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Abstract: Nitrogen (N) is important for the growth of crops. Estimating leaf nitrogen concentration
(LNC) accurately and nondestructively is important for precision agriculture, reduces environmental
pollution, and helps model global carbon and N cycles. Leaf reflectance, especially in the visible and
near-infrared regions, has been identified as a useful indicator of LNC. Except reflectance passively
acquired by spectrometers, the newly developed multispectral LiDAR and hyperspectral LiDAR
provide possibilities for measuring leaf spectra actively. The regression relationship between leaf
reflectance spectra and rice (Oryza sativa) LNC relies greatly on the algorithm adopted. It would
be preferable to find one algorithm that performs well with respect to passive and active leaf
spectra. Thus, this study assesses the influence of six popular linear and nonlinear methods
on rice LNC retrieval, namely, partial least-square regression, least squares boosting, bagging,
random forest, back-propagation neural network (BPNN), and support vector regression of different
types/kernels/parameter values. The R2, root mean square error and relative error in rice LNC
estimation using these different methods were compared through the passive and active spectral
measurements of rice leaves of different varieties at different locations and time (Yongyou 4949,
Suizhou, 2014, Yangliangyou 6, Wuhan, 2015). Results demonstrate that BPNN provided generally
satisfactory performance in estimating rice LNC using the three kinds of passive and active
reflectance spectra.

Keywords: leaf nitrogen concentration; hyperspectral LiDAR; multispectral LiDAR; regression;
machine learning

1. Introduction

Plants require nitrogen (N) nutrition for many important compounds, such as amino and nucleic
acids [1,2]. Over a wide range, plant growth is linearly dependent on N supply [3]. Above that range,
higher rates of fertilization do not necessarily improve yield and can cause serious water pollution [4].
Additionally, leaf nitrogen concentration (LNC) is associated with the photosynthetic capacity of leaves
and thus allows global-scale CO2 assimilation to be modelled based on specific leaf area and LNC [5,6].
There is a need for the N condition of plants to be determined efficiently and accurately for fertilization
guidance and for understanding carbon and N cycles.
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Traditional hand-held or chemically-determined LNC can be accurate but destructive or unrealistic
for large-area needs. Meanwhile, various remote sensing techniques have been proposed as convenient
and precise methods for detecting the physiological condition of plants [7,8]. The visible and red-edge
region has been recognized as an important indicator of chlorophyll and N [9–11]. Apart from the
traditional passive (using sunlight as the light source) reflectance acquired by spectrometers, laser
intensity can also reflect the target’s properties in an active (light source is provided by the sensor)
way. Both techniques have their respective advantages and disadvantages. Passive spectrometers
often cover a wide spectral range with high spectral resolution. However, they tend to be influenced
by environmental factors, such as weather and sunlight conditions, and have a large field of view
(FOV > 50 cm2), depending at the range to target. By contrast, multispectral LiDAR (MSL) and
hyperspectral LiDAR (HSL) strengthen the spectral detecting abilities of traditional single-wavelength
LiDAR and simultaneously provide three-dimensional information and spectral properties. However,
they are often limited to a few to dozens of channels [12–15]. The laser-induced fluorescence technology
is also promising in detecting the biochemical conditions of plants [16].

Both passive and active reflectance spectra have been successfully applied in estimating the LNC
of rice [17,18], which is an important crop. However, the regression result can be strongly influenced
by the adopted machine learning algorithm [19,20]. Moreover, no algorithm presents a universally
good performance, and the “best” regression method varies with the characteristics of the problem
and the data set provided. Though deep learning has demonstrated outstanding abilities in studying
internal data mechanisms [21,22], its demand for training data volume and computation hardware is
high. Training samples can be expensive, especially for remote sensing applications.

