes for each factor by maximizing its information
coefficient. In this work, 14 continuous factors were classified into 2–6 classes using the natural breaks
method, except for three categorical factors of slope aspect, lithology and slope form. Based on the
approach in [86], the information coefficients of each causative factor considered here are computed and
listed in Table 1. It can be concluded from this table that there are six causative factors with the greatest
information coefficients when divided into two classes, i.e., elevation, distance to river, NDVI, NDWI,
catchment area and terrain surface texture. The three causative factors of slope gradient, catchment
slope and TWI have the highest information coefficients of 0.1229, 0.1350 and 0.1798, respectively, when
divided into three classes. The causative factors of TRI and Terrain surface convexity maximized their
information coefficients to 0.2472 and 0.0933, respectively, when divided into four classes. Only the
causative factor of distance to fault was divided into five classes with the highest information coefficient.
Finally, the two causative factors of TPI and terrain curvature can obtain the maximum information
coefficients of 0.1089 and 0.0933, respectively, when divided into six classes. In this table, the term
NC represents non-calculable, which means that there is no landslide grid cell in a class of the factors.
Specifically, pij in Equations (1) and (2) would be zero when there is no landslide grid cell in the i-th
class of the j-th factor. In this case, log2 pij cannot be calculated. There may be some specific operations
to avoid this problem, but we did not compute the corresponding information coefficient in this work
and assigned it as “NC”. Furthermore, the two most influential factors are elevation and distance to
river with information coefficients above 0.8, which means that these two causative factors are crucial
for the LSM of the study area. In contrast, the two least-influential causative factors are distance to
fault and Catchment area, with information coefficients of below 0.06. The classification results of
the 14 continuous factors with the optimal number of classes are shown in Figure 4a–n, while the
classification maps of the other three categorical factors of lithology, slope aspect and slope form are
illustrated in Figure 4o–q, respectively. In this work, the categorical factor of slope form is classified as
concave/concave (V/V), elongated/concave (GE/V), convex/concave (X/V), concave/even (V/GR),
elongated/even (GE/GR), convex/even (X/GR), concave/convex (V/X), elongated/convex (GE/X).
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Table 1. Information coefficients of each causative factor. The highest ones in each factor are indicated
in bold and underlined. TRI, terrain roughness index; TPI, terrain position index; TWI, topographic
wetness index.

Causative Factor Information Coefficient

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

Elevation 0.8655 0.3912 0.4209 NC NC
Distance to river 0.8040 0.4542 0.3068 0.2743 NC

NDVI 0.2898 0.1578 0.1223 0.1172 0.1053
NDWI 0.2776 0.1439 0.1486 0.1428 0.1175

TRI 0.2343 0.2270 0.2472 0.2398 NC
TPI 0.0011 0.0715 0.0889 0.1021 0.1089

Slope gradient 0.1144 0.1229 0.1140 0.1123 0.1180
Distance to fault 0.0193 0.0037 0.0048 0.0322 0.0181
Catchment area 0.0531 0.0386 0.0294 0.0315 0.0360
Catchment slope 0.1175 0.1350 0.1230 0.1279 0.1258
Terrain curvature 0.0080 0.0384 0.0640 0.0808 0.0933

TWI 0.0858 0.1798 0.1690 0.1424 0.1539
Terrain surface convexity 0.0582 0.0847 0.0933 0.0781 0.0729

Terrain surface texture 0.3848 0.3495 0.3139 0.3040 0.2940

3.1.2. Selecting Causative Factors for Each Grid Cell

Based on the above analysis in Section 2.2.2, the CF values were divided into five categories for
analyzing the possibility of landslide occurrences, as shown in Table 2. According to Equation (6),
for a landslide grid cell, if at least one of its causative factors has a negative CF value, this factor
has a negative impact on the landslide prediction of this cell; whereas for a non-landslide grid cell,
if at least one of its causative factors has a positive CF value, a similar conclusion can be reached. In both
situations, the corresponding factor should not be considered for landslide prediction of this grid cell.
In this work, after computing a CF value for each class of all of the causative factors considered here,
we were able to obtain an optimal combination of the causative factors for each grid cell, and the
selected factors were used as the independent variables of the LR model.

