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Abstract: A number of nonlinear acoustic sensing methods exist or are being developed for diverse
areas ranging from oceanic sensing of ecosystems, gas bubbles, and submerged objects to medical
sensing of the human body. Our approach is to use primary frequency incident waves to generate
second order nonlinear sum or difference frequency fields that carry information about an object
to be sensed. Here we show that in general nonlinear sensing of an object, many complicated
and potentially unexpected mechanisms can lead to sum or difference frequency fields. Some may
contain desired information about the object, others may not, even when the intention is simply to
probe an object by linear scattering of sum and difference frequency incident waves generated by
a parametric array. Practical examples illustrating this in ocean, medical, air and solid earth sensing
are given. To demonstrate this, a general and complete second-order theory of nonlinear acoustics in
the presence of an object is derived and shown to be consistent with experimental measurements.
The total second-order field occurs at sum or difference frequencies of the primary fields and naturally
breaks into (A) nonlinear waves generated by wave-wave interactions, and (B) second order waves
from scattering of incident wave-wave fields, boundary advection, and wave-force-induced centroidal
motion. Wave-wave interactions are analytically shown to always dominate the total second-order
field at sufficiently large range and carry only primary frequency response information about the
object. As range decreases, the dominant mechanism is shown to vary with object size, object
composition, and frequencies making it possible for sum or difference frequency response information
about the object to be measured from second-order fields in many practical scenarios. It is also shown
by analytic proof that there is no scattering of sound by sound outside the region of compact
support intersection of finite-duration plane waves at sum or difference frequencies, to second-order.
Analytic expressions for second-order fields due to combinations of planar and far-field wave-wave
interactions are also derived as are conditions for when wave-wave interactions will dominate the
second order field.

Keywords: nonlinear acoustics; parametric array; sum and difference frequency sensing;
nonlinear scattering

1. Introduction

A number of nonlinear acoustic sensing methods exist or are being developed for diverse areas
ranging from oceanic sensing of ecosystems, gas bubbles, and submerged objects to medical sensing
of the human body [1–7]. The approach is to use primary frequency incident waves to generate
second order nonlinear sum or difference frequency fields that carry information about an object
to be sensed. Here we show that in general nonlinear sensing of an object, many complicated and
potentially unexpected mechanisms can lead to sum or difference frequency fields. Some may contain
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desired information about the object, others may not, even when the intention is simply to probe an
object by linear scattering of sum and difference frequency incident waves generated by a parametric
array [1,3]. Practical examples illustrating this in ocean, medical, air and solid earth sensing are given.
To accomplish this, a general and complete second order theory of nonlinear acoustics in the presence
of an object is derived. The theory employs consistent asymptotic analysis of the wave equation and
time-dependent boundary conditions to second order, following methods developed in fluid dynamics
to quantify second order nonlinear waves found in the presence of floating objects [8,9]. This second
order nonlinear acoustic theory is confirmed by quantitative comparison with classic experimental
measurements of Jones and Beyer [1]. To our knowledge, no previous nonlinear acoustic theory
derived from first principles has been available to explain these measurements. While illustrative
examples are computed from exact second order solutions, which may involve integration, analytic
solutions and approximate asymptotic expressions are also derived when possible to gain further
insight. A detailed discourse on the relationship of this work to previous developments is provided in
the Discussion section.

When an object is insonified by two primary frequency incident waves, second order acoustic
waves at the sum and difference frequencies of the primary waves arise due to multiple mechanisms.
It is found that these generating mechanisms fall into two categories. The first is (A) nonlinear
wave-wave interactions of the primary waves, including the interaction between two incident waves
(denoted as II), the interaction between two scattered waves (denoted as SS) and the interactions
between an incident and scattered wave (denoted as IS and SI). The second is (B) linear scattering
of nonlinear waves of the first category due to the presence of the object with radiation from second
order boundary advection and wave-force-induced centroidal motion (together denoted as S2). Second
order acoustic waves of category (A) contain information about the object’s first order response at
the primary frequencies but not at the sum or difference frequency. Second order acoustic waves of
category (B) contain information about the object’s linear response to a sum or difference incident wave
but this information is often contaminated by complicated nonlinear effects due to primary scattered
wave fields at the object boundary so that it cannot typically be extracted simply by factoring from S2
the II amplitudes in analogy to approaches used in linear scattering theory.

We show analytically that wave-wave interactions dominate the total second order field at
sufficiently long ranges from the object, but in some scenarios these ranges may be too large to
enable practical measurements of this. At shorter ranges, second order scattering may also dominate
depending on physical parameters such as object size, object composition, primary frequencies,
and range. We show that centroidal motion of a rigid object due to its interaction with acoustic waves
can significantly affect the second order field at shorter ranges. In this case, S2 can be decomposed
into scattering from a fixed object at its time-averaged position (denoted as D2), and radiation due
to the second order centroidal motion (denoted as R2). We also show that resonance effects from
elasto-mechanical effects or gas filled bubbles in liquids can dominate the second order field at
shorter ranges.

Following experimental practice, we employ a time domain formulation of finite-duration
narrow-band incident waves and provide analytic solutions for the resulting second order fields
in the presence of an object. Finite-duration incident waves enable nonlinear field components that
contain information about the object to be separated in time and space from those that do not, e.g., the II
component, for certain sensing geometries. In such a finite-time duration approach, it is important
to demonstrate that all potential effects of sound scattering by sound in the II field are accounted
for properly. To quantify the scattering of sound by sound inside and outside a bounded interaction
region of primary waves with compact support, we derive analytic expressions for the second-order
nonlinear field arising from the interaction of plane waves of arbitrary time dependence. In an
early investigation of the scattering of sound by sound, Ingard and Pridmore-Brown [10] employed
unphysical collimated primary time-harmonic fields, which led to unphysical results as noted by
Westervelt [11]. The subsequent time-harmonic plane wave analysis of Westervelt [11] provided
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no spatial region without interacting primary fields. By analytic proof we show that to second
order there is no scattering of sound by sound outside the region of compact support intersection of
finite-duration plane waves at sum or difference frequencies in the absence of an object. We also show
that non-collinear interaction leads to finite scattering of sound by sound at the primary frequencies
only within the region of compact support union through which compact support intersection occurred
if the primary waves had zero-frequency spectral components. We rigorously prove that Lamb’s
collinear [12] and Westervelt’s non-collinear [11] time-harmonic solutions at the sum or difference
frequency for ideal time-harmonic primary plane wave interactions provide good approximations to
the second order field arising from the interaction of narrow-band finite-duration primary plane waves
with sufficiently long and smooth envelopes, but only in the region of compact support intersection
where the primary fields exist. We show such a time-harmonic approximation can be made in many
practical scenarios involving the interaction between scattered waves, as well as scattered and incident
waves of narrow band.

Applications of practical sensing in the ocean, human body, atmosphere and solid earth using
the second order nonlinear acoustic theory derived here are analyzed and evaluated in roughly
twenty case studies, where transitions between at least five potentially dominant mechanisms are
explored for each. These examples are illustrated and evaluated both in terms of dimensionless
parameters and specific frequencies and lengths. The former makes it possible to interpret the results
universally over the broadest range of possible applications by scaling the object size, receiver range,
and frequencies as necessary. The range of dimensionless parameters considered are chosen to provide
a general characterization of regions where important transitions between dominant mechanism occur.
The specific cases discussed include object radii spanning hundreds of micrometers to several meters;
primary frequencies ranging from tens of Hertz to tens of mega Hertz; difference frequencies ranging
from tens of Hertz to hundreds of kilo Hertz and sum frequencies of tens of mega Hertz.

Nonlinear acoustic sensing of oceanic fish at the difference frequency of a parametric array
is studied for two representative species: Atlantic herring (Clupea harengus) and Atlantic cod
(Gadus morhua). The former are of the plankton feeding Clupeidae family of keystone species that serve
as prey to many other fish, mammals and birds. The latter are of the fish-feeding Gadidae family of top
level predators. Both families are found throughout the world’s oceans and are important ecologically
in circulating biomass between open ocean and coastal waters via feeding to spawning cycles, and as
human food sources [13,14]. Traditionally, downward directed echosounders in the tens to hundreds
of kilo Hertz range have been used for scientific analysis of fish populations. These frequencies,
however, are typically well above the swim-bladder resonance frequencies of most oceanic fish species.
Difference frequency sensing with a parametric array has been used to potentially investigate swim
bladder resonances [7], which are important for wide area sensing with Ocean Acoustic Waveguide
Remote Sensing (OAWRS) [15–18]. Here we show that potentially unexpected second order nonlinear
mechanisms, different from the intended linear scattering of the parametric array’s incident difference
frequency field, can mask the difference frequency response of oceanic fish and so make difference
frequency sensing of swimbladder resonance difficult or impossible.

Nonlinear acoustic sensing of ocean air bubbles at difference frequencies is also studied. Air
bubbles are formed by breaking waves and are ubiquitous in the world’s oceans. Quantifying air
bubble distributions in the ocean is important to a number of areas including underwater sensing
and communication where bubbles cause attenuation, dispersion and randomization of transmitted
signals, and climatology where bubbles are a source of critical gas/aerosol exchanges between the
ocean and atmosphere [19–22]. Oscillating air bubbles are also a major natural source of ambient noise
in the ocean [23]. Here it is shown that transitions between dominant nonlinear acoustic mechanisms
occur at practical sensing ranges and frequencies and can limit the ability to determine desired
bubble parameters.

Applications of nonlinear acoustic difference frequency sensing for medical ultrasound
applications [4,5] are investigated for immovable rigid, movable rigid, vacuous, air-filled, and
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resonating objects. Here, we provide many examples showing that in practical medical applications no
single mechanism is always dominant. Instead, a number of mechanisms are found to dominate the
received difference frequency field depending on the object composition, size, source and receiver range
and orientation, and primary and difference frequencies, which may lead to unexpected consequences
for difference frequency sensing.

Nonlinear acoustic difference frequency sensing in the atmosphere for robotic applications, and
in the solid earth for detection and sensing of buried structures are also provided, as are opportunities
for sensing objects using incident-scattered wave interactions in a variety of media.

2. Linear and Second Order Nonlinear Formulation

Assuming weak nonlinearity, the total pressure field p(r, t), density field ρ(r, t), fluid particle
velocity v(r, t), object boundary displacement ξ(r, t) and total force on the object f(t) due to the acoustic
field can be described by [24]

p = p0 + p1 + p2 + · · · , ρ = ρ0 + ρ1 + ρ2 + · · · ,

v = v1 + v2 + · · · , ξ = ξ1 + ξ2 + · · · , and f = f1 + f2 + · · · ,
(1)

where subscripts 0, 1 and 2 indicate zeroth-, first- and second-order quantities, respectively, with
{}0 � {}1 � {}2. Here p0 and ρ0 are ambient pressure and density of the medium without acoustic
waves and v0 = ξ0 = f0 = 0. The general problem is sketched in Figure 1, where two primary
incident fields pIa and pIb are incident on an object, causing two primary scattered fields, pSa and
pSb. The second order field p2 generated by wave-wave interactions and second order scattering is
measured by a receiver at rR.

Figure 1. Two primary incident fields pIa and pIb at respective angular frequencies ωa and ωb are
incident on an object, causing two primary scattered fields, pSa and pSb. A receiver at rR measures the
second order field p2(rR, t).

In practice, the different orders expressed in Equation (1) can be isolated by slowly increasing the
amplitude of an incident time-harmonic primary field. For very small incident amplitude, only the
ambient or zeroth order fields will be measurable. As the incident primary field amplitude is slowly
increased, it will be possible to measure the first order quantities in Equation (1) above ambient levels at
the primary frequency with no other higher order contributions present. Slowly increasing the primary
field amplitude further will eventually lead to the addition of only sum and difference frequency
fields that are measurable above the ambient levels that correspond to the second order variables of
Equation (1). Increasing the incident amplitude further such that there are more frequencies present
than the primary, sum and difference frequency introduces nonlinearities beyond the second order,
which are not treated in the present paper. In this case, incident amplitudes should be reduced so that
only primary, sum and difference frequencies are present. The second order theory presented here is
then valid and can be properly used to explain nonlinear phenomena.
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2.1. First Order Formulation

The total first order pressure field p1 satisfies the wave equation with source function q1, via(
∇2 − 1

c2
0

∂2

∂t2

)
p1(r, t) = −q1(r, t), (2)

where c0 is the sound speed, ∇2 is the Laplacian with respect to the receiver position r and t is time.
The boundary conditions for pressure release, rigid immovable, or rigid movable objects without
rotation are

pressure release (Dirichlet): p1 = 0 on S̄, (3)

rigid immovable (Neumann): v1 · n = 0 on S̄, (4)

rigid movable: v1 · n = uc1 · n on S̄, (5)

where the fluid velocity is related to the pressure by the linearized momentum equation v1 =

−ρ−1
0
∫
∇p1dt, uc1 is velocity of the object’s centroidal motion in response to the acoustic field, S̄ is the

mean reference boundary position, and n is the surface outward normal vector of the medium. Pressure
release and rigid immovable boundaries are limiting cases of a general locally reacting boundary. It
is shown in Appendix C that the solution to the first and second order scattering problems for any
locally reacting boundary can be constructed from pressure release and rigid immovable scattering
solutions. A rigid movable boundary, however, is a special case of a non-locally reacting boundary
because uc1 depends on the acoustic field on the whole boundary.