The aim of this study is to investigate the performance of six popular machine learning algorithms
in the context of detecting rice LNC with passive and active spectral data (i.e., ASD FieldSpec Pro
FR (Analytical Spectral Devices, field spectroradiometer, full-range, Inc., Boulder, CO, USA), MSL,
and HSL) and provide reference to find a comparatively “universal” regression algorithm for similar
applications. This study also endeavors to offer guidance for choosing classification and regression
algorithms for the development MSL/HSL systems. As the exact relationship between LNC and
leaf reflectance remains unclear, both linear and nonlinear regression models were applied in this
study, including partial least-square regression (PLSR), least squares boosting (LSBoost), bagging (Bag),
random forest (RF), back-propagation neural network (BPNN), and support vector regression (SVR)
of different types/kernels/parameter values. The R2, root mean square error (RMSE) and relative
error (RE) in rice LNC estimation using these different methods were compared, using the passive and
active measurements of rice of different varieties and at different locations and time, namely, Yongyou
4949 in Suizhou, 2014, and Yangliangyou 6 in Wuhan, 2015.

2. Materials and Methods

2.1. Study Sites Description

Yongyou 4949 and Yangliangyou 6 were the rice cultivars used in this study. They were
cultivated at Junchuan County, Suizhou, and the experimental area of Huazhong Agricultural
University in Wuhan, in 2014 and 2015, respectively (Figure 1). These two areas lie in Hubei Province
(108◦21′42′ ′–116◦07′50′ ′E, 29◦01′53′ ′–33◦6′47′ ′N), in the center of China. The climate of this area is
subtropical monsoon humid, which is suitable for the growth of paddy rice.
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and detects light at four wavelengths: 556, 670, 700, and 780 nm. The HSL system has a white 
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For obtaining rice samples with a variety of LNCs, different levels of urea fertilizer treatments
were applied in separate fields while controlling other cultivation conditions identically. In 2014, the
crops were seeded on 27 April and transplanted on 1 June. Altogether six levels of urea fertilizer
(0, 189, 229.5, 270, 310.5, and 351 kg/ha) were implemented, with 30% at seeding, 20% at tillering, 25%
at shooting, and 25% at booting stage. In 2015, the crops were seeded on 30 April, and transplanted on
27 May. Four levels of urea fertilizer (0, 120, 180, 240 kg/ha) were implemented, with 60% at seeding,
20% at tillering and 20% at shooting. Three replicate fields were utilized for every urea fertilizer level.
In each plot, at least six fully expanded second leaves from the top were selected randomly, obtaining
a total of 220 leaves. The fresh leaf samples were sealed in plastic bags, kept in ice chests, and then
transported to the laboratory. The LNC of the rice samples were determined through the Kjeldahl
method [23] at the Wuhan Academy of Agricultural Science and Technology.

2.2. Passive and Active Spectra Measurement

The ASD FieldSpec Pro FR (Analytical Spectral Devices, Inc., Boulder, CO, USA) is a popular
detector that can measure reflectance spectra from 400 to 2500 nm with a resampled 1 nm resolution.
It has been widely utilized in remote sensing because of its convenience as a field spectrometer and
high spectral resolution [24,25]. A strong correlation between foliar N and chlorophyll has been found
in various plant species using different spectral indices [26–28]. The sensitivity of various biochemical
parameters to spectra according to the PROSPECT model shows that chlorophyll content and leaf
structure index prevail from 400 to 1000 nm [29]. Thus, the 400 to 1000 nm range was chosen for the
ASD data in the analysis.

The two active sensors investigated were the MSL and the HSL system. The MSL system emits and
detects light at four wavelengths: 556, 670, 700, and 780 nm. The HSL system has a white continuum
light source and 32 channels that receive light from 538 to 910 nm, with a spectral resolution of 12 nm.
Both systems were developed by Wuhan University and are laboratory-based prototypes. Further
detailed description of the two systems are referred to in the works of Wei et al. [30] and Du et al. [31].
The spectral characteristics of rice samples were acquired by MSL, ASD, and HSL. For each leaf,
three positions were randomly selected, and the average reflectance was later seen as a proxy for
the reflectance of the whole leaf. A reference panel (Spectralon, Labsphere, Inc., North Sutton, NH,
USA, reflectance nearly 99%) was measured before and after the spectral measurements by the three
sensors in the laboratory under the same lighting conditions as the detected rice samples (lighted by a
halogenated lamp of 50 W in the case of ASD and then by the MSL and HSL system respectively).
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The return intensity of the reflected light must be calibrated against the measurements of a
standard white reference panel. The reflectance at each wavelength can be obtained by dividing the
raw return intensity value of the target by the averaged value of the reference panel. Thus, some
systematic and random errors can be eliminated. The Savitzky–Golay smoothing filter [32] with a
third-order polynomial function and a bandwidth of 25 nm was applied to the ASD data within the
range of 400–1000 nm.