The classes and the corresponding CF values of each causative factor are listed in Table 3 along
with the percentages of landslide and class. Elevation is a key factor in landslide occurrences. In Table 3,
the CF value of elevation is positive in the range of 80~700 m, which means that landslides always
occur in this range of elevation. In this class, the area of landslides accounts for 99% of the total area.
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Conversely, the CF value is negative and close to −1 in the range of >700~2000 m, indicating that
the probability of landslide occurrences is very low. Distance to river is a commonly-used factor in
the evaluation of landslide susceptibility, reflecting the impact of the reservoir water on the landslide.
As shown in Table 3, the impact of the reservoir water on the landslides becomes weaker as the
distance from the water system increases. From Figure 4a,b, we can also observe that if the distance
to river becomes large, the elevation of the same position will be higher. In such terrain, the loose
stacking layers are very thin, which is adverse to the development of soil landslides. As slope gradient
may affect the slope stability through modulating the surrounding engineering geological conditions,
it is another key factor of LSM. Table 3 shows that slope gradient has the highest and lowest CF values
of 0.2967 and −0.692, respectively. Moreover, the landslide occurrence in the study area decreases as
the slope gradient increases, and very few landslides occur when the slope gradient is higher than
35◦, as shown in Table 3. In general, the probability of landslide occurrence should increase with the
slope gradient. However, in the study area, the sites with a high slope gradient are mostly distributed
in high-elevation areas. As mentioned above, it is difficult to cause slope failures in such places.
Slopes with different orientations usually receive different intensities of solar radiation, which affects
the distribution of pore water pressure and the physical and mechanical characteristics of rocks and soil.
Table 3 shows that the CF value of slope aspect is in the range of [0.2, 1] in the two directions of north
and northeast, indicating that the north-facing slopes are more susceptible to landslide occurrences.
Apart from these factors, stratigraphic lithology is an important intrinsic factor and the foundation
for the development of landslides and can determine the type and scale of landslide occurrences.
Table 3 shows that the CF value of lithology is positive in the area with soft and hard sandstone
or limestone with thin bedrocks, which is prone to landslide occurrences. Conversely, the value is
negative for mudstone, shale, Quaternary deposits, hard limestone or thick sandstone, which means
that the area with such lithological characteristics is not conducive to landslide occurrences. Since
the term “mudstone, shale and Quaternary deposits” is one class name of lithology, it means that
mudstone may not be the only factor to contribute to the stability of a certain area when the CF value
of this area is negative. For instance, it was recorded that Quaternary deposits are negative for slope
failure [10].

Table 2. Categories of the certainty factor (CF) value in terms of slope stability.

Category Value Range Description Stability

1 CF < −0.6 Basically no landslides occurred stable
2 −0.6 ≤ CF < −0.2 Landslides are less likely to occur relatively stable
3 −0.2 ≤ CF < 0.2 Uncertain whether landslides will occur uncertain
4 0.2 ≤ CF < 0.6 Landslides are more likely to occur unstable
5 CF ≥ 0.6 The possibility of landslides is great extremely unstable

Table 3. The classes and their CF values of each causative factor.

Causative Factor Classes Percentage
of Landslide

Percentage
of Class CF

Elevation
80~700 99.00 65.50 0.3599

>700~2000 1.00 34.50 −0.9728

Distance to river
<2000 96.80 48.57 0.5300

2000~6900 3.20 51.43 −0.9412

NDVI
−0.7186~0.4140 16.24 4.46 0.7713
>0.4140~0.9190 83.76 95.54 −0.1301

NDWI
−0.8879~0.4503 88.29 96.79 0.0929
>0.4503~0.8025 11.71 3.21 0.7718

Catchment area
900~18,590 96.13 91.52 −0.0624

>18,590~412,609 3.87 8.48 0.4134
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Table 3. Cont.