The complete solution for p1 from Green’s theorem is [25,26]

p1(r, t) = pI1(r, t) + pS1(r, t) + pinit1(r, t), (6)

where

pI1(r, t) =
∫ t+

tinit

dt0

∫∫∫
dV0g(r, t|r0, t0)q1(r0, t0), (7)

pS1(r, t) =
∫ t+

tinit

dt0

∫∫
dS0n(r0) · [pS1(r0, t0)∇0g(r, t|r0, t0)− g(r, t|r0, t0)∇0 pS1(r0, t0)] , (8)

pinit1(r, t) = − 1
c2

0

∫∫∫
dV0

[
∂g(r, t|r0, t0)

∂t0
p1(r0, t0)− g(r, t|r0, t0)

∂p1(r0, t0)

∂t0

]
t0=tinit

. (9)

Here, the 0 subscript appears on spatial variables of integration and their gradient; t0 is a temporal
variable of integration for the first two integrals; tinit is the time at which the source begins to operate;
t+ is a time much larger than the period of any harmonic source in operation; pI1 is the known incident
wave, pS1 is the scattered wave, which depends on the object boundary condition; and pinit1 represents
the transient effect associated with initial conditions at tinit. The time domain Green function is
g(r, t|r0, t0) = δ(t− t0 − R/c0)/(4πR) where δ is the Dirac delta function and R = |r− r0|.

For pressure release or rigid immovable objects, the scattered wave pS1 can be obtained by solving
the integral equation (8) with boundary conditions

pressure release: pS1 = −pI1 on S̄, (10)

rigid immovable: vS1 · n = −vI1 · n on S̄, (11)

where vS1 = −ρ−1
0
∫
∇pS1dt and vI1 = −ρ−1

0
∫
∇pI1dt.
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For rigid movable objects, let the total scattered wave pS1 be decomposed as

pS1 = pD1 + pR1, (12)

where subscript D1 represents first order scattering from the rigid object whose boundary is fixed,
and subscript R1 represents first order radiation due to centroidal motion of the rigid object.
By definition, pD1 is the same as pS1 for the rigid immovable object. The radiated wave pR1 depends
on the uc1, and it satisfies the boundary condition

vR1 · n = uc1 · n on S̄ (13)

where vR1 = −ρ−1
0
∫
∇pR1dt. The centroidal velocity uc1 is determined by the equation of motion

M
duc1

dt
=
∫∫

S̄
(pI1 + pD1 + pR1)ndS, (14)

where M is the mass of the object and the integral on the right-hand side of Equation (14) represents
the total force on the object. The inertial term on the left-hand side of Equation (14) can be written
as zmuc1 with operator zm = Md/dt. Since the radiated wave is a linear function of the centroidal
motion, the force on the body due to radiation can be written as

∫∫
S̄ pR1ndS = −zruc1, where the

linear operator zr depends on the object geometry and the medium properties. Then uc1 becomes

uc1 = (zm + zr)
−1fexcit

1 , (15)

where the wave-exciting force is defined as

fexcit
1 =

∫∫
S̄
(pI1 + pD1)ndS, (16)

which is completely determined by pI1 and pD1. Once uc1 in Equation (13) is determined, pR1 can be
obtained with the same procedure as that for pD1.

The formulation for time-harmonic first-order scattering including centroidal motion of the object
is provided in the online supplementary material.

2.2. Second Order Formulation

The governing equation for the second order acoustic pressure field p2(r, t) in a homogeneous,
inviscid medium is [11] (

∇2 − 1
c2

0

∂2

∂t2

)
p2 = −q2, (17)

where

q2 =
1

ρ0c4
0

B
2A

∂2 p2
1

∂t2 +∇ · (∇ · J2), (18)

and J2 = ρ0v1v1 is the momentum tensor [24], and A = ρ0(∂p/∂ρ)|ρ0 = ρ0c2
0 and B = ρ2

0(∂
2 p/∂ρ2)|ρ0

are constants from the equation of state. The second order fluid velocity v2 is related to p2 via

v2 = − 1
ρ0

∫
∇p2dt +

1
2ρ2

0c2
0

∫
∇p2

1dt− 1
2

∫
∇(v1 · v1)dt. (19)

To find the second order boundary condition on the body, we expand the boundary condition
on the exact boundary S(t) in a Taylor series with respect to S̄ [8]. After substituting the perturbation
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expansions for p, v and ξ into the series and collecting terms at each order, the second order boundary
conditions are obtained as

pressure release: p2 = −ξ1 · ∇p1 on S̄, (20)

rigid immovable: v2 · n = 0 on S̄, (21)

rigid movable: v2 · n = uc2 · n− ξc1 · ∇(v1 · n) on S̄, (22)

where uc2 is the second order centroidal velocity for rigid objects without rotation, ξ1 and ξc1 are first
order boundary and centroidal displacements, respectively. The second order boundary condition
for a general locally reacting boundary is derived in Appendix C, where it is shown that solution to
the second order scattering problem for any locally reacting boundary can also be constructed from
pressure release and rigid immovable scattering solutions.

As in the first order problem, the total second order wave field is given by Green theorem, as

p2(r, t) = pI2(r, t) + pS2(r, t) + pinit2(r, t), (23)

where

pI2(r, t) =
∫ t+

tinit

dt0

∫∫∫
dV0g(r, t|r0, t0)q2(r0, t0), (24)

pS2(r, t) =
∫ t+

tinit

dt0

∫∫
dS0n(r0) · [pS2(r0, t0)∇0g(r, t|r0, t0)− g(r, t|r0, t0)∇0 pS2(r0, t0)] , (25)

pinit2(r, t) = − 1
c2

0

∫∫∫
dV0

[
∂g(r, t|r0, t0)

∂t0
p2(r0, t0)− g(r, t|r0, t0)

∂p2(r0, t0)

∂t0

]
t0=tinit

. (26)

Here pI2 is the second order incident wave, which is due to wave-wave interactions of the first
order field, pS2 is the second order scattered field determined by the second order boundary condition,
and pinit2 accounts for the initial conditions.

When the primary wave field consists of incident and scattered waves, we have

p1 = pI1 + pS1, v1 = vI1 + vS1. (27)

Substituting p1 and v1 from (27) into Equation (18) then into Equation (24) leads to a
decomposition of pI2 as

pI2 = pII + pSS + pIS + pSI, (28)

where

pII(r, t) =
∫ t+

tinit

dt0

∫∫∫
dV0g(r, t|r0, t0)

{
1

ρ0c4
0

B
2A

∂2

∂t2
0
(pI1 pI1) + ρ0∇0 · [∇0 · (vI1vI1)]

}
, (29)

pSS(r, t) =
∫ t+

tinit

dt0

∫∫∫
dV0g(r, t|r0, t0)

{
1

ρ0c4
0

B
2A

∂2

∂t2
0
(pS1 pS1) + ρ0∇0 · [∇0 · (vS1vS1)]

}
, (30)

pIS(r, t) =
∫ t+

tinit

dt0

∫∫∫
dV0g(r, t|r0, t0)

{
1

ρ0c4
0

B
2A

∂2

∂t2
0
(pI1 pS1) + ρ0∇0 · [∇0 · (vI1vS1)]

}
, (31)

pSI(r, t) =
∫ t+

tinit

dt0

∫∫∫
dV0g(r, t|r0, t0)

{
1

ρ0c4
0

B
2A

∂2

∂t2
0
(pS1 pI1) + ρ0∇0 · [∇0 · (vS1vI1)]

}
, (32)
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in which pI1, pS1, vI1, and vS1 are functions of r0 and t0, ∇0 is the gradient operator with respect to r0,
II represents contributions from incident-incident interactions, SS from scattered-scattered interactions,
and IS and SI from incident-scattered interactions.

The procedure to obtain pS2 for pressure release or rigid immovable objects is similar to that for
pS1 (Section 2.1 and online supplementary material), but the boundary conditions are

pressure release: pS2 = −pI2 − ξ1 · ∇p1 on S̄, (33)

rigid immovable: vS2 · n = −vI2 · n on S̄, (34)

where vI2 is the second order fluid velocity due to pI2, which is given by Equation (19) with p2 = pI2.
The fluid velocity vS2 = −ρ−1

0
∫
∇pS2dt. The pressure component ξ1 · ∇p1 describes contributions

from wave-boundary interactions due to first order boundary motion.
Following the approach used in first order for rigid movable objects, pS2 is decomposed as

pS2 = pD2 + pR2, (35)

where pD2 is the second order scattered wave from a rigid object whose centroid is fixed at second
order, i.e., uc2 = 0, and pR2 is the second order radiated wave due to any second order centroidal
motion uc2.

The procedure to obtain pD2 is similar to that for pS2 and pS1, but the boundary condition is

vD2 · n = −vI2 · n− ξc1 · ∇(v1 · n) on S̄, (36)

where vD2 = −ρ−1
0
∫
∇pD2dt. The velocity component ξc1 · ∇(v1 · n) also describes contributions from

wave-boundary interactions due to first order boundary motion.
To obtain pR2, the procedure is again similar to that for pR1, but with boundary condition

vR2 · n = uc2 · n on S̄, (37)

where vR2 = −ρ−1
0
∫
∇pR2dt. The centroidal velocity uc2 is determined by the second order equation

of motion

M
duc2

dt
=
∫∫

S̄
(pI2 + pD2 + pR2 + ξc1 · ∇p1)ndS, (38)

where the second order pressure component ξc1 · ∇p1 arises from Taylor series expansion of the
total pressure p at the instantaneous boundary S(t) with respect to S̄. By defining the second order
wave-exciting force as

fexcit
2 =

∫∫
S̄
(pI2 + pD2 + ξc1 · ∇p1)ndS, (39)

uc2 becomes

uc2 = (zm + zr)
−1fexcit

2 . (40)

When the primary incident field has two components pI1(r, t) = < { p̃Ia(r, t) + p̃Ib(r, t)},
the primary scattered field is pS1(r, t) = < { p̃Sa(r, t) + p̃Sb(r, t)}, and the total first order field is
p1 = < { p̃Ia + p̃Ib + p̃Sa + p̃Sb}. This leads to
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p2
1(r, t) = <

{
1
2

p̃Ia p̃Ia +
1
2

p̃Ib p̃Ib +
1
2

p̃Ia p̃∗Ia +
1
2

p̃Ib p̃∗Ib + p̃Ia p̃Ib + p̃Ia p̃∗Ib

}
+<

{
1
2

p̃Sa p̃Sa +
1
2

p̃Sb p̃Sb +
1
2

p̃Sa p̃∗Sa +
1
2

p̃Sb p̃∗Sb + p̃Sa p̃Sb + p̃Sa p̃∗Sb

}
+< { p̃Ia p̃Sa + p̃Ia p̃∗Sa + p̃Ia p̃Sb + p̃Ia p̃∗Sb + p̃Sa p̃Ib + p̃Sa p̃∗Ib + p̃Sb p̃Ib + p̃Sb p̃∗Ib} , (41)

and v1v1 can be expressed in the same manner. Substituting p2
1 and v1v1 into q2 in Equation (18) and

then Equation (24) leads to

pI2(r, t) = (pII,aa + pII,bb + pII,aa∗ + pII,bb∗ + pII,ab + pII,ab∗)

+(pSS,aa + pSS,bb + pSS,aa∗ + pSS,bb∗ + pSS,ab + pSS,ab∗)

+(pIS,aa + pIS,aa∗ + pIS,ab + pIS,ab∗ + pSI,ab + pSI,ab∗ + pSI,bb + pSI,bb∗). (42)

The first parenthetical group of terms in Equation (42) is due to II interaction, the second to SS
interaction, and the last to IS and SI interactions. The II components pII,aa, pII,aa∗ , pII,bb and pII,bb∗ ,
SS components pSS,aa, pSS,aa∗ , pSS,bb and pSS,bb∗ , and IS and SI components pIS,aa, pIS,aa∗ , pSI,bb and
pSI,bb∗ correspond to self-interactions of each incident wave. The II components pII,ab and pII,ab∗ ,
SS components pSS,ab and pSS,ab∗ , and IS and SI components pIS,ab, pIS,ab∗ , pSI,ab and pSI,ab∗ are due to
cross-interactions between the pIa and pIb incident fields.

When pI1 has two harmonic components at angular frequencies ωa and ωb, ωa > ωb, the variables
pI1, pS1, vI1, vS1, ξ1 and ξc1 also contain these harmonic components, i.e.,

pI1 = <{PIae−iωat + PIbe−iωbt}, pS1 = <{PSae−iωat + PSbe−iωbt},
vI1 = <{VIae−iωat + VIbe−iωbt}, vS1 = <{VSae−iωat + VSbe−iωbt},
ξ1 = <{Ξae−iωat + Ξbe−iωbt}, and ξc1 = <{Ξcae−iωat + Ξcbe−iωbt}.