2.3. Analytical Methods

Principal Component Analysis: The ASD provides spectral data with hundreds of wavebands that
provide high dimensionality that is often much higher than the number of available training samples.
Additionally, significant redundancy is observed in high-dimensional spectral information. Principal
component analysis (PCA) is a useful tool for reducing the correlation among high-dimensional data
and can produce several principal components (PCs) that contain nearly as much information as the
whole dataset [33]. Considering the noise and the redundancy of information from many wavelengths,
the accuracy with hyperspectral data is not necessarily higher than that with the first few PCs.

In the process of reducing the dimensionality of ASD spectra, the eigen vectors and eigen values
of the covariance matrix composed of multi-dimensional data were first calculated. The data vectors
were mapped from the original space to a new orthogonal space using the PCs corresponding to the
first few eigen values. In this study, the first three PCs and the hyperspectral data collected by ASD
were used as the regression model input (explaining > 99% variance). PCA transformation was not
performed on the active spectra because the spectral dimensions of MSL and HSL were not as large as
the samples.

Partial least-square regression: As a popular linear model, PLSR has been applied in a wide range
of fields, including remote sensing. PLSR is a good alternative to many traditional multiple linear
regression and PC regression methods because of its robustness [34]. Similar to PCs regression, a PLSR
model tries to find the multidimensional direction in the independent space that explains the maximum
multidimensional variance direction in the dependent space (y) in an iterative manner [35]. The final
model that predicts the p dependent variables y (in this case, p equals 1, LNC) has the following form:

yj = cj1x1 + cj2x2 + . . . + cjmxm, j = 1, 2, . . . , p, (1)

where x1 to xm are the standardalized PCs calculated on mean-centered variables.
Least squares boosting and Bagging: The exact relationship between LNC and reflectance spectra

remains unclear, and is possibly nonlinear. With this consideration, more nonlinear regression
algorithms were employed in this study.

LSBoost was developed by Friedman [36] based on the squared loss function. It is a kind of
boosting regression method. Boosting creates an ensemble of models that collectively make a prediction
to improve performance in the case of the rice LNC. The ensemble is composed of base learners. Each
base learner minimizes the residual error of the previous one iteratively with weighted samples. The
LSBoost algorithm was chosen because it has a solid mathematical foundation compared with other
boosting algorithms. LSBoost begins with an initial guess f_0 and then fits a sequence of M weighted
models of T_1 to T_M (decision tree as the base learners in this study) [37]. The final model has the
following form:

fM(x) = f0(x) + v×
M

∑
m=1

ρmTm(x), (2)

where ρm denotes the weight for base learner m and v denotes the learning rate. The final output is the
weighted average output of all the base learners.

Both boosting and bagging [38] build a set of base learners that are combined by voting. Bagging
builds a set of base learners by generating replicated bootstrap data, and boosting does so by adjusting
the weights of training samples [39]. Bagging and boosting have several differences. First, the training
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samples of bagging are selected randomly and independently, whereas those of boosting are related
to the result of the previous learning. Second, each of the base learners in boosting has its respective
weight, whereas in bagging the weights are equal. Third, the base learners of bagging can be generated
in a parallel manner, instead of sequentially as that in boosting.

In this study, the LSBoost and Bag regressions were executed with the “fitensemble” function in
MATLAB R2015b (Mathworks Inc., Natick, MA, USA), for fitted ensemble for regression. Decision
trees were used as the individual models that form the ensemble, as is often adopted [37]. Decision
trees select important input dimensions in its calibration process. Different numbers of regression
trees were investigated to establish the LSBoost and Bag regression models. Each setting was repeated
50 times, and the average was taken for model performance assessment.

Random forest: Proposed by Breiman [40], RF added an additional layer of randomness to
bagging. In addition to constructing each tree using a different bootstrap sample of the data, RF
changes how regression trees are constructed. In standard trees, each node is split using the best split
among all variables. In contrast, each node in RF is split using the best among a subset of randomly
selected predictors at that node [41]. This strategy improves the model’s generalization performance
and its training efficiency. RF has three parameters: the number of regression trees, the number of
predictors to select randomly for each decision split, and the number of predictor splits summed over
all trees [42]. The defaults of the latter two parameters in the routines were accepted in the analysis,
and the number of trees was tested. Each setting was repeated 50 times, and the average was calculated
for model performance assessment.