Causative Factor Classes Percentage
of Landslide

Percentage
of Class CF

Terrain surface texture
4.4474~28.4901 82.07 45.10 0.4792

>28.4901~61.9701 17.93 54.90 −0.6869

Slope gradient
<20 48.77 35.17 0.2967

20~35 44.61 44.25 0.0086
>35~75 6.62 20.58 −0.6920

Lithology
mudstone, shale and Quaternary deposits 3.94 22.48 −0.8660
sandstones and thinly bedded limestones 51.82 26.97 0.5153

limestones and massive sandstones 44.24 50.55 −0.1257

TWI
0.8704~3.4408 23.12 51.64 −0.5676

>3.4408~6.2721 76.49 47.49 0.4033
>6.2721~10.4071 0.39 0.87 −0.5626

Catchment slope
<0.3224 36.43 28.02 0.2457

0.3224~0.4946 56.68 47.52 0.1719
>0.4946~1.1306 6.89 24.46 −0.7308

TRI

<8.8293 58.80 39.26 0.3535
8.8293~15.0834 35.76 41.89 −0.1542

>15.0834~26.1201 5.26 16.50 −0.6947
>26.1201~94.1794 0.18 2.35 −0.9277

Terrain surface convexity

>13.9169~42.4579 12.13 5.10 0.6168
>42.4579~48.8004 31.42 25.02 0.2167
>48.8004~53.7838 41.06 43.07 −0.0495
>53.7838~71.9051 15.39 26.81 −0.4412

Distance to fault

<1200 24.54 28.50 −0.1464
1200~2400 22.32 27.37 −0.1940

>2400~3600 29.61 22.88 0.2418
>3600~5400 20.84 16.01 0.2463
>5400~8700 2.69 5.24 −0.5011

TPI

−90.8220~−18.5199 0.52 2.13 −0.7665
>−18.5199~−8.4604 6.04 10.30 −0.4283
>−8.4604~−2.7133 26.97 22.60 0.1724
>−2.7133~4.1138 48.00 35.04 0.2873
>4.1138~12.2871 17.17 23.56 −0.2835

>12.2871~70.1288 1.30 6.37 −0.8060

Terrain curvature

−2.1060~−0.4418 0.21 1.07 −0.8173
>−0.4418~−0.1991 3.83 7.44 −0.5006
>−0.1991~−0.0604 20.45 20.08 0.0194
>−0.0604~0.0782 56.76 45.41 0.2128
>0.0782~0.2863 17.65 22.28 −0.2178
>0.2863~2.3318 1.10 3.72 −0.7184

Slope aspect

Flat 0.26 0.57 −0.5560
North 23.54 14.83 0.3936

North–East 15.95 12.57 0.2249
East 9.67 11.86 −0.1940

South–East 7.27 10.62 −0.3292
South 13.52 12.47 0.0826

South-West 6.43 10.86 −0.4234
West 9.46 14.52 −0.3620

North–West 13.90 11.70 0.1690

Slope form

V/V 29.74 28.71 0.0367
GE/V 2.70 1.63 0.4238
X/V 10.60 11.15 −0.0522

V/GR 4.05 3.54 0.1340
GE/GR 1.30 0.58 0.5896
X/GR 3.27 3.05 0.0728
V/X 13.05 13.84 −0.0605

GE/X 3.72 2.37 0.3867
X/X 31.57 35.13 −0.1100
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3.1.3. Clustering Grid Cells into Different Groups

Although each grid cell in the study area has an optimal combination of causative factors based
on the analysis mentioned in Section 3.1.2, it is unrealistic and difficult to perform LSM for each grid
cell using the predictive model. In this work, the K-means clustering algorithm in IBM SPSS Statistics
19 was adopted to group all of the grid cells into different clusters according to the nearest neighbor
principle. To this end, each grid cell in the study area was first assigned a unique 17-digit binary
encoding, i.e., “1” denotes that the corresponding factor was selected for this grid cell for the landslide
prediction, whereas “0” represents that the corresponding factor was excluded. Then, all binary
encoded grid cells were used as input variables in the K-means algorithm for clustering. Consequently,
the study area was divided into K clusters, and all of the grid cells have the greatest similarity in the
same cluster. Eventually, the optimal combination of causative factors is selected and represented
by the final centroid of each cluster shared by all of the cells in the same cluster. In our experiments,
we perform the K-means algorithm to divide all of the grid cells into three clusters (K = 3), and the
optimal combinations of the causative factors for each cluster are shown in Table 4, where the
abbreviations SE and RC denote “selected” and “regression coefficient”, respectively, and the symbol
“
√

” indicates that the causative factor is selected for the corresponding cluster. Specifically, all of
the causative factors are used as independent variables in the LR model when the study area is not
classified using the K-means algorithm.

