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Abstract: Tree growth and survival predominantly depends on edaphic and climatic conditions,
thus climate change will inevitably influence forest health and growth. It will affect forests directly,
for example, through extended periods of drought, and indirectly, such as by affecting the distribution
and abundance of forest pathogens and pests. Developing ways of early detection and monitoring of
tree stress is crucial for effective protection of forest stands. Thermography is one of the techniques
that can be used for monitoring changes in the physiological state of plants; however, in forestry, it has
not been widely tested or utilized. The main challenge rises from the need for high spatial resolution
data. Newly emerging technologies, such as unmanned aerial vehicles (UAVs) could aid in provision
of the required data. However, their main constraint is the limited payload, requiring the use of
miniature sensors. This paper investigates whether a miniature microbolometer thermal camera,
designed for a UAV platform, can provide reliable canopy temperature measurements of conifers.
Furthermore, it explores whether there is a distinction in whole canopy temperature between the
control and the stressed trees, assessing the potential of low-cost thermography for investigating stress
in conifers. Two experiments on young larch trees, with induced drought stress, were performed.
The plants were imaged in a greenhouse setting, and readings from a set of thermocouples attached
to the canopy were used as a method of validation. Following calibration and a basic normalization
for background radiation, both the spatial and temporal variation of canopy temperature was well
characterized. Very mild stress did not exhibit itself, as the temperature readings for both stressed
and control plants were similar. However, with a higher stress level, there was a clear distinction
(temperature difference of 1.5 ◦C) between the plants, showing potential for using low-cost sensors to
investigate tree stress.

Keywords: canopy temperature; drought stress; water stress; thermal imaging; trees; unmanned
aerial system

1. Introduction

Tree growth and survival predominantly depends on edaphic and climatic conditions, which
influence processes such as photosynthesis and respiration. Thus, gradual global warming, with
consequent changes to other climate variables such as rainfall, humidity and weather patterns, will
inevitably influence forest health and tree growth [1]. Higher carbon dioxide concentrations, and the
resulting lengthening of the growing season should increase the productivity of trees, if water and
nutrients do not become limiting factors [2]. However, according to model simulations, a decrease in
precipitation in the south of Europe is expected, particularly in the summer period, whilst over much
of northern Europe an increase in precipitation is predicted [3–5]. For instance, it is suggested that,
under the medium emissions scenario (scenario A1B within the Special Report on Emission Scenario,
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SRES), rainfall over much of the UK will increase by up to 33% in winter months and decrease by as
much as 40% in summer months by the 2080s, relative to the 1961–1990 baseline [6]. Such changing
rainfall patterns are likely to increase the frequency of surface water droughts, but also increase the
risk of extreme precipitation and flooding [5,7,8].

Climate change will also indirectly affect the distribution and abundance of forest pathogens
and pests, as well as the severity of tree diseases. The predicted temperature rise and longer growing
season will generally favor insect population growth and expansion [9,10], whilst moister conditions,
with greater water table fluctuations, will benefit pathogens [11]. The extended periods of droughts
with climate change are likely to bring an increase in trees’ vulnerability to attack [1]. Developing
ways of monitoring tree stress is therefore crucial for effective protection of forest stands. In response
to changing tree health status, forest management strategies can be adapted to help mitigate effects
of climate change, such as pests and disease outbreaks. Thermography is one of the techniques that
can be used for monitoring changes in the physiological state of plants; however, in forestry, it has not
been widely utilized or tested.

Leaf temperature is primarily determined by the rate of transpiration. As plants transpire, water
loss through evaporative cooling reduces leaf temperature [12]. Conversely, plants under water stress
tend to transpire less due to stomatal closure, leading to an increase in leaf and canopy temperature
and reduction in photosynthetic activity [13]. Therefore, leaf temperature can be an indicator of water
availability. With the onset of severe water stress, a general disruption of metabolism develops, which
is signaled by high rates of respiration. The closure of stomatal apertures is a defense mechanism,
which not only helps reduce water losses, but also prevents the entry of microbes and host tissue
colonization. The resultant increase in leaf and canopy temperature can often be detected by thermal
imaging at the leaf level at an early stage of infection [14,15].