(43)

Then pI2, pII, pSS, pIS and pSI in Equation (28) contain static and double frequency (2ωa and
2ωb) components due to self-interactions, and sum (ω+ = ωa + ωb) and difference (ω− = ωa − ωb)
frequency components due to cross-interactions. Specifically, the ω± components for pI2, pII, pSS,
pIS and pSI are

pI2± = <{PI2±e−iω±t} = <{(PII± + PSS± + PIS± + PSI±)e−iω±t}, pII± = <{PII±e−iω±t},
pSS± = <{PSS±e−iω±t}, pIS± = <{PIS±e−iω±t}, pSI± = <{PSI±e−iω±t},

(44)

where

PII±(r) =
∫∫∫

G±(r|r0)

{
−

ω2
±

ρ0c4
0

B
2A

PIaP(∗)
Ib +

ρ0

2
∇0 · [∇0 · (VIaV(∗)

Ib + V(∗)
Ib VIa)]

}
dV0, (45)

PSS±(r) =
∫∫∫

G±(r|r0)

{
−

ω2
±

ρ0c4
0

B
2A

PSaP(∗)
Sb +

ρ0

2
∇0 · [∇0 · (VSaV(∗)

Sb + V(∗)
Sb VSa)]

}
dV0, (46)

PIS±(r) =
∫∫∫

G±(r|r0)

{
−

ω2
±

ρ0c4
0

B
2A

PIaP(∗)
Sb +

ρ0

2
∇0 · [∇0 · (VIaV(∗)

Sb + V(∗)
Sb VIa)]

}
dV0, (47)

PSI±(r) =
∫∫∫

G±(r|r0)

{
−

ω2
±

ρ0c4
0

B
2A

PSaP(∗)
Ib +

ρ0

2
∇0 · [∇0 · (VSaV(∗)

Ib + V(∗)
Ib VSa)]

}
dV0, (48)

in which the asterisk denotes complex conjugation that applies to the difference frequency case only.
Equations (45)–(48) are obtained by substituting pI1, pS1, vI1 and vS1 from (43) into Equations (29)–(32)
and integrating over t0.
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The ω± components of pS2, pD2, pR2, uc2 and fexcit
2 can be written as

pS2± = <{PS2±e−iω±t}, pD2± = <{PD2±e−iω±t}, pR2± = <{PR2±e−iω±t},
uc2± = <{Uc2±e−iω±t}, fexcit

2± = <{Fexcit
2± e−iω±t},

(49)

where the complex amplitudes PS2±, PD2±, PR2±, Uc2± and Fexcit
2± can then be determined by further

analysis. Specifically, substituting pS2± into Equation (25) and integrating over t0 yields

PS2±(r) =
∫∫

dS0n(r0) · [PS2±(r0)∇0G±(r|r0)− G±(r|r0)∇0PS2±(r0)] , (50)

where G±(r|r0) = eik±R/(4πR) and k± = ω±/c0. The scattered wave PS2± for pressure release or
rigid immovable objects can be obtained from Equation (50) with boundary conditions

pressure release: PS2± = −PI2± −
1
2
(Ξa · ∇P(∗)

b + Ξ
(∗)
b · ∇Pa) on S̄, (51)

rigid immovable: VS2± · n = −(VII± + VSS± + VIS± + VSI±) · n on S̄, (52)

where VII±, VSS±, VIS± and VSI± are the second-order complex fluid velocity amplitudes associated
with PII±, PSS±, PIS± and PSI± respectively, Pa = PIa + PSa and Pb = PIb + PSb are first order complex
pressure field amplitudes at frequencies ωa and ωb respectively, and VS2± = (iω±ρ0)

−1∇PS2±. In the
pressure release boundary Equation (51), the PI2± term leads to linear sum or difference frequency
scattering of incident wave-wave fields II, SS, IS and SI, while the last two terms lead to nonlinear
radiation from boundary advection that will involve II, SS, IS and SI type components, where SS or
SS-type boundary components dominate the amplitude of PS2± for ka, kb � 1. In the rigid immovable
boundary Equation (51), there is only linear sum or difference frequency scattering of incident
wave-wave fields.

For rigid movable objects, PD2± can be obtained from Equation (50) with PS2± = PD2± and
boundary condition

VD2± · n = −(VII± + VSS± + VIS± + VSI±) · n−
1
2

[
Ξca · ∇(V(∗)

b · n) + Ξ
(∗)
cb · ∇(Va · n)

]
on S̄, (53)

where VD2± = (iω±ρ0)
−1∇PD2±, Va = VIa + VSa and Vb = VIb + VSb are first order fluid velocities

at frequencies ωa and ωb respectively.
The wave-exciting force is

Fexcit
2± =

∫∫
S̄

[
PI2± + PD2± +

1
2
(Ξca · ∇P(∗)

b + Ξ
(∗)
cb · ∇Pa)

]
ndS. (54)

The centroidal velocity for a rigid movable object attached to a spring and damper in the direction
of motion is

Uc2± =

[
Zm(ω±) + Zr(ω±) +

Mω2
n

−iω±
+ 2ζMωn

]−1

Fexcit
2± , (55)

where ωn is the undamped natural frequency, ζ is the dimensionless damping ratio, Zm(ω±) =

−iω±M is the Fourier transform of zm and Zr(ω±) is the Fourier transform of zr, which is sometimes
referred to as the radiation impedance [24,27,28] and is determined from its elements by

{Zr(ω)}ij = −
∫∫

S̄
ni P̂R,j(ω)dS, for i, j = x, y, z, (56)
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where PR,j(ω), for j = x, y, z are the first order radiated fields from an object due to unit amplitude
velocity oscillation at frequency ω in x, y, z directions (online supplementary material). In terms of
P̂R = (P̂R,x, P̂R,y, P̂R,z), the second order radiated field PR2± is

PR2± = P̂R(ω±) ·Uc2±. (57)

2.3. Summary

In summary, the total second order field from any object insonified by acoustic waves is generated
by wave-wave interactions, including II, SS, IS and SI, and by second order scattering S2, as

p2 = pII + pSS + pIS + pSI + pS2, (58)

which, for the sum and difference frequency amplitudes, leads to

P2± = PII± + PSS± + PIS± + PSI± + PS2±. (59)

The interaction components pII, pSS, pIS and pSI are given by Equations (29)–(32). The S2
component pS2 is given by Equation (25) with boundary conditions (33) and (34) for pressure release
and rigid immovable objects, respectively. The general solution for objects with non-rigid locally
reacting boundaries is given in Appendix C in terms of the pressure release and rigid immovable
solutions of this section. For rigid movable objects, S2 is decomposed into D2 and R2. The D2
component pD2 is given by Equation (25) with boundary condition (36). The R2 component pR2 is
given by Equation (25) with boundary condition (37), where the centroidal motion is determined from
the wave-exciting force by Equation (39).

From the sensing perspective, the II interaction only depends on the primary incident waves
and it contains no information about the object. The SS, IS and SI interactions depend on the first
order scattered waves pSa and pSb, and they contain primary frequency scattering information of the
object. S2 contains the object’s second order scattering information at the sum or difference frequency.
For example for the rigid object, D2 depends on the geometry of the object and R2 depends on the
second order motion of the object.

The present theory provides a complete and self-consistent treatment of second order interaction
and scattering in the presence of an object, including the effect of second order centroidal motion.
More details about the wave-exciting force formulation are provided in Appendix D.

3. Solutions for Wave-Wave Interactions

3.1. Direct Integration

3.1.1. General Approach

Let pI2 of Equation (23) and the associated second order velocity vI2 due to wave-wave interactions
be further decomposed as [29]

pI2(r, t) = p′2(r, t) + p′′2 (r, t) and vI2(r, t) = − 1
ρ0

∫ t

−∞
∇p′2(r, τ)dτ + v′′2 (r, t), (60)

where p′′2 and v′′2 are nonzero only when the primary field exists and can be directly evaluated from
first order pressure p1 and velocity v1, as
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p′′2 (r, t) = −
ρ0v2

1(r, t)
2

−
p2

1(r, t)
2A

− 1
A

∂p1(r, t)
∂t

∫ t

−∞
p1(r, τ)dτ, (61)

v′′2 (r, t) =
1

2ρ2
0c2

0

∂

∂t

[
∇
(∫ t

−∞
p1(r, τ)dτ

)2
]

, (62)

and p′2 satisfies (
∇2 − 1

c2
0

∂2

∂t2

)
p′2 = − β

Ac2
0

∂2 p2
1

∂t2 , (63)

where β = 1 + B/(2A). As in Equation (24), solution for p′2 is

p′2(r, t) =
β

Ac2
0

∫ t+

tinit

dt0

∫∫∫
∂2 p2

1(r0, t0)

∂t2
0

g(r, t|r0, t0)dV0. (64)

Finite-duration incident plane waves propagating at directions îa and îb with center frequencies
ωa and ωb respectively can be written as

pIa(r, t) = <{PIa(r)e−iωatw1(t− îa · r/c0)} and pIb(r, t) = <{PIa(r)e−iωbtw1(t− îb · r/c0)}, (65)

where

PIa = Pa0eiωa îa ·r/c0 and PIb = Pb0eiωb îb ·r/c0 (66)

are harmonic plane waves with amplitudes Pa0 and Pb0, respectively, and w1(t) is a window function
with compact support of duration T, which is here assumed to have unit height within the window
except at each end where smooth transitions to zero occur over time periods much less than T.

When the object is small compared to the spacial extent of the incident plane wave window,
the dominant scattering components are within the narrow band of the incident waves, and the
window functions are sufficiently smooth, the primary scattered waves can be approximated as

pSa(r, t) ≈ <{PSa(r)e−iωatw1(t− r/c0)} and pSb(r, t) ≈ <{PSb(r)e−iωbtw1(t− r/c0)}, (67)

which correspond to harmonic scattered waves PSa and PSb at frequencies ωa and ωb, where compact
support is preserved by moving windows.

Like pI2 in Equation (42), p′2 and p′′2 have self-interaction and cross-interaction components due to
II, SS, IS and SI mechanisms. By substituting Equations (65) and (67) into Equation (64) and integrating
over t0, the cross-interaction components for p′2 are

p′
II,ab(∗)

(r, t) = −
βω2
±

Ac2
0
<
{

e−iω±t
∫∫∫

wII,ab(∗) PIa(r0)P(∗)
Ib (r0)G±(r|r0)dV0

}
, (68)

p′
SS,ab(∗)

(r, t) = −
βω2
±

Ac2
0
<
{

e−iω±t
∫∫∫

wSS,ab(∗) PSa(r0)P(∗)
Sb (r0)G±(r|r0)dV0

}
, (69)

p′
IS,ab(∗)

(r, t) = −
βω2
±

Ac2
0
<
{

e−iω±t
∫∫∫

wIS,ab(∗) PIa(r0)P(∗)
Sb (r0)G±(r|r0)dV0

}
, (70)

p′
SI,ab(∗)

(r, t) = −
βω2
±

Ac2
0
<
{

e−iω±t
∫∫∫

wSI,ab(∗) PSa(r0)P(∗)
Ib (r0)G±(r|r0)dV0

}
, (71)
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where

wII,ab(∗)(r, r0, t) =

(
1− 1

ω2
±

∂2

∂t2

)[
w1

(
t− R

c0
− îa · r0

c0

)
w1

(
t− R

c0
− îb · r0

c0

)]
, (72)

wSS,ab(∗)(r, r0, t) =

(
1− 1

ω2
±

∂2

∂t2

)[
w1

(
t− R

c0
− r0

c0

)
w1

(
t− R

c0
− r0

c0

)]
, (73)

wIS,ab(∗)(r, r0, t) =

(
1− 1

ω2
±

∂2

∂t2

)[
w1

(
t− R

c0
− îa · r0

c0

)
w1

(
t− R

c0
− r0

c0

)]
, (74)

wSI,ab(∗)(r, r0, t) =

(
1− 1

ω2
±

∂2

∂t2

)[
w1

(
t− R

c0
− r0

c0

)
w1

(
t− R

c0
− îb · r0

c0

)]
. (75)

When the primary incident and scattered waves are purely time harmonic, wII,ab(∗) = wSS,ab(∗) =

wIS,ab(∗) = wSI,ab(∗) = 1. Equations (68)–(71) become

p′
II,ab(∗)

(r, t) = <{P′II±(r)e−iω±t}, p′
SS,ab(∗)

(r, t) = <{P′SS±(r)e
−iω±t},

p′
IS,ab(∗)

(r, t) = <{P′IS±(r)e−iω±t}, p′
SI,ab(∗)

(r, t) = <{P′SI±(r)e
−iω±t}, (76)

where

P′II±(r) = −
βω2
±

Ac2
0

∫∫∫
PIa(r0)P(∗)

Ib (r0)G±(r|r0)dV0, (77)

P′SS±(r) = −
βω2
±

Ac2
0

∫∫∫
PSa(r0)P(∗)

Sb (r0)G±(r|r0)dV0, (78)

P′IS±(r) = −
βω2
±

Ac2
0

∫∫∫
PIa(r0)P(∗)

Sb (r0)G±(r|r0)dV0, (79)

P′SI±(r) = −
βω2
±

Ac2
0

∫∫∫
PSa(r0)P(∗)

Ib (r0)G±(r|r0)dV0. (80)

The cross-interaction components of p′′2 are denoted by p′′
II,ab(∗)

, p′′
SS,ab(∗)

, p′′
IS,ab(∗)

and p′′
SI,ab(∗)

. They
can be determined by substituting appropriate first-order field products into equation (61). When the
primary fields are time harmonic,

p′′
II,ab(∗)

(r, t) = <{P′′II±(r)e−iω±t}, p′′
SS,ab(∗)

(r, t) = <{P′′SS±(r)e
−iω±t},

p′′
IS,ab(∗)

(r, t) = <{P′′IS±(r)e−iω±t}, p′′
SI,ab(∗)

(r, t) = <{P′′SI±(r)e
−iω±t}, (81)

where P′′II±, P′′SS±, P′′IS± and P′′SI± are the complex amplitudes at the sum and difference frequency for
the cross-interactions, which again can be directly obtained from Equation (61).