Table 4. The optimal combinations of the causative factors for each cluster and their regression
coefficients with the proposed framework when K = 3. SE, selected; RC, regression coefficient.

Causative Factor/Intercept No Clustering K = 3

Cluster 1 Cluster 2 Cluster 3

Intercept −8.125 −8.783 −17.097 1.415
SE RC SE RC SE RC SE RC

Elevation
√

1.838
Distance to river

√
2.801

√
4.473

NDVI
√

−0.597
√

0.709
NDWI

√
0.276

Catchment area
√

−0.156
Terrain surface texture

√
1.295

√
0.906

√
0.908

Slope gradient
√

0.255
√

5.476
√

4.256
Lithology

√
−1.191

TWI
√

0.671
√

4.470
√

−13.190
Catchment slope

√
0.400

√
3.643

TRI
√

1.340
√

3.859
Terrain surface convexity

√
0.836

√
13.433

Distance to fault
√

0.286
TPT

√
0.573

√
1.819

Terrain curvature
√

−0.648
√

−1.322
√

−0.346
Slope aspect

√
−0.297

√
−0.898

Slope form
√

0.012
√

−0.184

3.1.4. Multicollinearity Analysis of the Selected Causative Factors

After the K-means cluster analysis, a multicollinearity analysis using IBM SPSS Statistics 19.0 was
performed for the selected causative factors. The VIF and TOL values of the causative factors for each
cluster with K = 3 are listed in Table 5. According to this table, there was no serious multicollinearity
between the causative factors in each cluster. For instance, all of the TOL values are higher than 0.4,
which is above the commonly-used critical value of 0.1, while the greatest VIF value is less than 2.5,
which indicates that the selected causative factors are independent of each other.
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Table 5. The multicollinearity analysis of the causative factors for each cluster corresponding to Table 4.
TOL, tolerance; VIF, variance inflation factor.

Causative Factor
Cluster 1 Cluster 2 Cluster 3

TOL/VIF

Elevation
Distance to river 0.940/1.064

NDVI 0.944/1.059
NDWI

Catchment area
Terrain surface texture 0.977/1.023 0.944/1.060

Slope gradient 0.648/1.543 0.402/2.489
Lithology

TWI 0.741/1.350 0.408/2.451
Catchment slope 0.612/1.634

TRI 0.401/2.494
Terrain surface convexity 0.538/1.860

Distance to fault
TPI 0.775/1.291

Terrain curvature 0.812/1.231 0.907/1.102
Slope aspect 0.961/1.041
Slope form 0.999/1.001

3.2. Validation and Comparison

In this step, the proposed method was compared with several commonly-used methods, including:
(1) the LR method, which is a representative of statistical models; (2) the SVM model, which is
representative of machine learning methods; (3) the DT method modelling with the C5.0 algorithm,
which is representative of data mining techniques. These methods can be used with both remote
sensing images and field surveys and were performed using SPSS Clementine 12.0. To apply these
methods to the LSM of the study area, 70% of the landslide grid cells were randomly selected
for training the LR, SVM and DT methods, and the remaining landslide grid cells were used for
validation. For the proposed framework, the same proportion of the training-validation samples
were randomly selected in each cluster. As mentioned in Section 3.1.3, the study area can be clustered
by the K-means algorithm for obtaining an optimal combination of the causative factors for each
cluster. Meanwhile, the regression coefficients of each cluster per causative factor were computed
using the SPSS Clementine 12.0, and the regional LR model with K = 3 (LR_K3) was constructed
for comparison. Therefore, the LR, SVM and DT methods were applied to the entire study area for
LSM, whereas the LR_K3 method was performed in the different clusters of the study area for accurate
LSM at a regional scale. To make the resultant maps more readable, we divided the probability values
using the natural breaks method in ESRI ArcGIS 10.0 into four susceptibility zones, i.e., low, medium,
high and very high. The landslide susceptibility maps of all of the methods used here are illustrated
in Figure 5, which shows that most of the previously investigated landslides are distributed in high
or very high susceptibility zones in the maps of all of the predictive methods. However, many grid
cells are unreliably categorized by the LR, SVM and DT methods as high or very high susceptibility
classes, because landslides occur infrequently in these study areas. In contrast, the map generated by
the LR_K3 method is consistent with the actual distribution of landslides, as shown in Figure 1.