In agriculture, much work has been done on relating leaf temperature to water stress. At canopy
level, several methods utilizing knowledge on environmental factors (such as air temperature, humidity,
radiation and wind speed) were developed to estimate stomatal conductance and water content
using thermography [13,16,17]. As an alternative, thermal “stress indices” were created, aiming to
normalize the results for environmental variation. Canopy temperature depression (CTD) is the most
straightforward of the indices; it normalizes canopy temperature with reference to air temperature,
and is calculated as Tcanopy – Tair [18]. However, it depends on weather conditions, and thus can only
be used in climates where weather conditions vary little between consecutive days [19]. The crop
water stress index (CWSI) is a drought stress index, which introduces a non-water-stressed baseline
(representing a crop transpiring at a maximal rate) and a non-transpiring upper baseline (representing
a dry crop with closed stomata) [16,18]. There are different approaches for calculation of CWSI, namely
analytical, empirical and direct; a review of these approaches can be found in Maes et al. [20]. Similarly,
the stomatal conductance indices (Ig and I3) utilize “wet” and “dry” reference surfaces to reduce the
sensitivity to environmental variations [13].

The thermal stress indices have been widely and successfully applied to agricultural crops [21–23].
However, the use of thermography for investigation of water stress in trees has been predominantly
limited to orchards [24–26]. Using thermal imagery, noticeable differences in canopy temperature
between treatments of persimmon trees were detected, whilst in citrus the relationship between crown
temperature and plant water stress differed in each experimental season [26]. Within a heterogeneous
olive orchard, good correlation between estimated and field-measured canopy conductance values
was achieved by Berni et al. [25]. Similarly, the CWSI, modeled for water-deficient and well-irrigated
olive trees, correlated well with the measured water potential, as well as the canopy conductance [25].
Relationships between canopy temperature, and stomatal conductance and water potential, were also
found in almond trees [24]; furthermore, it was suggested that the intra-crown temperature variability
could also be used for water stress detection.

In forestry, thermography so far has been used to analyze drought tolerance of several deciduous
tree species in a mixed forest stand [27] and of Scots pine seedlings from different provenances [28]
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to assist forest planning in light of changing climatic conditions. Scherrer et al. [27] recorded
noticeable differences between investigated species, ranking them according to their resistance. With
ongoing drought, they also observed a divergence in mean relative (to air) canopy temperature
readings between “dry” and “moist” sites, but could not attribute them to differences in soil water
potential. Grant et al. [29], using thermal imagery, monitored leaf physiology of cork oak under
varying water regimes (80%, 100% and 120% of natural precipitation). Following a year of treatment,
the well-watered leaves were significantly cooler than those with natural or reduced precipitation
levels. On a larger scale, MODIS land surface temperature was used with monthly water balance to
derive a forest vulnerability index [30]. Nevertheless, the application of thermography to investigate
stress in forest species, especially conifers, requires further exploration to assess its feasibility as a
reliable monitoring technique. Conifers represent particularly challenging targets for remote sensing
analysis, mainly due to their structural features, for example, narrow needle leaves. With the exception
of [28,31,32], thermography of conifer trees still remains almost unreported in the literature; therefore,
the investigation of stress responses in the temperature domain is largely lacking. In Kim et al. [31],
the daily and sub-daily mean canopy temperatures extracted from uncorrected imagery were shown
to be related to climatic and soil variables, whilst Smigaj et al. [32] found a correlation between disease
progression and canopy temperature increase. However, neither of these studies validated the retrieved
canopy temperatures against ground measurements. Seidel et al. [28] used thermocouples attached to
needles to derive their apparent emissivity, but did not utilize them in further measurements.