3.2. Analytic Solutions

While time domain and frequency domain solutions for wave-wave interactions can be directly
evaluated numerically via Equations (68)–(71) and Equations (77)–(80) respectively, which is the
approach we have used in all rigid and pressure release simulations presented in this paper, we have
obtained analytic solutions for some cases not considered previously. We also provide approximate
analytic expressions for the S2 pressure for small pressure release or gas filled bubbles.
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3.2.1. Incident-Incident Interaction of Plane Waves of General Time Dependence

For two collinear time harmonic plane waves given by Equation (66) with îa = îb = îz, PII± was
derived by Lamb [12], who showed that it grows linearly with range. For zero second order normal
velocity at zs, PII± is

PII±(z) =
βPa0P(∗)

b0
2A

[1− ik±(z− zs)]eik±z. (82)

Here the complex conjugate and the “−” sign in “±” apply to the difference frequency case only.
For two non-collinear time harmonic plane waves given by Equation (66) with îa = îx and îb = îz′ ,
Westervelt [11] found that

PII±(x, z′) =
Pa0P(∗)

b0
2A

[
±
(

β

1− cos θ
− 1
)

ω2
±

ωaωb
+ 1− cos θ

]
ei(kax±kbz′), (83)

where z′ = x cos θ + z sin θ and θ is the angle between îx and îz′ .
These time-harmonic results are here generalized to plane waves with arbitrary time dependence

to investigate the scattering of sound by sound and also properly model typical experimental
scenarios. For two collinear plane waves of arbitrary time dependence pIa = < { p̃Ia(t− z/c0)}
and pIb = < { p̃Ib(t− z/c0)}, the second order fields due to their cross-interaction are (online
supplementary material).

pII,ab(∗)(z, t) = <
{

βz
2Ac0

∂

∂t

[
p̃Ia(t− z/c0) p̃(∗)Ib (t− z/c0)

]}
−<

{
1

2A
p̃Ia(t− z/c0) p̃(∗)Ib (t− z/c0)

}
−<

{
1

2A

(
∂

∂t
p̃Ia(t− z/c0)

) ∫ t−z/c0

−∞
p̃(∗)Ib (τ)dτ

}
−<

{
1

2A

(
∂

∂t
p̃(∗)Ib (t− z/c0)

) ∫ t−z/c0

−∞
p̃Ia(τ)dτ

}
, (84)

where the complex conjugates only apply to pII,ab∗ . For narrow-band waves with compact support
given by Equation (65) with îa = îb = îz, and a sufficiently smooth temporal window w1, Equation (84)
becomes (online supplementary material)

pII,ab(∗)(z, t) ≈ <
{
−

Pa0P(∗)
b0

2A

[
iβk±z±

ω2
±

ωaωb

]
ei(k±z−ω±t)

}
w2

1(t− z/c0), (85)

where the iβk±z term in the square brackets corresponds to p′
II,ab(∗)

and the other term in the

square brackets corresponds to p′′
II,ab(∗)

. It can be seen from Equations (84) and (85) that sum and
difference frequency components of pII,ab(∗) only exist within the region of compact support intersection.
For narrow-band primary waves with sufficiently smooth windows, the second order field in the
intersection corresponds to Lamb’s solution with boundary condition pII,ab(∗) = p′′

II,ab(∗)
at z = zs = 0.

For two non-collinear intersecting plane waves of arbitrary time dependence pIa =

< { p̃Ia(t− x/c0)} and pIb = < { p̃Ib(t− z′/c0)}, the second order fields due to their cross-interaction
are found to be (online supplementary material).
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pII,ab(∗)(x, z′, t) = <
{

1
2A

[
β

1− cos θ
− 1
] [

∂

∂t
p̃(∗)Ib (t− z′/c0)

] [∫ t−x/c0

−∞
p̃Ia(τ)dτ

]}
+<

{
1

2A

[
β

1− cos θ
− 1
] [

∂

∂t
p̃Ia(t− x/c0)

] [∫ t−z′/c0

−∞
p̃(∗)Ib (τ)dτ

]}
+<

{
1

2A

[
2β

1− cos θ
− (1 + cos θ)

]
p̃Ia(t− x/c0) p̃(∗)Ib (t− z′/c0)

}
, (86)

which is the full solution including both p′
II,ab(∗)

and p′′
II,ab(∗)

components. Sum and difference frequency
components of pII,ab(∗) only exist within the region of compact support intersection, so that no scattering
of sound by sound at sum or difference frequencies is found outside the region of compact support
intersection to second order. Primary frequency components in pII,ab(∗) exist within the region of
compact support union through which compact support intersection occurred if the primary waves
had non-zero zero-frequency components. There is no scattering of sound by sound at any frequency
outside the region of compact support union through which compact support intersection occurred.

For narrow-band plane waves with compact support given by Equation (65) with îa = îx

and îb = îz′ , where window w1 is sufficiently long and smooth, Equation (86) becomes (online
supplementary material)

pII,ab(∗)(x, z′, t) ≈ <
{

Pa0P(∗)
b0

2A

[
±
(

β

1− cos θ
− 1
)

ω2
±

ωaωb
+ 1− cos θ

]
ei(kax±kbz′−ω±t)

}
× w1(t− x/c0)w1(t− z′/c0), (87)

which shows that a time-harmonic approximation involving Westervelt’s time harmonic solution
(Equation (83)) can be made in the region of compact support intersection for narrow-band plane
waves with sufficiently long and smooth windows.

3.2.2. Scattered-Scattered Interaction

Let ra and rb be the far field ranges [30] for the primary scattered fields PSa and PSb respectively,
such that beyond ra and rb, far field approximations [31] apply

PSa(r) = Pa0
Sa(îr)

ka

eikar

r
and PSb(r) = Pb0

Sb(îr)

kb

eikbr

r
, (88)

where ra,b = l2/λa,b, kara, kbrb � 1, l is the length scale of the object, λa,b are the wavelengths of the
incident fields, Pa0 and Pb0 are the amplitudes of the incident fields, Sa and Sb are the far field scatter
functions, and îr = r/r.

The integral representation of P′SS±, Equation (78), can then be decomposed into

P′SS± = P′(1)SS± + P′(2)SS±, (89)

where P′(1)SS± is due to the SS interaction within rref± and P′(2)SS± is due to SS interaction beyond rref±,

and rref± satisfies k±rref± � 1 and rref± ≥ rfar,a, rfar,b. The P′(2)SS± term for r ≥ rref± can then be
analytically approximated via a stationary phase or spherical wave expansion approach (online
supplementary material), yielding

P′(2)SS±(r) =
ω2
±βPa0P(∗)

b0
2iAc2

0kakb

eik±r

k±r

[
−E1(−2ik±rref±)Sa(−îr)S

(∗)
b (−îr)

+ log (r/rref±) Sa(îr)S
(∗)
b (îr) + e−2ik±rE1(−2ik±r)Sa(îr)S

(∗)
b (îr)

]
, (90)
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where E1 is the exponential integral [32,33] and for sufficiently small objects rref± is the object radius.
For k±r → ∞, since the logarithmic function dominates the exponential integrals in Equation (90),
P′(2)SS± falls off by log(r)/r. The component P′(1)SS± falls off by r−1 and P′′SS± by r−2. The total second order
field due to the SS interaction can be approximated by

PSS±(r) ≈ P′SS±(r) ≈ P′(2)SS±(r) ≈
ω2
±βPa0P(∗)

b0
2iAc2

0kakb

eik±r

k±r
log
(

r
rref±

)
Sa(îr)S

(∗)
b (îr), (91)

which is consistent with a general diverging waveform suggested by Westervelt and Radue [34] but
without explicit derivation or interpretation.

When the two primary fields radiating from a sphere with radius a are spherically symmetric,
Sa = Sb = constant, rref± = a and P′(1)SS± = 0. Equation (90) reduces exactly to Baxter’s solution [33].
Compared to Baxter’s solution, it is found that Dean’s earlier solution [29] has an extra term
proportional to the spherical Bessel function j0(k±r) so violates the Sommerfeld radiation condition
(online supplementary material). A further approximation made by Dean for the far field k±r � 1 and
a small object k±a� 1, however, satisfies the Sommerfeld radiation condition because it contains only
the dominant eik±r log(k±r)/r term. Jones and Beyer [1,35] developed a heuristic formula based on the
radial dependence of Dean’s omnidirectional solution with far field and small object approximations,
and applied it to model the sum frequency interaction of two scattered fields from a large sphere
(k+a = 160), where they found good agreement in angular dependence with data by introducing an
arbitrary scaling factor.

3.2.3. Incident-Scattered Interaction

For incident plane waves PIa and PIb given by Equation (66) and scattered waves PSa and PSb
given by Equation (88), the second order fields PIS± and PSI±in the forward directions are analytically
derived (online supplementary material) from Equations (79) and (80). At large range, P′IS± and P′SI±
have constant magnitude in range while P′′IS± and P′′SI± fall off by r−1. The total second order fields
due to the IS and SI interactions are then

PIS+(rîa) ≈ P′IS+(rîa) ≈ −
ω2
+βPa0Pb0

Ac2
0

eik+r

2kakb

[
i log

(
k+
kb

)]
Sb(îa), (92)

PIS−(rîa) ≈ P′IS−(rîa) ≈ −
ω2
−βPa0P∗b0

Ac2
0

eik−r

2kakb

[
i log

(
k−
kb

)
+ π

]
S∗b (îa), (93)

PSI±(rîb) ≈ P′SI±(rîb) ≈ −
ω2
±βPa0P(∗)

b0
Ac2

0

eik±r

2kakb

[
±i log

(
k±
ka

)]
Sa(îb). (94)

Unlike the interaction of collinear plane waves where growth is found along the propagation
path, collinearity between planar and spherical wavefronts within an equivalent Fresnel area about the
forward direction, together with spreading of the spherical wave, balances out second-order wave
growth. For PIS−, the π term in Equation (93) is due to the additional contribution from a stationary
phase point at range rkb/ka in the forward direction.

The backscatter directions −îa and −îb for the IS and SI interactions respectively lack collinearity
and stationary phase contributions so that P′IS± and P′SI± fall off in range by r−1 as do P′′IS± and P′′SI±,
and have much lower magnitude than P′IS± and P′SI± in the forward directions. Detailed derivations
for IS and SI interactions are provided in the online supplementary material.
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3.3. Sound Pressure Level of the IS and SS interactions

The Sound Pressure Level (SPL) of PIS± in the forward direction is determined from Equations (92)
and (93) as

SPL[PIS±(îa)] = SPL(Pa0) + SPL(Pb0) + 20 log10

(
β|Sb(îa)|k2

±pref

2Akakb

)

+

{
20 log10 [log(k+/kb)]

20 log10 [|i log(k−/kb) + π|]
dB re pref, (95)

which depends on the SPL of incident waves, the frequencies ωa, ωb, the far field scatter function Sb
and constants β and A.

At long range and away from the forward direction, PSS± is dominant. The SPL for PSS± for
k±r → ∞ can be determined from Equation (91) as

SPL(PSS±) = SPL(Pa0) + SPL(Pb0) + 20 log10

[
β|Sb|k2

±pref

2Akakb

|Sa|
k±r

log
(

r
rref±

)]
dB re pref. (96)

Compared to the SPL of PIS± in Equation (95), it can be seen that a higher incident SPL is required
for PSS± to compensate for its falloff.

3.3.1. S2 for Small Pressure Release or Gas Filled Bubbles

Consider small pressure release objects with kaa, kba � 1. The righthand side of Equation (51),
P′I2± is dominated by the SS component of ρ0v2

1(r, t)/2 from Equation (61) and the last two advective
terms of Equation (51) are dominated by SS-type components, so that

PS2±(r) ≈
Pa0P(∗)

b0 A±res

2ρ0c2
0(k±a)

[
−
(±ω2

±
ωaωb

+
ω2
±

ω2
a
+

ω2
±

ω2
b

)
+ B±res

ω2
±

ωaωb

]
eik±r

k±r
, (97)

where A±res = 1 and B±res = 0 for the pressure release case. If the small object is a gas filled bubble, or
a fish swim bladder, an additional constraining equation at the boundary is necessary, which makes
the dimensionless coefficients A±res and B±res dependent on sum, difference and primary frequencies
as well as parameters of medium and object such as resonance frequency, damping, and radius as
shown in Appendix B via Equations (B28) and (B29) respectively. In these cases, PS2± may attain
maxima for probing frequencies at resonance, and approaches the pressure release case for high
probing frequencies and zero for low probing frequencies.

4. Confirmation of Theory with Measurements

The exact second order theory presented here without approximation (Equation (59)) is
computationally confirmed by comparison with experimental data from Jones and Beyer [1,35] for
second-order sum-frequency pressure at range rR = 481.8 mm due to a large rigid sphere of radius
a = 3.18 mm in water insonified by two perpendicular incident beams at frequencies ωa/2π =
7 MHz and ωb/2π = 5 MHz, such that kaa = 89, kba = 63.6 and k+a = 152.6 which are all large.
Good quantitative agreement is found between theory and measurements with 0.98 correlation across
scattered angle and overall mean square difference of less than 0.3 dB (Figure 2) as shown in the online
supplementary material.
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Figure 2. Comparison between Jones and Beyer’s experiment [1,35] and exact theory obtained
computationally for the sum frequency second order pressure. Good quantitative agreement is found
between measurement and theory with 0.98 correlation across scattered angle and overall mean square
difference of less than 0.3 dB.

5. Transitions Between Dominant Mechanisms in Sum or Difference Frequency Sensing of
an Object

At sufficiently long range, the SS, IS and SI interactions always dominate, as seen from the
asymptotic behavior given by Equations (90) and (92)–(94) compared to the inverse radial far field
fall-off of S2 dictated by Equation (50). At such long ranges, only the object’s response at the primary
frequencies can be measured from the second order field, if the field is large enough to be measured.
Our analysis here (Figures 3–8) shows that at shorter ranges, however, depending on frequencies,
receiver range and the object’s scattering properties, the S2 mechanism can also dominate, where the
object’s response at the sum or difference frequency may be deduced from the second order field at
the sum or difference frequency. While it is possible to exploit these complicated transitions between
dominant mechanisms for novel remote sensing applications, difficulties also arise in many cases,
as we will show.