The overall accuracies in terms of landslide prediction by all of the methods, which were measured
using Equations (11) and (12), are listed in Table 6. The LR_K3 method achieved the best overall
accuracy of 85.32% when compared to that of the LR, SVM and DT methods with 80.26%, 83.74% and
84.13%, respectively. The success and prediction rate curves achieved by the different methods are
shown in Figure 6. Specifically, the success power of the predictive methods was evaluated by using
the training samples, and we can draw similar conclusions as for the overall accuracy mentioned
above, i.e., the LR_K3 method achieved better success power with an AUC value of 96.8% compared
with that of the LR, SVM and DT methods at 90.4%, 92.3% and 93.4%, respectively. On the other hand, the
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predictive performance of the methods considered here was evaluated by using the validation samples,
and the observation was consistent with the conclusion on the comparison of the success power of the
predictive methods, i.e., the LR_K3 method has superior prediction ability with AUC values of 96.1% in
comparison with the LR, SVM and DT methods with AUC values of 90%, 91.5% and 92%, respectively.
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Table 6. Overall accuracies of all of the predictive methods.

Methods Overall Accuracy

LR 80.26%
SVM 83.74%
DT 84.13%

LR_K3 85.32%
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4. Discussion

From the above analyses, we can observe that the number of clusters for the division of the study
area is greatly significant for landslide prediction. In this section, the impact of K on the predictive
performance of the proposed framework is first discussed. Then, to better describe the aim of this
work, we provide qualitative/quantitative analysis of the correlation between landslide susceptibility
and urban planning.

4.1. Impact of K

Our experimental results reported that there is no grid cell in at least one cluster when the
study area was divided into K (K ≥ 5) clusters. Therefore, we perform the K-means algorithm with
K = {2, 3, 4}. The optimal combinations of the causative factors for each cluster with K = {2, 4} are
shown in Table 7. Tables 4 and 7 show that the two factors catchment area and distance to fault were
not selected, no matter the number of clusters in the study area, indicating that these two factors are
not critical for LSM, which is consistent with the conclusion that these two factors have the smallest
information coefficients, as mentioned in Section 3.1.1. The VIF and TOL values of the causative factors
for each cluster with K = {2, 4} are listed in Table 8. According to Tables 5 and 8, there was no serious
multicollinearity between the causative factors in each cluster with different values of K, because all of
the TOL values are higher than 0.4, and the highest VIF value is less than 2.5. Therefore, the proposed
regional LR framework can obtain more accurate landslide susceptibility maps using the selected
causative factors.

The statistics of all of the regional LR models are given in Table 9, which shows that both of
the two measures −2 ln likelihood and goodness of fit of the proposed framework are smaller than
those of the traditional LR model using all of the causative factors, validating the improved fitness
of the proposed methods. Furthermore, the smallest pseudo R2 measure is 0.252 using the proposed
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framework with K = 3, which is appropriate for LSM of the study area. To validate the proposed
framework, we constructed a regional LR model with K = {2, 3, 4} (LR_K2, LR_K3 and LR_K4) for
comparison, and the landslide susceptibility maps of the three LR-based methods are illustrated in
Figure 7. As K was increased from 2–4, more accurate landslide susceptibility maps were obtained,
comparing the results in Figure 7a–c. For instance, the high or very high susceptibility zones in
Figure 7c produced by the LR_K4 method mainly correlate with the actual landslide areas, whereas
most of the non-landslide areas in this map are categorized as medium or low susceptibility zones.