Back-propagation neural network: As a kind of feedforward network, BPNN has been widely
applied in solving various nonlinear problems [43,44]. It has the advantage of self-learning and
self-adaption with generally good performance [45]. BPNN was applied in this study to model rice
LNC and reflectance. BPNN is based on the strategy of gradient descent and adjusts the parameters
toward the negative gradient direction.

A neural network consists of two or more layers, each with a number of neurons. Each hidden and
output neuron in BPNN processes its inputs by multiplying each by the respective weight, summing
the product, and passing the sum through a nonlinear transfer function for the final result. The weights
of the neurons are modified in response to the errors between the actual and target output values.
Training is performed by repeatedly updating the weights at the end of each cycle until the average
sum squared error over all the training samples are minimized and within the tolerance specified [46].
More details can be referred to in [47,48]. The regression performance was investigated with different
training functions and hidden layer sizes. Each setting was repeated 50 times and the average was
obtained for model performance assessment.

Support vector regression: SVR can construct both linear and nonlinear regressions using different
kernels. Different from an artificial neural network (ANN), SVR has an excellent generalization
performance with a strong theoretical foundation in statistical learning theory [49]. SVR is insensitive
to the dimension number of training samples and requires a small number of training samples [50].

SVR fits linear regression in the high-dimension feature space and attempts to reduce model
complexity by minimizing the empirical risk. SVR has two types: ε-SVR and v-SVR. ε-SVR estimates
an unknown continuous-valued function based on a finite set of noisy samples [51]. The optimization
problem of SVR has the following form:

min
w,b,ξ,ξ∗

1
2

wTw + C× 1
l

l

∑
i=1

(ξi + ξ∗i ), (3)

where C is the constant that determines the trade-off, ξ and ξ∗ are the slack variables, l is the loss
function, and wTw indicates the model complexity.
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In v-SVR, the size of accuracy parameter ε is traded off against model complexity and slack
variables via a constant v [52]. Its constrained optimization problem is as follows:

min
w,b,ξ,ξ∗

1
2

wTw + C× (vε +
1
l

l

∑
i=1

(ξi + ξ∗i )), (4)

In SVR, four kinds of kernels can be chosen: linear, polynomial, RBF, and sigmoid. The latter
three kernels establish nonlinear relationships. In this work, all data preprocessing, regression, and
evaluation was executed in MATLAB R2015b (Mathworks Inc., Natick, MA, USA), where many
regression toolbox and LIBSVM [53] are available. The type of transfer function/kernel function
and the associated parameters have to be determined in advance for BPNN and SVR. Thus, the
optimization process using different kernels or transfer functions and main parameter with varying
values were presented, while other parameters were settled through five-fold cross validation and are
not presented below.

2.4. Statistical Parameters

A total of 220 rice samples were collected in 2014 and 2015. They were divided randomly into
two datasets: 80% (176) as the training dataset and the remaining 20% (44) as the validation dataset for
predicting LNC. The coefficient of determination (R2), root mean square error (RMSE), and relative
error (RE) were calculated as follows to evaluate the performance of the estimation models:

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
, (5)

RE =
100

y
RMSE, (6)

where ŷi, yi, and y are the estimated, observed, and average observed rice LNC, respectively, and n is
the number of samples.

3. Results

3.1. Principal Components Analysis of ASD Spectra

ASD acquires the reflected signals of the targets in a wide range with high spectral resolution.
Figure 2 shows that the first three PCs of ASD reflectance contained most of the spectral characteristics.
Among them, PC1 was dominated by the red-edge (around 700 nm) and the near-infrared region, with
a small slope in the green light domain around 530 nm. PC2 and PC3 contained several complementary
spectral features to PC1. PC2 is generally significant in the visible region, covering the absorption
spectrum of chlorophylls and carotenoids [54]. PC3 represents the derivative of the reflectance spectra.
The first three PCs extracted the most important information in the reflectance spectra (cumulative
variance > 99%). In the regression process, both hyperspectral data and PC1–3 were applied in
every regression algorithm except for PLSR, because the process of extracting the PCs was originally
incorporated in the method. The results showed that for every investigated algorithm except for
LSBoost and SVR, the first three PCs showed a stronger correlation with foliar N than the hyperspectral
data. This is because LSBoost and SVR have an advantage in dealing with high-dimensional
data [50,55]. Hence, the results using the ASD hyperspectral data instead of PCs for these two
algorithms are shown in Section 3.3.
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3.2. Linear Regression Algorithms