Examples are computed from the exact governing equations which allow general object shapes
and sizes compared to the wavelength, but for simplicity scenarios involving spherical objects are
presented. The geometry is shown in Figure E2, which does not include measurements in forward
scatter where IS and SI are larger. These forward scattered cases are treated in online material. With
the harmonic wave approximation, pII is given by Equation (82) with zs = 0 or (83), pSS, pIS and
pSI are determined from Equations (78)–(80) respectively, and pS2 from spherical wave expansions
(online supplementary material). The results represent difference frequency wave amplitudes in the
time domain between t = rR/c0 and t = rR/c0 + T for narrow-band incident fields, as discussed in
Appendix E. In all examples a practical object-centered coordinate system is used where k−zs = 0 for
the II component in Equation (82). A normalization 2E0 = |Pa0Pb0|/(ρ0c2

0) is used in the examples.
To generalize the analysis, dimensionless parameters k0a, k0rR, k−rR and k−a are used, where

k0 = (ωa + ωb)/(2c0) is the center frequency wavenumber, k− = ω−/c0 is the difference frequency
wavenumber, a is the radius of the object and rR is the receiver range. The values for the parameters
are chosen based on the following considerations: (1) k−rR � 1, so that the II interaction can be
time separated from the other mechanisms, (2) the difference frequency is lower than the primary
frequencies, and (3) important transitions between mechanisms can be seen. Illustrative examples
are presented and discussed for medical imaging, various ocean sensing applications as well as for
sensing in air and the solid earth. Some general observations on the transitions between mechanisms
found for rigid and pressure release cases are noted in Appendix F.
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Figure 3. A rigid immovable sphere with collinear incident waves propagating at îz. The difference
frequency component of p2 is calculated at rR = −rR îz as a function of (a) center frequency or k0a,
(b) object radius or k−a, (c) receiver range or k0rR and (d) difference frequency or k−rR. The lower
dimensionless abscissas are for general interpretations. The upper abscissas are for a medical or
underwater sensing example with 1 MHz primary and 10 kHz difference frequencies, 0.1 mm sphere
radius at range 1 m from the receiver with 1500 m/s sound speed. In (a), pSS dominates for large k0a,
while pIS + pSI dominates for small k0a. In (b), pSS dominates for large k−a, pIS + pSI dominates for
small k−a. In (c), pSS is dominant and has the most gradual roll-off with range. In (d), pSS dominates
for small k−rR while pIS + pSI dominates for large k−rR. The nonlinear parameter is β = 3.6. The
normalization employs 2E0 = |Pa0Pb0|/(ρ0c2

0).

Figure 4. Cont.
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Figure 4. A rigid movable sphere with collinear incident waves propagating at îz. The difference
frequency component of p2 is calculated at rR = −rR îz as a function of (a) center frequency or k0a,
(b) object radius or k−a, (c) receiver range or k0rR and (d) difference frequency or k−rR. In (a), pSS

dominates for large k0a, while pD2 dominates for small k0a. In (b), pSS dominates for large k−a and
pD2 dominates for small k−a. In (c), pSS is dominant has the most gradual roll-off with range. In (d),
pSS dominates for small k−rR and pIS + pSI dominates for large k−rR. The nonlinear parameter is
β = 3.6, and the density ratio between the object and medium is 7.6. Lower dimensionless abscissas
are for general interpretations. Upper abscissas are for a medical or underwater sensing example as in
Figure 3, except the rigid object is movable.

Figure 5. A rigid immovable sphere with perpendicular incident waves propagating at îx and îz

direction, respectively. The difference frequency component of p2 is calculated at rR = −rR(îx +

îz)/
√

2 as a function of (a) center frequency or k0a, (b) object radius or k−a, (c) receiver range or k0rR,
and (d) difference frequency or k−rR. Lower dimensionless abscissas are for general interpretations.
Upper abscissas are for a medical sensing or underwater example of perpendicular primary waves
with 1 MHz primary and 100 kHz difference frequencies, sphere radius of 0.1 mm at range 1 m from the
receiver with sound speed 1500 m/s sound speed. In (a), pSS dominates for large k0a, while pIS + pSI

and pS2 dominate for small k0a. In (b), pSS dominates for large k−a, pIS + pSI and pS2 dominate for
small k−a. In (c), pSS is dominant and has the most gradual roll-off with range. In (d), pS2 and pIS + pSI

dominate and SS is too small to be shown but appears in Figures S13 or S18. The nonlinear parameter
is β = 3.6.
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By matching the relevant dimensionless parameters and properly scaling the nonlinear
parameter β, results presented in Section 5 can be applied to various sensing scenarios in air, water and
solid earth. Depending on the actual dominant mechanism, the response of the object at the primary
frequencies or difference frequency can then be deduced from P2−. It is useful to clearly define the II
component of S2, corresponding to the S2II mechanism, via

pressure release: PS2II± = −PII± on S̄, (98)

rigid immovable: VS2II± · n = −VII± · n on S̄. (99)

Figure 6. A pressure release sphere with collinear incident waves propagating in îz. The difference
frequency component of p2 is calculated at rR = −rR îz as a function of (a) center frequency or k0a,
(b) object radius or k−a, (c) receiver range or k0rR, and (d) difference frequency or k−rR. Lower
dimensionless abscissas are for general interpretations. Upper black abscissas are for a medical or
underwater sensing example of 1 MHz primary and 100 kHz difference frequencies with 0.1 mm
sphere radius at 1 m range from the receiver with 1500 m/s sound speed. The upper blue abscissa in
(b) is for different medical or underwater sensing example of 2 MHz primary and 400 kHz difference
frequencies with 0.1 mm sphere radius at 0.25 m range with 1500 m/s sound speed. In (a), pS2 is
dominant. In (b), pS2 dominates for small k0a, pSS becomes comparable to pS2 for k0a near 1 then
transitions to dominance for k0a > 1. In (c), pS2 is dominant, but pSS will dominate as range increases.
In (d), pS2 dominates for small k−rR, and pSS becomes comparable to pS2 for large k−rR. The nonlinear
parameter is β = 3.6.
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Figure 7. Same as Figure 6 but for an air bubble in water using Equation (97) for pS2 at low k−a.

Figure 8. A resonating rigid movable sphere with collinear incident waves propagating in îz direction.
P2− is calculated in rR = −rR îz. In (a), total difference frequency component of p2 is plotted as a
function of difference frequency near resonance for damping ratio ζ = 0.001, 0.01, 1. In (b), p2, pSS,
pIS + pSI, pD2 and pR2 are shown near resonance for ζ = 0.001. When the object’s resonance is excited
at the difference frequency, pR2 is amplified and it becomes dominant for small enough damping.
The object radius a, receiver range rR and the center frequency are fixed so k0a = 2.09 and k0rR = 1047.
The nonlinear parameter is β = 3.6 and the density ratio between the object and the medium is 2.4.

5.1. Medical and Fine-Scale Underwater Sensing

For nonlinear medical ultrasound sensing applications [28,36,37], which are portable to fine-scale
high frequency underwater sensing, a transition between nonlinear mechanisms can be seen for rigid
(Figures 3–5) and vacuous objects (Figure 6) sensed at the difference frequency in a watery environment.
The SS mechanism is dominant (top right point of Figures 3b and 4b) for a 0.5 mm rigid object in a
water environment sensed at a range of 1 m in backscatter for 1 MHz primary and 10 kHz difference
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frequency, and stands above noise with typical incident and received levels. As the object diameter
is reduced IS and SI in backscatter become dominant for the immovable collinear case, so that no
difference frequency information can be obtained due to lack of a measurable S2 component. When
perpendicular waves are incident on the immovable object, the dominant mechanisms are similar
to those of the collinear case except S2 is as dominant as the IS and SI as object diameter decreases
(Figure 5b). Allowing the rigid object’s centroid to move in response to the wave fields for the same
parameters enables S2 to become dominant through D2 as the object radius is reduced by two orders
of magnitude from 0.5 mm (Figure 4b). The R2 component, due to radiation from object centroidal
motion is negligible and unmeasurable for this example when S2 dominates (Figure 4b). If the rigid
object was attached to sufficiently underdamped springy material, it is possible that a resonance effect
could make R2 and consequently S2 dominant and detectable at resonance even for large object radii,
as shown in Figure 8. It may be difficult to extract the difference frequency response at resonance,
however, if R2 is not dominated by the response to II as is the case for the example in Figure 8 as
shown in Figure S15.

Continuing the medical ultrasound and high frequency underwater analysis with a vacuous
bubble of 0.1 mm radius in water, first in backscatter, the S2 and SS contributions are equally dominant
with the bubble sensed well above noise at 0.25 m range with a 2.0 MHz primary and 400 kHz
difference frequency (Figure 6b, k−a = 0.16) for typical incident levels. This makes it challenging to
extract difference frequency response information from the second order field, since this information is
not contained in the contaminating SS component. All frequencies in this example are well above the
bubble’s resonace frequency (kresa ≈ 0.0137 near the water-atmosphere surface), so pressure release
theory is accurate. For smaller bubble diameters (k−a < 0.1) the S2 mechanism becomes dominant
but the S2II contribution becomes increasingly negligible (Figure S14) so that a complicated inversion
involving primary frequency scattering information is necessary to extract the object’s difference
frequency response information from S2 especially for kaa and kba near unity. Dominance of S2 in
backscatter occurs when kaa and kba begin to decrease below unity and SS and SS-type effects at the
object boundary begin to dominate S2 which then obeys Equation (97) for kaa and kba much less than
unity. As the difference frequency approaches the air bubble resonance frequency from above, the S2
field (Figure 7b) becomes significantly different from that of the pressure release case (Figure 6b), but
the transition from SS to S2 dominance is seen to occur at frequencies above where resonance effects
matter and where pressure release theory is sufficient. The S2 pressure peaks at resonance but then
eventually decreases to zero as frequency decreases (Figure 7b). The minima in S2 seen in Figure 6a,b
occur when SS effects at the boundary become less dominant as kaa and kba approach unity from below.
As the bubble radius increases above 0.1 mm, the SS mechanism transitions to dominance and masks
difference frequency responses from the object (Figures 6b and 7b) . For the same 2 MHz primary
and 400 kHz difference frequencies and 0.1 mm radius gas filled or pressure release bubble, but with
reception in the forward direction at 1 m range, IS and SI are dominant and become increasingly so for
larger bubble radii so masking difference frequency information from the object (Figure S19). (Typical
primary wave incident levels in medical ultrasound are 240 dB re 1 µPa in water with noise levels in
the noise levels in the 50 to 65 dB re 1 µPa range for the difference frequencies considered.)

The examples are illustrated and evaluated both in terms of dimensionless parameters and specific
frequencies and lengths. The former makes it possible to interpret the results universally over the
broadest range of possible applications by scaling the object size, receiver range, and frequencies as
necessary. In this way, for example, Figure 3b with 1 MHz primary and 10 kHz difference frequencies at
range 1 m from the receiver can be interpreted for lower or higher frequency cases. Consider increasing
the frequencies by a factor of fifteen, from 1 MHz to 15 MHz for the primary and 10 kHz to 150 kHz for
the difference which are also used in ultrasound, and correspondingly decreasing the receiver range
by a factor of fifteen. The nondimensional axes of the same figure show that the object radius where
the SS mechanism begins to dominate must then correspondingly be reduced by a factor of fifteen.
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Similar analysis of scaling up or down frequencies and length scales can be performed readily for all
figures with nondimensional axes.

Depending on one’s perspective and the physical scenario, the difference frequency responses
from an object sought in the medical vibro-acoustics (e.g., [4,5]) may be extractable from some or all S2
field components with varying amount of difficulty, and would certainly exist in an R2 subcomponent
of S2 since this corresponds well with the mechanism discussed in Greenleaf et al. [4] and referred to
as an “acoustic emission”, but would not be available in SS, IS or SI fields.

5.2. Sensing Ocean Bubbles

The preceding example of a pressure release bubble in water applies directly to near-surface air
bubbles in the ocean of the same size, primary and difference frequencies, and receiver ranges, and can
be scaled to other similar cases using the non-dimensional parameters in (Figure 7) in correspondence
with Equation (97). Other examples of the dominance of SS IS and SI at ranges of practical interest can
be seen in Figure 9a where for a 1 mm bubble with primary frequency 430 kHz and difference frequency
43 kHz, SS will dominate the total second order difference frequency field at 4.88 m range from the
object in backscatter, while IS and SI forward will dominate at much shorter ranges in forward scatter
(Figure 9b). Scaling up, with a 10 mm bubble at 43 kHz primary and 4.3 kHz difference frequency
SS will dominate at 48.8 m range in backscatter with IS and SI dominating at much shorter ranges in
forward scatter. In the ocean context, these examples show that for primary and difference frequencies
well above the bubble’s resonance frequency, wave-wave interactions SS, IS and SI become important
and will dominate the difference frequency field from an air bubble even at relatively close sensing
ranges. In this regime where wave-wave interactions are important, the total second order field from
an aggregate of bubbles is not the superposition of the individual second order bubble fields.

Figure 9. (a) A near surface air bubble in water with collinear incident waves propagating at îz.
The difference frequency component of p2 is calculated in backscatter at rR = −rR îz as a function of
difference frequency or k−rR. Lower dimensionless abscissas are for general interpretations. Upper
abscissas are for 430 kHz primary and 43 kHz difference frequencies with bubble radius 0.1 mm radius
at 4.88 m range from the receiver in water. A transition between mechanisms is seen where pSS is
dominant for k−a > 1 while pS2 is dominant for k−a � 1 above and near resonance. The nonlinear
parameter is β = 3.6. (b) Same as (a) but with pIS + pSI in the forward direction also included for
rR = rR îz which is seen to dominate the field over the entire range shown.

In the analysis of air bubbles in water using a primary pump frequency at the air bubble resonance
(with wavenumber kb) and a variable primary image frequency (with wavenumber ka) moving from
to well above resonance (e.g., [2]), Figure 10 shows that wave-wave fields from a bubble are not
significant at a receiver in backscatter for many practical sensing ranges and primary image frequencies.
The same Figure 10 shows, however, that as kaa approaches unity the wave-wave IS and SI backscatter
components can attain similar levels as S2 and become dominant. This transition occurs for smaller
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kaa as range increases. It also occurs for smaller kaa for receivers in the forward direction (Figure S21).
Analytic conditions for when SS, and forward IS and SI are negligible compared to S2 are given in
Appendix B. Due to the complicated nature of IS and SI in nonforward directions such conditions
are available only through computations such as in Figures 10 and S21. In the other contexts, such as
the previous medical and the following ocean fisheries examples, as well as cases where parametric
arrays or related approaches are intended to employ II incidence, primary frequencies are typically not
used at the frequencies of the desired response from an object otherwise linear acoustic sensing would
be employed.