Table 7. The optimal combinations of the causative factors for each cluster and their regression
coefficients with the proposed framework when K = 2 and 4.

Causative
Factor/Intercept

K = 2 K = 4

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Intercept −3.600 −0.508 −17.628 −30.784 −50.719 −12.063
SE RC SE RC SE RC SE RC SE RC SE RC

Elevation
√

3.321
√

4.392
√

20.754
Distance to river

√
4.473

√
7.241

√
13.396

√
3.392

NDVI
√

0.709
NDWI

√
3.447

Catchment area
Terrain surface texture

√
0.906

√
0.908

√
17.378

√
2.841

Slope gradient
√

5.476
Lithology

√
1.350

√
3.513

TWI
√

4.470
√

14.754
√

−3.863
√

0.400
Catchment slope

√
3.643

√
3.990

TRI
Terrain surface

convexity
√

7.693
√

31.940

Distance to fault
TPT

√
1.819

√
3.560

√
−2.669

√
0.778

Terrain curvature
√

−1.322
√

−1.286
Slope aspect

√
−0.898

√
−1.151

Slope form
√

−0.184
√

−0.519

Table 8. The multicollinearity analysis of the causative factors for each cluster corresponding to Table 7.

Causative Factor
K = 2 (TOL/VIF) K = 4 (TOL/VIF)

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Elevation 0.569/1.756 0.861/1.162 0.464/2.154
Distance to river 0.934/1.070 0.563/1.777 0.406/2.462 0.985/1.016

NDVI
NDWI 0.915/1.093 0.969/1.032

Catchment area
Terrain surface texture 0.975/1.026 0.670/1.493 0.946/1.057

Slope gradient
Lithology 0.977/1.023 0.852/1.173 0.864/1.157

TWI 0.789/1.268 0.949/1.054 0.774/1.291 0.627/1.594
Catchment slope 0.806/1.240 0.632/1.581

TRI
Terrain surface convexity 0.958/1.043 0.780/1.282

Distance to fault
TPI 0.975/1.026 0.931/1.074 0.912/1.097 0.638/1.567

Terrain curvature 0.908/1.101 0.998/1.002
Slope aspect 0.997/1.003 0.879/1.138
Slope form 0.685/1.460
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Table 9. Summary statistics of the logistic regression models.

Clusters
Statistics

−2ln Likelihood −2ln L0 Goodness of Fit Pseudo R2

No clustering 68,666.849 36,819.425 69,332.399 0.463

K = 2
Cluster 1 15,559.511 8542.172 215.389 0.451
Cluster 2 27,105.308 10,245.806 2833.666 0.622

K = 3
Cluster 1 21,731.018 1738.480 1887.318 0.920
Cluster 2 62,526.249 46,769.634 3962.812 0.252
Cluster 3 12,830.029 3412.788 2805.024 0.734

K = 4

Cluster 1 24,014.293 17,722.546 1954.458 0.262
Cluster 2 16,054.908 5025.186 19,513.817 0.687
Cluster 3 10,818.555 2704.639 2940.536 0.750
Cluster 4 11,601.296 7865.679 34,575.656 0.322
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The overall accuracies in terms of landslide prediction by the three constructed methods are
listed in Table 10. More accurate landslide susceptibility maps can be obtained as K is increased
from 2–4. For instance, the proposed LR_K4 method can obtain the best prediction accuracy of 91.76%,
which is 11.5%, 9.91% and 6.44% higher than that of the global LR, LR_K2 and LR_K3 methods,
respectively. Furthermore, the success and prediction rate curves achieved by the three methods are
shown in Figure 8. The ROC analysis in this figure indicated that all of the curves achieved by the
proposed methods were better than that of the LR method. In addition, Figure 8 shows that the AUC
value achieved using the proposed framework was better as K was increased from 2–4. It should also
be noted that the AUC values of the LR_K4 method can be higher than 0.98.

Table 10. Overall accuracies of the LR_K2, LR_K3 and LR_K4 methods.