PLSR and SVR with a linear kernel are the two linear regression algorithms investigated in this
study. In the optimization process, when the contribution of factors in PLSR was above 90%, the
influence of this parameter on the result was marginal. For SVR regression, v-SVR showed a superior
ability to ε-SVR, regardless of the spectra used (Figure 3).
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Figure 3. The estimation R2 of LNC using reflectance spectra from MSL, ASD, and HSL with two
linear regression algorithms—(a) partial-least square regression (PLSR) with varying contribution of
factors and (b) support vector regression (SVR) with a linear kernel (with different types of SVR). Other
parameters were settled through 5-fold validation.

Figure 3 shows the performance of PLSR with different factor contributions, and ε-SVR and
v-SVR with a linear kernel. Figure 4 is scatters of observed and predicted rice LNC using the two
linear algorithms with optimal parameters. Figures 3 and 4 show that the MSL data showed a weak
correlation with foliar N using PLSR (R2 = 0.17, RMSE = 5.08). Linear regression is not enough to
characterize the relationship between rice LNC and MSL, which has only four wavelengths. This
was confirmed by the results of SVR with a linear kernel. Meanwhile, the relationships of ASD and
HSL with LNC were stronger than that of MSL. Our results also show that the estimation precision of
LNC based on ASD was comparable with that of HSL using SVR with a linear kernel (R2 = 0.62, 0.66,
RMSE = 3.56, 3.46, respectively).
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3.3. Nonlinear Regression Algorithms

Figure 5 shows the process of parameter, transfer function, and kernel optimization using different
nonlinear algorithms (LSBoost, Bag, RF, BPNN, and SVR).

Optimization process of algorithms of least squares boosting (LSBoost), bagging (Bag), random
forest (RF), and SVR using R2 as a measure (ASD, MSL, and HSL). Other parameters were settled
through 5-fold validation.

As an ensemble learning algorithm, LSBoost uses several base learners (decision tree in this case)
to improve the performance of weak learners. HSL requires comparatively fewer decision trees to
provide a stable estimation of rice LNC, whereas 170 trees are optimally required by MSL and ASD.
Above this threshold, more decision trees did not provide a more accurate LNC estimation. Using the
LSBoost algorithm, passive and active spectra showed a stronger relationship to LNC than PLSR and
SVR with a linear kernel. Hence, this initially suggests that the relationship between spectral data and
foliar N is nonlinear rather than linear.

Fewer base learners were required for Bag and RF to provide a satisfactory LNC estimation than
the order of magnitude in LSBoost. Moreover, the fold lines of R2 with different base learner numbers
were rather flat. The results show that the relationship for reflectance spectra and foliar N using Bag
was comparable with that using RF.

BPNN has 13 different varieties of transfer functions: trainbfg, trainbr, traincgb, traincgf, traincgp,
traingd, traingda, traingdm, traingdx, trainlm, trainoss, trainrp, and trainscg. Until now, no settled
criterion for selecting a transfer function exists because the choice should be based on specific
circumstances. The performance of different transfer functions deviated greatly with the use of
the spectral data from different sensors (Figure 5). However, transfer functions traingd and traingdm
produced the worst LNC estimation for the reflectance spectra from every detector, with a lower R2

than any other transfer function (R2 < 0.5). Except for these two transfer functions, the performance of
the different transfer functions was similar for ASD regardless of the number of hidden layers. The
circumstance for HSL data was similar, except for trainlm, whose performance degraded with the
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increase of hidden layers. The transfer functions with the highest prediction accuracies were trainlm,
traingdx, and traincgp for MSL, ASD, and HSL, respectively.Remote Sens. 2017, 9, 951  9 of 14 
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Figure 5. The estimation R2 of LNC using reflectance spectra from MSL, ASD, and HSL with five
nonlinear regression algorithms: least squares boosting (LSBoost, (a)), bagging (Bag, (b)), random
forest (RF, (c)), back-propagation neural network (BPNN, (d–f) are the results using spectra from MSL,
ASD, HSL, respectively), and support vector machine (SVR, (g–i) are the results using spectra from
MSL, ASD, HSL, respectively). The performance of each algorithm with different parameters (different
number of base learners for LSBoost, Bag, and RF. varying hidden layer sizes using different transfer
function for BPNN, and two types of SVR: e-SVR and v-SVR) were shown.