Figure 10. An acoustically compact near surface air bubble in water will resonate at roughly
kba = 0.014 (Equation (B19)). Primary pump wave frequency is then set to roughly the bubble

resonance frequency which is determined by kba = 0.014. For collinear incident waves propagating at
îz, the difference frequency component of p2 is calculated in backscatter at rR = −rR îz as a function
of difference frequency through k−rR. This nondimensional example may be interpreted for a 1 mm
radius underwater bubble with 3.34 kHz primary pump wave frequency and image wave frequency
varying through kaa = kba + k−rR(kba)/(kbrR) from the vicinity of 0.0167 to 1.0137 for receiver ranges
(a) rR = 0.1 m, (b) rR = 1.0 m, (c) rR = 10 m, and (d) rR = 100 m as in the upper black abscissas.
The upper blue abscissas are for the corresponding primary image wave frequency for this example
calculated by fa = (c/2πa) (kba + (k−rR)(a/rR)) with sound speed c = 1500 m/s. For image wave
kaa well below unity, S2 dominates and a localized peak is seen at difference frequency resonance.
For image wave kaa > 1, wave-wave effects dominate at shorter receiver ranges as kaa increases.
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5.3. Ocean Fisheries Sensing

In ocean fisheries applications, difference frequency sensing has been used in ocean line-transect
surveys to potentially probe the near-resonance frequency response of herring schools in the Nordic
Seas via a parametric array sonar [7]. The linear near resonance response of fish has relevance to
linear ecosystem-scale sensing techniques [15,16,38]. In the nonlinear work [7], the parametric sonar
transmits high intensity primary frequency waves that lead to combined incident primary 15–21 kHz
and difference frequency 0.5–6.0 kHz fields at the herring shoals, roughly 50–100 m below the research
vessel [7]. Herring swimbladder equivalent radii are between roughly 0.8–1.0 cm for herring in
the 100–50 m depth range. Our analysis shows that the SS component, which has no difference
frequency information and is essentially a nuisance contamination in this context, begins to make
a non-negligible contribution to the total received second order field from any herring in the 50–100 m
depth range for difference frequencies above 2 to 3 kHz (Figures 11 and 12). For difference frequencies
below 2 kHz S2 is dominant, but not always equal to S2II as see in Figures 11 and 12 which means
that a complicated inversion involving knowledge of the herring scattering response at the primary
frequencies and wave-wave boundary effects will be necessary to extract the linear difference frequency
response of the herring for difference frequencies this range. This is because kaa and kba are near
unity so that a delicate balance between II, SS, IS and SI boundary values and second order boundary
advection may affect the radiated S2 amplitude. It is noteworthy, however, that some of the necessary
information for this inversion may be obtained from primary frequency scattered returns that could
be received simultaneously from parametric array survey. Similar analysis for cod, (Figure 13) which
typically shoal in the 100–150 m range during spawning in Lofoten Norway and have corresponding
swimbladder equivalent radii of roughly 4.2 cm where they are neutrally buoyant, shows SS is either
dominant or a significant contaminant over the entire difference frequency range from 0.5 to 6 kHz
making it impossible or difficult to obtain difference frequency response information from the second
order field in this scenario. The relative amplitudes of difference to primary frequency waves radiating
from a parametric array may differ from those assumed here, depending on array geometry and other
factors [1] which may alter some results.

Figure 11. Equivalent to a herring at 50 m depth modeled as swimbladder with equivalent radius of
roughly 1 cm with collinear incident waves of 21 kHz primary and varying difference frequencies
propagating at îz using resonant bubble Equation (97) with herring damping. The difference frequency
component of p2 is calculated in backscatter at rR = −rR îz as a function of difference frequency through
k−rR or k−a = k−rRkaa/karR. Upper abscissa shows the difference frequency for the current example.
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Figure 12. Same as Figure 11 but for herring at 100 m depth with equivalent bubble radius of 0.80 cm.

Figure 13. Equivalent to a cod at 100 m depth modeled as swimbladder with equivalent radius of
roughly 4.2 cm with collinear incident waves of 21 kHz primary and varying difference frequencies
propagating at îz using resonant bubble equation Equation (97) with cod damping. The difference
frequency component of p2 is calculated in backscatter at rR = −rR îz as a function of difference
frequency through k−rR or k−a = k−rRkaa/karR. Upper abscissa shows the difference frequency for
the current example.

5.4. Sensing Objects From IS Interactions

The IS mechanism can lead to robust sum or difference frequency detection and sensing of objects
in air or water over extended ranges since asymptotically IS is constant in range. Perfectly reflecting
objects, for example, with circumferences that are on the order of the primary wavelength or larger
(|Sa| ≥ 1) and incident sound pressure levels on the order of that for a 1 watt monopolar point source
at 1 m ( 171 dB re 1 µPa at 1 m in water and 108 dB re 20 µPa at 1 m in air) are seen to have IS
levels (Figure 14) that stand above typical ambient noise ambient noise levels (Figure S8). A trip
wire employing perpendicular primary beams could be used, for example, so that when an object
crosses the beam of a primary field, a sum or difference frequency IS would trigger its presence at
a sensor in the forward direction of the primary beam crossed by the object. The advantage is the
sensor could be well past the primary shadow of the object where detection at primary frequencies
would be difficult since the received primary field would be dominated by the incident primary field.
In another example, it is seen from Equations (92)–(94) that stealthy long range sensing of an object’s
primary frequency response via sum and difference frequency measurements is possible. For example,
if an object scatters or radiates an outward propagating wave PSb at angular frequency ωb, a beam
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PIa could be transmitted at a different frequency ωa forward scattering past the object to a receiver.
By continuing this for angles about the object, it is possible to reconstruct the directivity pattern of PSb
from P2±, for primary frequency object classification at the difference frequency.

5.5. Sensing Objects in Air

In air, the SS mechanism can lead to robust sum or difference frequency detections from objects
large compared to the primary wavelength. Consider, for example, nonlinear acoustic sensing of a 4 cm
diameter rigid sphere with a primary frequency of 40 kHz and a difference frequency of 4 kHz with
bat sonar incident levels of 140 dB re 20 µPa [39] which has relevance to robot sonar. Received levels of
at least 53 dB re 20 µPa are expected at 2 m range at the difference frequency and at nearly an order of
magnitude greater range at the sum frequency, which are well above noise levels at those frequencies
(Figure S8) using Equation (90) or (91). As the radius of object increases, so will the detection range.

5.6. Sensing in the Solid Earth

Difference frequency sensing of buried structures in the solid earth, such as archaeological remains,
is also possible. A 4-m scale rigid structure, for example, can be robustly detected by the S2 mechanism
for 50 Hz primary and 10 Hz difference frequency waves at distances greater than 1 km (Figure S7) for
standard ground vibrators within tens of meters of the feature, e.g., a 240 dB re 1 µPa incident SPL can
be generated from a 150 kN vibrator 30 m away with β = 1000, ρ0 = 3000 kg/m3, c = 3000 m/s.
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Figure 14. Sound Pressure Level (SPL) of PIS± in the forward direction as a function of incident SPL
at large range in air and water for ωb/ωa = 0.6, 0.9 and 0.99 assuming Pa0 = Pb0 and |Sa| = |Sb| = 1.
The SPL in air, (a,c), is referenced to 20 µPa and the SPL in water, (b,d), is referenced to 1 µPa. In (a,c)
for air, high frequency incident SPL between 120 dB and 140 dB re 20 µPa gives sum frequency SPL
between 48 dB to 88 dB re 20 µPa, and difference frequency SPL between 38 dB and 77 dB re 20 µPa
respectively, for ωb/ωa = 0.6. Similarly, in (b,d) for water, high frequency incident SPL between 170 dB
and 190 dB re 1 µPa gives sum frequency SPL between 48 dB to 90 dB, and difference frequency SPL
between 37 dB and 77 dB respectively, for ωb/ωa = 0.6. With moderate to high incident SPLs, these
sum and difference frequency second order waves can be measurable at long range.
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6. Discussion

Unique opportunities exist for sensing an object at the sum or difference frequency of primary
incident waves. Many of these have been discussed in a variety of contexts, as for example through the
use of parametric source arrays and related approaches in ocean fishery, gas bubble and submerged
object sensing and medical ultrasonic imaging [1–7], but in the absence of a complete theory for the
second order field in the presence of an object. Here we examine some practical sensing scenarios in
water, air and solid earth. In the context of using parametric arrays, for example, to probe an object’s
sum or difference frequency response, a problem we find is that in many practical scenarios, SS, IS and
SI incidence on the object and boundary advection responses from the object contribute more than II
incidence to S2, which may not have been expected. This can make accurate extraction of the object’s
linear response to sum or difference frequency waves from S2 far more complicated than may have
been anticipated. The other problem is that the field at the receiver may be dominated by SS, IS or SI,
which also may not have been expected, and these contain no such sum or difference frequency linear
response information. For parametric arrays and related approaches, these issues arise because the
primary fields needed to form the sum or difference frequency incident field (II) typically interact with
the object to be sensed in a manner that cannot be ignored when analyzing the second order field.

Inspired by 18th-century accounts of difference frequency waves propagating from musical
instruments [1], Lamb developed solutions for the II interaction of collinear time-harmonic primary
planewaves [12]. Westervelt later solved the time-harmonic non-collinear planewave case [11] and
estimated the second order field of an endfire array so inventing the parametric array [3] which is a
wave-wave based instrument with mature and well tested theory [1]. Then Dean and Baxter obtained
time-harmonic solutions for the omnidirectional cylindrical [29] and spherical [29,33] wave cases,
and Tjotta et al., investigated II interaction for time-harmonic incident beams [40–42]. Jones and Beyer
measured the second-order acoustic field at the sum frequency caused by an object in the overlap region
of two primary incident waves [1,35] and proposed a heuristic formula consistent with an SS-type
mechanism based on Dean’s solution. Greenleaf et al., proposed measuring an object’s difference
frequency response from primary wave insonification for applications in medical ultrasound where
significant interest in this exists [4,5]. Without a complete theoretical formulation for the second order
field in the presence of a movable object, it was noted that the interaction of primary scattered waves
may dominate the second order field [36,43,44] and mask information about the object’s difference
frequency response contained in weaker field components. Such a complete theory, as presented here,
is necessary to investigate the conditions under which an object’s difference frequency response may
be detectable and when each of the various second order mechanisms may dominate. To treat the case
of a movable object, we define a complete and self-consistent second order acoustic wave-exciting
force, and find previous helpful formulations [28,45–47] missed the effects of some second order
field components and overcounted others. (An analytic solution for the SS field arising from a rigid
immovable sphere was dervied by Silva and Bandeira [48].) Approximate analytic solutions for the
second order nonlinear wave fields found in the presence of low-impedance contrast inhomogeneities,
that apply to one or many inhomogeneities, are also derived in Appendix A.

Since the SS, IS and SI interactions always dominate the field components that carry object
information at sufficiently long range, exact and asymptotic analytic solutions are rigorously obtained
for them, which put previous heuristic estimates [1,34,35] of SS into perspective. For spherically
symmetric interacting waves, our analytic solution is exact and reduces to Baxter’s [33] for this special
case, where we show that Baxter’s solution satisfies the Sommerfeld radiation condition but Dean’s [29]
does not. Analytic solutions are derived for the second-order field due to the interaction of a plane
and spherical wave. These lead to analytic expressions for IS and SI in the far field of any arbitrarily
shaped scatterer.

A number of investigations on the nonlinear acoustics of air bubbles in water are based on leading
order approximations near and below resonance frequency where the bubble’s circumference is very
small compared to the primary field’s wavelength [2,49,50]. In these approaches SS, IS and SI fields
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are neglected, and are typically negligible away from the bubble for practical receiver ranges in this
low frequency regime. Even in these scenarios, however, we find the leading order effect of SS, IS
and SI on S2 through wave-wave boundary incidence can be significant and so are included here
as well as the boundary advection effects included in the other approaches [49–51], which are of
similar order. Our formulation then is consistent to leading order with these previous formulations
in this low frequency regime near and below resonance. We find that for primary and difference
frequencies well above bubble resonance, however, as the bubble circumference to primary frequency
wavelength approaches and exceeds unity, SS, IS and SI wave-wave fields begin to significantly affect
and eventually dominate the second order field propagating outward from an air bubble in water
at ranges and frequencies important to many practical sensing scenarios and so cannot be neglected.
In this case, linear superposition of individual bubble fields in an ensemble, which is valid and
sometimes theoretically relied upon for primary frequencies near bubble resonance [49,51], is not
valid in this higher frequency regime where wave-wave interaction effects are important. Other
approaches [52] heuristically treated bubble and water or seabed mixtures as effective media in a
second order wave equation formulation to investigate nonlinear acoustic scattering, but these cannot
be applied to or built up from a single scatterer since they lack fundamental boundary conditions at an
inhomogeneity and have not been clearly verified experimentally.