Methods Overall Accuracy

LR_K2 81.85%
LR_K3 85.32%
LR_K4 91.76%
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4.2. The Suitability for Urban Development

During development of an urban environment, landslide susceptibility maps and other physical
factors of the study area should be considered by the decision makers and planners since the geology
and geomorphology of an area are very significant for urban sustainability [87,88]. In this subsection,
the integration technique of AHP and GIS is performed to encourage the evaluation and the selection of
suitable areas for urban development of the study area. To assess the suitability for different land uses,
the geomorphological, geological and geographical causative factors, along with the landslide hazards
were considered. To obtain the potential suitability map for urban development, the causative factors
of elevation, distance to river, distance to main towns, landslide susceptibility map, slope gradient and
slope aspect were used in this study. The landslide susceptibility map was obtained by the proposed
framework with K = 4. The rating of the classes of each causative factor was based on a five-grade
scale ranging from 0–4, which has been widely used by other researchers [89–91]. A grade of zero
indicates the most favorable conditions for slope failure, while a grade of four describes the most
stable conditions for urban development. The selected factors, their classes, ratings and weighting
coefficients are listed in Table 11.
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Table 11. The selected factors, their classes, ratings and weighting coefficients.

Factors
Potential Rating Weights Wi

0 1 2 3 4

Elevation (m) >1000 >750–1000 >500–750 250–500 <250 0.080
Distance to river (m) >4000 >3000–4000 >2000–3000 1000–2000 <1000 0.078

Distance to main towns (m) >4000 >3000–4000 >2000–3000 1000–2000 <1000 0.212
Landslide susceptibility map Very high High Medium Low 0.320

Slope gradient (◦) >25 >15–25 >10–15 5–10 <5 0.246
Slope aspect N NE, NW E, W SE, SW S, Flat 0.064

The suitability map for urban development of the study area is shown in Figure 9, and this
map was classified into the following four categories using the natural breaks method: low, medium,
high and very high suitability. Regarding the spatial distribution of the four categories, the areas of
very high suitability for urban development are located mostly around the main towns in the study
area. Specifically, such areas for each city are as follows:

• near the county of Badong, southwest south and southeast of this county.
• near the county of Xietan, west, northwest, north, northeast and east of this county.
• near the county of Shazhenxi, northwest, north, northeast and south of this county.
• near the county of Guizhou, north, northeast, east and southeast of this county.
• near the county of Guojiaba, south and southeast of this county.
• near the county of Xiangxi, north, northeast and east of this county.
• near the county of Quyuan, northwest, north, northeast, east and southeast of this county.
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5. Conclusions

Landslides are the leading natural hazards in the Three Gorges area, as the water level in the
reservoir fluctuates periodically, and they pose a serious threat to life and property. To avoid risks and
mitigate damage caused by landslides, accurate susceptibility maps are critically significant for land
management and land use planning. To better perform LSM, we presented an effective framework
through integrating the techniques of information theory, K-means cluster analysis and an LR model.
In this work, a total of 17 causative factors were used to construct the LR model, and the impacts of
these factors should be closely related to geographic locations and the nearest neighborhood. The major
achievement of this work is the grouping of the study area into several clusters to ensure that landslides
in each cluster are affected by the same set of selected causative factors. Based on this idea, the proposed
predictive method was constructed for accurate LSM at a regional scale by applying a suitable LR model
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to each cluster of the study area. In each cluster, 70% of the landslide grid cells were randomly selected
for training the LR model, and the remaining cells were used for validation purposes. The experimental
results indicated that the proposed framework can demonstrate superior prediction performance when
compared with the traditional LR, SVM and DT methods. Furthermore, the predictive methods used
in this work were comprehensively assessed in terms of their overall prediction accuracy and using
ROC analysis. These objective measures showed that the proposed framework can produce more
accurate landslide susceptibility maps with an overall prediction accuracy above 90%. Additionally,
this framework is capable of achieving a more reliable success rate and prediction rate curves with
AUC values above 98%. Further, to better describe the correlation between landslide susceptibility and
urban planning, a potential suitability map for urban development was obtained using the landslide
susceptibility map and the geological and geomorphological causative factors. In the future, other
statistical models or machine learning methods can be embedded into the proposed framework for
better prediction performance and a comprehensive comparison.
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