Similar to the transfer function of BPNN, the type and kernel of SVR must be settled through
investigation. Figures 3 and 5 show that for kernel linear and RBF, the performance of v-SVR was
generally better than ε-SVR. This result confirms the applicability of v-SVR, as reported in a previous
study [56]. For the polynomial kernel, their respective R2 values were similar. Our results show that
v-SVR with kernel RBF provided the strongest relationship for spectra to paddy rice LNC regardless of
the detectors. The influence of different kernels was weak on HSL, stronger on ASD, and strongest on
MSL. This result is similar to that of Yao et al. [57], who found that SVR and ANN outperformed PLSR
in monitoring wheat LNC.

Table 1 shows the regression assessment of the six algorithms with the optimal parameter/transfer
function/kernel in terms of the three sensors. In the context of R2, the best estimations of LNC using
the spectra from MSL, ASD, and HSL were obtained with SVR, BPNN, and RF, respectively. On the
other hand, LNC can be estimated with the lowest RMSE/RE using the spectra from MSL, ASD, and
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HSL with SVR, SVR, and BPNN, respectively. In summary, BPNN exhibited significant abilities in
building the relationship between passive and active reflectance spectra and rice LNC.

Table 1. Regression performance of the six algorithms with optimal parameters (PLSR, LSBoost, Bag,
RF, BPNN, and SVR; unit of RMSE: mg/g).

Sensor
PLSR LSBoost Bag

R2 RMSE RE R2 RMSE RE R2 RMSE RE

MSL 0.17 5.08 29.37 0.45 4.16 24.07 0.58 3.66 21.17
ASD 0.56 3.76 21.75 0.61 3.47 20.03 0.72 3.21 18.53
HSL 0.69 3.27 18.89 0.71 3.27 18.88 0.78 2.75 15.89

Sensor Random Forest BPNN SVR

MSL 0.59 3.64 21.04 0.69 3.48 20.09 0.70 3.35 19.38
ASD 0.72 3.21 18.54 0.77 3.09 17.88 0.73 2.94 16.98
HSL 0.79 2.74 15.86 0.78 2.68 15.50 0.73 2.92 16.88

4. Discussion

The in vivo specific absorption coefficient of N is hard to get, meaning that LNC can only
be detected in an indirect way. Considering the close relations between leaf chlorophylls and N
concentration, LNC can be detected through the reflective characteristics of chlorophylls in visible
and NIR regions in leaf reflectance [58,59]. Thus, by using machine learning algorithms to study the
relationship between leaf spectra and LNC, ideally, the scatter points of predicted versus observed
LNC would fall along the 1:1 line. However, apart from chlorophylls, a small portion of N also resides
in material such as protein, nucleic acid, and auxin etc. [3]. Systematic and random noise have an
influence on the spectra. Also, the performance of different regression algorithms and their ability to
analyze the relationship between leaf spectra and LNC determines the regression results. Therefore,
the fitting line of the scatter deviates from the 1:1 line, and to different extents with respect to different
detectors and regression algorithms. The nearer to the 1:1 line indicates a better regression result.

Boosting and bagging have a sound theoretical base as classifiers and regression methods. In the
experiments of Quinlan [39] with various datasets, boosting appeared be a more effective method
in classifying than bagging. However, in this study, bagging generally presented more accurate
predictions of LNC than LSBoost, regardless of the dataset used. This could be caused by the difference
in the sensitivity to noise of the two methods. Tzeng et al. [60] found that boosting tends to perform
poorly in terms of accuracy when there is noise in the data. In contrast, bagging is not very sensitive to
noise in the data.

The RF algorithm has become increasingly popular in many different applications [61]. RF is an
improvement of bagging. However, it performed similarly with Bag in this study in terms of accuracy,
and its performance was more stable with a varying number of base learners.