Sum and difference frequency methods for detecting and analyzing bubbles in water with one
primary wave (the ‘pump’) near the bubble resonance, and primary wave (the ‘image’) at much higher
frequency (e.g., [2]) also depend on wave-wave interactions away from the bubbles to be negligible.
A cautionary note in an introductory paper on this topic “the transducers were also kept at a short
distance (less than an inch) from the bubble stream so as to avoid the generation of sum or difference
frequencies due to nonlinearity of the medium” [2] refers to possible contamination by wave-wave
interactions citing Westervelt [11] and Beyer [1]. Here we show that for typical scenarios in this
pump-image approach, while SS, IS and SI received fields are significant as incident fields at the bubble
boundary, they are usually not significant away from the object in practical implementations of the
pump-image approach due to the fact that the pump wavelength is always roughly two orders of
magnitude larger than the bubble circumference to pump near resonance, the image wavelength is
typically less than the bubble circumference, and sensing ranges are not large. The use of such a long
primary pump wavelength, however, may be impractical for other applications involving parametric
arrays or related approaches [1,3–5,7] where much of the merit rests on the avoidance of traditional
primary sources that transmit at such long wavelengths.

7. Conclusions

For applications in nonlinear acoustic sensing of objects by sum or difference frequency fields,
a general second order theory of nonlinear interaction and scattering of acoustic waves in the presence
of an object is derived and confirmed by comparison with experimental measurements. Practical
guidance on designing experiments and interpreting measurements to sense objects with second order
nonlinear acoustics have been provided, including approaches to determine whether wave-wave
interaction effects, second order boundary scattering and advection, object resonance, or radiation
from wave-induced object centroidal motion are dominant in a given scenario. We show that the
wave-wave fields propagating from the object contain only primary wave frequency information
about the object, while the remaining components contain sum and difference frequency information,
with the latter typically being more desirable in many applications of nonlinear acoustic sensing. In the
latter case, we show that a complicated inversion may be necessary to extract this sum or difference
frequency information.

In the use of parametric arrays, for example, we find it is often not possible to simply assume
the only incident field on the object is the difference frequency field generated by the parametric
array. This is because intense primary frequency waves are needed to generate this incident difference
frequency field. We show that in many practical examples of sensing objects these primary fields in
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fact lead to the dominant difference frequency response from the object by mechanisms other than
linear scattering of the incident difference frequency field of the parametric array.

In general, we analytically find that at long ranges from the object, wave-wave interactions
always dominate the second order field, but the required ranges in some cases may be too large to
enable practical measurements. We find at shorter ranges, any of a number of second order nonlinear
mechanisms may dominate, depending on frequencies, object size, object composition, and source and
receiver positions with respect to the object. We show that in diverse applications ranging from ocean
fishery and bubble to medical sensing, careful analysis using complete and self-consistent nonlinear
theory is necessary to determine which mechanism or mechanisms are dominant in a given scenario.

Since finite-duration waveforms are typically used in practical sensing scenarios, we analytically
show that there is no scattering of sound by sound outside a region of interacting primary plane waves
of compact support. This makes it possible to readily distinguish incident-incident wave interactions
from those involving an object by appropriate choice of measurement geometry.
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Appendix A. Second Order Nonlinear Acoustic Wave Equation in Medium with
Volume Inhomogeneities

Let ρ0 be the ambient density without inhomogeneities or the acoustic wave, δe be the change of
density due to inhomogeneities without the acoustic wave, and δ be the change of density due to the
acoustic wave. The total density ρe(r, t) can be written as

ρe(r, t) = ρ0 + δe(r, t) + δ(r, t) = ρe0(r, t) + δ(r, t). (A1)

Without the acoustic wave, the total derivative of ambient density vanishes,

dρe0

dt
=

∂δe

∂t
+ v · ∇δe = 0. (A2)

The exact continuity and momentum equations are

∂ρe

∂t
+∇ · (ρev) =

∂

∂t
(δe + δ) +∇ · [(ρ0 + δe + δ)v] = 0, and (A3)

∂

∂t
[(ρ0 + δe + δ)v] +∇ · [(ρ0 + δe + δ)vv] +∇p = 0. (A4)

Applying Equation (A2) to Equations (A3) and (A4) leads to

∂δ

∂t
+ ρ0∇ · v +∇ · (δv) + δe∇ · v = 0, and (A5)

(ρ0 + δe)
∂v
∂t

+
∂

∂t
(δv) +∇ · [(ρ0 + δ)vv] + δe∇ · (vv) +∇p = 0. (A6)

Now perturbation expansions are introduced to δ, p and v in Equations (A5) and (A6). Canceling
the first order velocity v1 from Equations (A5) and (A6) leads to

∂

∂t

(
1

ρe0

∂δ1

∂t

)
= ∇ ·

(
1

ρe0
∇p1

)
. (A7)
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Similarly, eliminating the second order velocity v2 from Equations (A5) and (A6) yields

∂

∂t

(
1

ρe0

∂δ2

∂t

)
+

∂

∂t

[
∇ · (δ1v1)

ρe0

]
−∇

[
1

ρe0
· ∂

∂t
(δ1v1)

]
= ∇ · [∇ · (v1v1)] +∇ ·

(
1

ρe0
∇p2

)
. (A8)

For the equation of state, it is assumed that the density is a function of pressure only and can be
expressed as a Taylor series expansion about the ambient pressure,

ρe = ρe0 +
∂ρe

∂p

∣∣∣∣
p0

(p− p0) +
1
2

∂2ρe

∂p2

∣∣∣∣
p0

(p− p0)
2 + · · · . (A9)

Taylor series expansion leads to

δ1 =
∂ρe

∂p

∣∣∣∣
p0

p1 = c−2
e p1 = κeρe0 p1, and (A10)

δ2 =
∂ρe

∂p

∣∣∣∣
p0

p2 +
1
2

∂2ρe

∂p2

∣∣∣∣
p0

p2
1 = c−2

e p2 + Γeκ
2
e ρe0 p2

1, (A11)

where the compressibility κe = ρ−1
e0 ∂ρe/∂p|p0

= ρ−1
e0 c−2

e and Γe = ∂2ρe/∂p2
∣∣

p0
ρe0c4

e /2.
Substituting Equation (A10) into Equation (A7) to eliminate δ1 and assuming the inhomogeneities

ρe0 and κe are stationary in time yields

∇ ·
(

1
ρe0
∇p1

)
− κe

∂2 p1

∂t2 = 0, (A12)

which is the classical wave equation for space containing inhomogeneities [24].
Substituting Equation (A11) into Equation (A8) to eliminate δ2 and further assuming Γe is

stationary in time yields

−∇ ·
(

1
ρe0
∇p2

)
+ κe

∂2 p2

∂t2 + Γeκ
2
e

∂2 p2
1

∂t2 −∇
(

1
ρe0

)
· ∂

∂t
(δ1v1)−∇ · [∇ · (v1v1)] = 0. (A13)

By adding ρ−1
0 ∇2 p2 − κ0∂2 p2/∂t2 on both sides and then multiplying by ρ0, Equation (A13) can

be rewritten as

∇2 p2 −
1
c2

0

∂2 p2

∂t2 =
γκ

c2
0

∂2 p2

∂t2 +∇ · (γρ∇p2)−
1
c2

e
∇
(

ρ0

ρe0

)
· ∂

∂t
(p1v1)

+ Γeκ
2
e ρ0

∂2 p2
1

∂t2 − ρ0∇ · [∇ · (v1v1)], (A14)

where γκ = (κe − κ0)/κ0 and γρ = (ρe0 − ρ0)/ρe0 are the fractional changes in compressibility and
density of the medium due to inhomogeneities, κ0 = ρ−1

0 c−2
0 is the mean compressibility and c0 is

the mean sound speed of the medium. For a homogeneous medium, γκ = γρ = 0, ρe0 = ρ0, ρe = ρ,
Γe = Γ0 = ∂2ρ/∂p2

∣∣
p0

ρ0c4
0/2 = −B/(2A), and the above equation reduces to Equation (17).

Consider time harmonic fields incident on a single target. Let the incident wave consist of two
harmonic components, Pa and Pb with frequencies ωa and ωb. The corresponding Helmholtz equation
for the second order pressure at the sum or difference frequency is

(∇2 + k2
±)P2± = −Qinhomo

2± (A15)
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where

Qinhomo
2± =

{
k2
±γκ P2±

}
−
{
∇ · (γρ∇P2±)

}
−
{

iω±
2c2

e
∇
(

ρ0

ρe0

)
· (PaV(∗)

b + VaP(∗)
b )

}
+
{

Γeκ
2
e ρ0ω2

±PaP(∗)
b

}
+

1
2

{
ρ0∇ · [∇ · (VaV(∗)

b + V(∗)
b Va)]

}
. (A16)

The solution to Equation (A15) is

P2±(r) =
∫∫∫

Qinhomo
2± (r0)G(r|r0, ω±)dV0, (A17)

which has five components corresponding to the five parenthetical groups in curly brackets in Qinhomo
2±

of Equation (A16). Components in the first three sets of curly brackets in Equation (A16) are nonzero
in or on the inhomogeneity and describe second order scattering S2. As in the linear case, the changes
of compressibility in the medium, k2

±γκ P2±, scatter as monopoles while the changes of density, ∇ ·
(γρ∇P2±), scatter as dipoles. Components in the last two sets of curly brackets in equation (A16)
are nonzero where the primary waves are nonzero and describe nonlinear wave-wave interactions,
including II, SS and IS, where only II exists if the medium has no inhomogeneities.

Appendix B. Second Order Pressure Field from a Small Resonant Air Bubble

Consider a small spherical gas bubble in an infinite fluid subject to the action of two collinear
harmonic plane incident waves. The incident waves have frequencies ωa and ωb and amplitudes PSa
and PSb. The bubble has a radius of a at rest. We derive the asymptotic solution for kaa, kba, k±a� 1.
By including the bubble’s damping and restoring effects into the equation of motion for a pressure
release sphere, we obtain an approximate equation governing the motion of the bubble wall in the
radial direction, which takes the first order form

ξ̈1 + ω0δξ̇1 + ω2
0ξ1 = − 1

ρ0

∂

∂r
(pI1 + pS1) (B18)

where the damping constant δ = 4µ/ρ0ω0a2 includes dissipation from thermal phenomena, viscosity,
acoustic radiation, and surface tension, and ω0 is the natural frequency of the bubble volume pulsation,
which is determined from

ρ0ω2
0a2 = 3γ(p0 + 2σ/a)− 2σ/a (B19)

where σ is surface tension, p0 is the ambient pressure, and γ is the polytropic constant [2].
For the given incident waves, the first order scattered field from a small pressure release sphere

pS1 can be determined from the boundary condition, Equation (10). The amplitude of first-order
motion of the bubble wall is obtained from Equation (B18):

Ξa =
Pa0α(ωa)

ρ0aω2
a

, Ξb =
Pb0α(ωb)

ρ0aω2
b

(B20)

where the amplification factors α(ωa) and α(ωa) are defined by

α(ω) =

[
(1−

ω2
0

ω2 )− iδ
ω0

ω

]−1

. (B21)

The first order scattered field will be monopolar as given by

PSa(r) = −Pa0α(ωa)
a
r

eikar, PSb(r) = −Pb0α(ωb)
a
r

eikbr . (B22)
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The results in Equations (B20) and (B22) approach the solution of a pressure release sphere at
large frequencies ωa/ω0, ωb/ω0 � 1.

The equation governing the second-order motion of the bubble wall is obtained from Equation (19):

ξ̈2 + ω0δξ̇2 + ω2
0ξ2 = −∂(pI2 + pS2)

ρ0∂r
− v1

∂v1

∂r
+

∂p2
1

2ρ2
0c2

0∂r
+ fNL (B23)

where fNL denotes the second-order interaction terms associated with surface tension, thermal
phenomena and viscous effects, given by

fNL =
1

2ρ0a3

[
3γ(3γ + 1)(ρ0 +

2σ

a
)− 4σ

a

]
ξ2

1 + δω0ξ1ξ̇1 . (B24)

For small bubbles with kaa, kba� 1, the second-order incident wave PI2 (Equation (44)), which
contains II, SS, IS and SI components, is dominated by PSS on the bubble wall

PI2±(r = a) ' P
′′
SS±(r = a) = −ρ0

2
VSaV(∗)

Sb

∣∣∣∣
r=a

. (B25)

In the vicinity of the bubble, v1 is dominated by the velocity components due to first order
scattering, VSa and VSb, which are determined by use of Equation (B22) and near the bubble surface
take the form

VSa(r) = −
iPa0aα(ωa)

ρ0ωar2 , VSb(r) = −
iPb0aα(ωb)

ρ0ωbr2 (B26)

The second-order S2 pressure component from a pressure release sphere pS2 can be obtained by
solving the linear scattering problem with the boundary condition given by Equation (51). With ξ2

determined from Equation (B23), the S2 pressure is

PS2±(r) =
Pa0P(∗)

b0 A±res

2ρ0c2
0(k±a)

eik±r

k±r

[
−
(±ω2

±
ωaωb

+
ω2
±

ω2
a
+

ω2
±

ω2
b

)
+ B±res

ω2
±

ωaωb

]
(B27)

where the amplification factor A±res is

A±res = α(ωa)α(ωb)α(ω±) (B28)

and the coefficient B±res is defined by

B±res =
3γ(p0 +

2σ
a )(3γ + 1)− 4σ

a
ρ0c2

0(kaa)(kba)
− i

δω0ω±
ωaωb

. (B29)

B±res represents the effect of the second-order interactions associated with surface tension and fluid
viscosity, which is found to be insignificant compared to the other effects. Equation (B27) becomes
the second-order solution for a pressure release sphere when A±res=1 and B±res = 0. If the second-order
incident wave PI2, which contains all II, SS, IS and SI wave-wave fields at the boundary, is omitted
in (B23), the solution in Equation (B27) becomes equal to that obtained by Newhouse & Shankar [2].
We find, however, in our examples that PI2 is of similar order as the other terms in (B23) and should
not be ommitted.