The feed-forward BPNN is the type of neural network that is most commonly used in remote
sensing [45]. BPNN provided the best overall performance in terms of accuracy estimating rice LNC
among all the investigated algorithms in this study, that is, highest for ASD and second highest for
MSL and HSL compared with other methods. Neural approaches have been shown to be more accurate
than other techniques, and are insensitive to incomplete or noisy data [46]. However, overfitting is also
often encountered because of its powerful representation ability. Early stopping and regularization
help address this problem [62]. Ensuring that the global minimum instead of a local minimum is found
by means of simulated annealing and genetic algorithms is important [63,64].

SVR presented rice LNC estimation using MSL data with the highest precision, and ASD as the
second highest compared with other algorithms. With a clear theoretical foundation, SVM is favored
in remote sensing classification and regression [65,66]. However, the regression relationship between
HSL and LNC established by v-SVR using kernel RBF was not as good as those of Bag, RF, and BPNN.
Theoretically, SVR has a more powerful transferability than BPNN because it aims at minimizing the
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structured risk and has a global optimum. A dataset that covers a wider range is required to test
whether the good performance of BPNN over SVR stands in terms of predicting vegetation LNC.

Table 1 and Figures 2 and 5 show that the spectra measured by HSL generally presented a
stronger relationship to rice LNC than MSL and is stronger or comparable with ASD. Fusing passive
images and LiDAR data introduce sophisticated problems of registration [67]. With more bands in
the system, the spectral characteristics of targets can be accurately characterized and the full potential
of the backscattered intensity of laser light can be gained. Nevalainen et al. [68] investigated several
vegetation indexes measured by a HSL system in reflecting nitrogen in oat samples (R2 = 0.757,
RMSE = 0.37 mg/g). The exploration was promising but tentative because of limited samples.
A dual-wavelength system was employed in assessing crop foliar nitrogen with better results than
a single green laser wavelength (R2 = 0.47 versus 0.72) [13] and can be improved with more laser
wavelengths. The detector ASD has more bands (601 in this study versus 32) with a finer spectral
resolution than HSL. In contrast, LiDAR has a smaller FOV, and the laser return allows different types
of surfaces to be resolved in the vertical dimension, resulting in a more accurate detection, while the
radiance measured using ASD is a function of the total vertical column [67].

More samples of different rice varieties across locations are required to test the transferability of
BPNN in the accurate estimation of rice LNC. Several researchers have proposed using multiple kernels
learning in SVR to deal with problems where single-kernel may be insufficient [69,70]. Our next step is
to extend the experience with the MSL and HSL systems in leaf spectra toward canopy spectra, where
the circumstance is much more sophisticated. Many factors have an influence on the canopy reflectance
that have to be considered, such as the leaf area index, leaf inclination distribution, relative leaf size,
and soil background, etc. [71]. In addition, it should be noted that it is not always possible to retrieve
the actual leaf constituents from leaf or canopy reflectance. This is because very similar reflectance
spectra can be obtained from very different combinations of input parameters (leaf constituents,
viewing angles, canopy architecture and soil background, etc.), leading to the well-known “ill-posed”
problem [29,72]. Though the inverse problem is by nature ill-posed, some measures can be taken to
help alleviate it, such as restriction of ranges of input parameters and using prior information [24,73].
One of the future directions of MSL/HSL is to make it more compact and mounted on vehicles and
UAVs for wider application.

5. Conclusions

This study investigated the performance of six popular linear and nonlinear regression algorithms
to predict paddy rice LNC using the spectra from three different passive and active sensors: ASD, MSL,
and HSL. Furthermore, the influence of parameter values, transfer functions, kernels, and regression
types on the estimation results at a leaf scale from the reflectance spectra was verified.

The results demonstrate that BPNN has a greater ability to characterize the relationship between
reflectance spectra and rice LNC than other investigate algorithms and provided generally satisfactory
results on all passive and active spectra (R2: 0.69–0.78). The HSL constructed a regression relationship
with higher R2 compared with MSL and higher or comparable results to ASD regardless of the
algorithm adopted.

The results also show that HSL is capable of estimating vegetation biochemical properties.
The advantage of the HSL over the MSL is obvious. Further work will be performed to extend
the results of different datasets and locations and investigate the canopy scale.
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