In the far field k±r � 1, PSS can be determined from Equation (91), and PIS and PSI in the forward
scatter direction can be determined from Equations (92)–(94). Their ratios to PS2 are found to be∣∣PSS±

∣∣∣∣PS2±
∣∣ =

∣∣∣∣ β

α(ω±)
(kaa)(kba)(k±a)

[
± 1 +

ωb
ωa

+
ωa

ωb
+ B±res

]−1 log(
r

rref±
)

∣∣∣∣ , (B30)
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∣∣PIS+
∣∣∣∣PS2+
∣∣ =

∣∣∣∣β[1 + ωb
ωa

+
ωa

ωb
+ B±res

]−1 log(
k+
kb

)
(kba)(k+a)(k+r)

α(ωa)α(ω+)

∣∣∣∣ , (B31)

∣∣PIS−
∣∣∣∣PS2−
∣∣ =

∣∣∣∣β[− 1 +
ωb
ωa

+
ωa

ωb
+ B±res

]−1∣∣i log(
k−
kb

) + π
∣∣ (kba)(k−a)(k−r)

α(ωa)α(ω−)

∣∣∣∣ , (B32)

∣∣PSI±
∣∣∣∣PS2±
∣∣ =

∣∣∣∣β[± 1 +
ωb
ωa

+
ωa

ωb
+ B±res

]−1 log(
k±
ka

)
(kaa)(k±a)(k±r)

α(ωb)α(ω±)

∣∣∣∣ . (B33)

which, when the ratios are small, become conditions on receiver range, probing frequencies, and
parameters of the object and medium for which these wave-wave fields at the receiver will be negligible,
and when the ratios become large become conditions on when these wave-wave fields at the receiver
are dominant. It is noteworthy that no simple expression has been obtained for IS + SI in nonforward
directions, so computations of this have been provided in Section 5.

Appendix C. Locally Reacting Boundary

The normal velocity v · n is a function of pressure p on a locally reacting boundary S as

v · n = h(p) on S(t), (C34)

where the nonlinear function h can be expanded with respect to ambient pressure p0 as

v · n = h0(p− p0) + h1(p− p0)
2 + · · · on S(t). (C35)

This boundary condition on S(t) can be further expanded with respect to the reference mean
boundary S̄, as

v · n + ξ · ∇(v · n) + · · ·
= h0(p− p0) + ξ · ∇(h0(p− p0)) + h1(p− p0)

2 + ξ · ∇(h1(p− p0)
2) + · · · on S̄. (C36)

Substituting the perturbation expansions for v, ξ and p to the above equation and collecting terms
of the same order, we obtain first and second order boundary conditions for the general locally reacting
boundary, as

first order: v1 · n = h0 p1 on S̄, (C37)

second order: v2 · n + ξ1 · ∇(v1 · n) = h0 p2 + h0ξ1 · ∇p1 + h1 p2
1 on S̄. (C38)

Here 1/h0 is the same as the acoustic impedance z in reference [24].
The first and second order fields for a pressure release boundary problem are denoted as pPR

1 and
pPR

2 respectively. They satisfy the boundary conditions

first order: pPR
1 = 0 on S̄, (C39)

second order: pPR
2 + ξPR

1 · ∇pPR
1 = 0 on S̄. (C40)

The first and second order fields for a fixed rigid boundary problem are denoted as pRG
1 and pRG

2
respectively. They satisfy the boundary conditions

first order: vRG
1 · n = 0 on S̄, (C41)

second order: vRG
2 · n = 0 on S̄. (C42)
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On S̄, the first and second order waves for a general locally reacting boundary problem are

p1 = α1 pPR
1 + (1− α1)pRG

1 on S̄, (C43)

p2 = α2 pPR
2 + (1− α2)pRG

2 on S̄. (C44)

The coefficients α1 and α2 are functions of position on S̄, and they can be determined from the
first or second order boundary conditions (C39) and (C40), as

α1 =
h0 pRG

1

vPR
1 · n + h0 pRG

1
, (C45)

α2 =
h0 pRG

2 + h1(pRG
2 )2

vPR
2 · n + ξPR

1 · ∇(vPR
1 · n) + h0 pRG

2 + h1(pRG
2 )2

. (C46)

The first order scattered wave pS1 from a general locally reacting boundary can be obtained by
evaluating Equation (8), with Equations (C43) and (C45). The second order scattered wave pS2 from a
general locally reacting boundary can be obtained by evaluating Equation (25) with Equations (C44)
and (C46).

Appendix D. Static and Dynamic Force

Starting from f =
∫∫

pndS, the total second order force f2 acting on an object can be written as [45]

f2 = ρ0
d
dt

(∫∫∫
δV

v1dV
)
+ ρ0

d
dt

(∫∫
S0

φ2ndS
)
−
∫∫

S̄
LndS + ρ0

∫∫
S̄

v1v1 · ndS, (D47)

where δV is the difference between the volume occupied by the exact boundary S(t) and time-averaged
boundary S̄. L = T − V is the Lagrangian density, where T = ρ0v2

1/2 is the kinetic energy density
and V = p2

1/(2A) is the potential energy density. Components of the second order potential φ2 are
explicitly written out following our convention as

φ2 = φII + φSS + φIS + φSI + φD2,II + φD2,SS + φD2,IS + φD2,SI + φR2,II + φR2,SS + φR2,IS + φR2,SI. (D48)

Similarly, L = LII + LSS + LIS + LSI.
The first two terms on the right-hand side of Equation (D47) have zero zero-frequency component

due to the time derivative, so the static radiation force fstatic
2 is determined by the zero-frequency

component of the last two terms. This, for example, enables King [53] to calculate fstatic
2 on a

rigid movable sphere for plane wave incidence without solving φ2. The radiation force here has
its counterpart in hydrodynamics as the second order drifting force on an object [54].

In the dynamic case, all terms in Equation (D47) must be included. As in Equation (38),
the centroidal motion of the object, uc2, is determined by the equation of motion

M
duc2

dt
= f2. (D49)

Substituting Equations (D47) and (D48) into Equation (D49) and combining the contribution of
R2 as the radiation impedance zr, we obtain

(zm + zr)uc2 = fexcit
2 , (D50)

where

fexcit
2 = ρ0

d
dt

(∫∫∫
δV

v1dV
)
+ ρ0

d
dt

(∫∫
S̄

φexcit
2 ndS

)
−
∫∫

S̄
LndS + ρ0

∫∫
S̄

v1v1 · ndS (D51)
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is equivalent to Equation (39), and

φexcit
2 = φII + φSS + φIS + φSI + φD2,II + φD2,SS + φD2,IS + φD2,SI, (D52)

which contains the wave-wave interactions and the corresponding D2 components.
The object’s centroidal velocity uc2(t) can be determined from Equations (D50)–(D52).

A derivation along these lines found in references [28,45–47], however, uses φ′2 instead of φexcit
2

where φ′2 omits terms φSS, φIS, φSI, φD2,SS, φD2,IS and φD2,SI, and adds an extraneous φR2,II, and so does
not equal φexcit

2 of Equation (D52) as it must to quantify all second order effects in a general manner.
Low difference frequency measurements [28] show that fexcit

2 converges to fstatic
2 , which also occurs if

φ′2 is used. Using φ′2 instead of φexcit
2 in Equation (D51), however, does not generally lead to the correct

relation between fexcit
2 and centroidal velocity uu2 as in Equation (D50) across frequency.

Appendix E. Space-Time Isolation of Second Order Field Components that Carry Information
About an Object

Here we consider sum and difference frequency sensing of an object by measurement of the
second order nonlinear fields arising from SS, IS, SI and S2 mechanisms. When the primary waves
have compact support, we show here for pSS,ab(∗) and pIS,ab(∗) via Equations (69) and (70) and for pII,ab(∗)

via Equations (84)–(87) that the second order waves also have compact support (Figure E1). Given this,
we show that it is possible to isolate in time and space field components pSS, pIS and pS2 that carry
information about the object from pII that does not contain such information by the appropriate choice
of receiver location (Figure E2).

The compact support of pII,ab∗ as analytically derived in Equation (86) is confirmed by direct
numerical integration of the full time domain Green theorem solution (p′II,ab∗ from (68) plus p′′II,ab∗

from (61)) and shown in Figure E1a. Compact support of pSS,ab∗ and pIS,ab∗ components is also
shown by direct numerical integration of the respective time domain Green theorem solutions (p′SS,ab∗

from (69), p′IS,ab∗ from (70), and p′′SS,ab∗ and p′′IS,ab∗ from (61)) and shown in Figure E1b–d. Within these
regions of compact support, the pSS,ab∗ and pIS,ab∗ can be well approximated by a number of time
harmonic approximations including the asymptotic solutions (90), (93), online supplementary material
Equation (S156), and direct numerical integration of the harmonic wave Green theorem solutions (78)
and (79), plus the respective p′′2 components from (61). The backscattered IS (Figure E1d) is much
smaller than the forward scattered IS component (Figure E1c) as expected from Section 3.2, and the
p′′IS,ab∗ component is zero because the primary incident and scattered waves do not intersect at the
receiver in the backscatter direction for this case (Figure E2).
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Figure E1. Second order wave due to the interaction of (a) incident waves of compact support (II),
(b) scattered waves (SS) of compact support, (c) incident and scattered waves (IS) of compact support
in the forward (c), and backscatter (d) direction by direct numerical integration of the indicated full
time domain solutions (solid lines). The second order waves have compact support within which the
indicated harmonic approximations are shown to be valid. The top panels show the real pressure and
the bottom panels show the pressure amplitude at the difference frequency. Here ωa/(2π) = 500 kHz,
ωb/(2π) = 300 kHz, T = 50 µs, c0 = 1500 m/s and β = 3.6. The pressure is normalized by 2E0, where
E0 = |Pa0Pb0|/(2ρ0c2

0). In (a), the pressure is calculated at the origin; in (b–d), the pressure is calculated
at rR = 0.1 m from the center of a pressure release sphere of radius a = 10 µm and the scattered waves
are approximately spherically symmetric with scatter functions Sa,b = −ka,ba.

The II, SS, IS and SI overlap regions of compact support are shown in Figure E2. If a receiver is
placed in any location where the II overlap region (gray in Figure E2) and the SS overlap region (blue in
Figure E2) do not intersect, as in the example shown in Figure E2, it will measure pSS + pIS + pSI + pS2

between t = rR/c0 and t = rR/c0 + T with no pII component, where t = 0 occurs when the fronts of
the incident waves simultaneously arrive at the object center. The II overlap region entirely passes the
receiver before the SS overlap region arrives for the examples shown in Figure E2 if rR > c0T/2 for the
collinear case, and if rR > c0T

√
2/(
√

2 + 1) for the perpendicular case. If a receiver is placed in the
forward direction in the collinear case, pII cannot be separated from the other components regardless
of the duration of the incident waves, and will mask information about the object carried in pSS, pIS,
pSI and pS2.

Since second order scattering (S2) occurs at the object between t = 0 and t = T when all
narrow-band primary waves of compact support overlap, the pS2 component has compact support via

pS2(r, t) ≈ <{PS2±e−iω±tw2(t− r/c0)} (E53)

where PS2± is the time harmonic complex-amplitude of the second order scattered wave of Equation (50)
and w2 has compact support, and following w1, has duration T with unit height within the window
except at the ends where smooth transitions to zero occur over periods much less than T.
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Figure E2. Primary incident and scattered waves of compact support and regions of compact support
overlap, at different time instances (a–e). The left column is for the collinear incidence case, and the
right column is for the perpendicular incidence case. The overlap regions for the incident waves,
scattered waves, and incident and scattered wave are volumes in 3-D, and they are projected and
shown on a 2-D plane as the gray, blue and green areas, respectively.

Appendix F. Transitions Between Mechanisms for Rigid and Pressure Release Objects

Some general patterns of behavior for various mechanisms and transitions between dominant
mechanisms are observed at the difference frequency when the receiver range is not asymptotically
large, and the receivers are not in forward scatter where IS and SI are more significant:

For rigid objects, it is found that: (1) pSS is dominant for high primary frequencies and large
objects, as seen in Figures 3a,b and 4a,b for collinear incidence, and in Figures 5a,b for perpendicular
incidence; (2) pSS is most sensitive to the changes of primary frequency and object size, because it is
a function of the product of primary scattered fields PSaPSb which depend strongly on kaa and kba;
(3) when the primary frequency or object size decreases, the dominant mechanism transitions from
SS to D2, IS and SI. Specifically, for movable objects, pD2 due to the wave-boundary interaction can
become dominant as seen in Figure 4a,b. For immovable objects, pD2 and pIS + pSI are comparable,
as seen in Figures 3a,b and 5a,b; (4) pIS + pSI is dominant at large difference frequency, as seen in
Figures 3d, 4d and 5d; and (5) pR2, which arises from the second order centroidal motion, has very little
contribution to the total second order field, as seen in Figure 4. For rigid objects attached to springy
material, however, the centroidal motion can be amplified such that pR2 becomes dominant when the
difference frequency is close to a resonance frequency, as shown in Figure 8.
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For pressure release objects, it is found that (1) pS2 is dominant at small primary frequencies,
for small objects or at small difference frequency, as seen in Figure 6a,b,d, and is mainly due to SS and
SS-type boundary effects from the first term of p′′2 (Equation (61)) and the wave-boundary interaction
(Equation (51)); (2) pSS is sensitive to changes in object size but not to the primary frequency for small
objects, as seen in Figure 6a,b, because PSa and PSb do not depend on frequency for small pressure
release objects; and (3) pS2 is insensitive to changes in difference frequency when it is small, as seen in
Figure 6d, because p′′2 and the wave-boundary interaction depend on the primary frequencies, which
converge to the center frequency as the difference frequency decreases.

For all rigid, pressure release and rigid-mass-spring-resonating cases, pSS falls off in range more
gradually than pIS + pSI in the non-forward direction and pS2 do, as seen in Figures 3c, 4c, 5c and 6c.
This is consistent with the asymptotic behavior of each component discussed in Section 3.2.
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