The main challenge for using thermal remote sensing approaches for forest health monitoring
arises from the need for high spatial resolution data to identify individual trees or to monitor areas
of fragmented forest cover. Newly emerging technologies, such as small unmanned aerial vehicles
(UAVs) could significantly aid in provision of the required data. However, the main constraint of UAV
platforms is the limited payload they offer, requiring the use of miniature sensors. Thermal sensors
would traditionally utilize quantum detectors, offering short (sub-nanosecond) response times and
very high sensitivities. However, to reduce thermal generation of charge carriers and thermal noise,
they require an external cooling system, making them bulky and expensive. The development of
sensors based on thermal detectors has allowed for significant miniaturization of thermal cameras.
They tend to have slower response times and are less sensitive than quantum detectors, but do not need
any cooling element. This makes them less expensive and more competitive, as well as allowing for
miniaturization of the sensor. Lack of a cooling system results in a low signal to noise ratio, but makes
such sensors sufficiently lightweight for inclusion as part of a UAV payload. Uncooled thermal imagers
are severely degraded by the spatial non-uniformity noise, which is defined as spatially heterogeneous
response of the camera to uniform incoming radiation [33]. The non-uniformity noise has a fixed
spatial structure, but its intensity varies over time due to instability in the camera temperature [33,34].
It is particularly severe in microbolometer sensors because the infrared detector tends to drift over time;
temperature variations result in a different thermal drift among the detector elements, exacerbating
the effects of the non-uniformity [35,36]. Thermal imagers provide an internal system correcting for
the drift and non-uniformity caused by the drift. However, as this system is located between the
detector and the optics (which are also imperfect), some non-uniformity across the image is expected
to remain [36].

This study investigates whether a low-cost miniature thermal camera, destined to be used on a
UAV platform, is capable of providing reliable canopy temperature measurements of conifers. For this
purpose, the temporal change and spatial variation of canopy temperature in conifer trees is monitored
in a greenhouse setting. Furthermore, the paper explores whether there is a distinction in whole
canopy temperature between the control and the stressed trees, assessing the potential of low-cost
thermography for investigating tree stress in conifers.
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2. Materials and Methods

2.1. Thermal Camera Specifications and Calibration

The thermal sensor used for this study is a weight-optimized Optris®PI-450 longwave infrared
camera (Optris GmbH, Berlin, Germany), equipped with a 38◦ × 29◦ field-of-view lens and manual
focus. It utilizes uncooled microbolometers arranged into a Focal Plane Array with optical resolution
of 382 × 288 pixels. The camera’s internal mechanical calibration device was set to flag in front of the
detector every 12 s to correct for the thermal drift and non-uniformity caused by the drift. The sensor
operates in a spectral range of 7.5–13 µm and a temperature range of 20–900 ◦C (thermal sensitivity:
40 mK, accuracy: ±2 ◦C or ±2%, whichever is larger). Prior to such sensor use, its performance in
obtaining reliable temperature measurements across the whole lens has to be determined. This is
crucial for quantitative use of the camera, especially when applied to plant sciences, where differences
in temperature are usually small.

The Optris®thermal camera was therefore calibrated in laboratory conditions against a thermally
controlled flat plate blackbody radiation source (ISDC’s IR-160, εBB = 0.96), ensuring the camera’s
field-of-view was fully covered by the blackbody. The emitter has a size of 12′ ′× 12′ ′, temperature
resolution of 0.1 ◦C (calibration accuracy: ±0.2 ◦C) with short and long-term stability of ±0.2 ◦C and
±0.1 ◦C, respectively. It operates in the temperature range of ambient to 350 ◦C and spectral range of
1–99 µm. The blackbody source used in this study is heated by means of a resistive-heating element,
which is designed to provide uniform heating of the entire surface area. To ensure even distribution of
the power to the entire surface (that is proper uniformity), after each temperature setting change the
system was given 30 min to stabilize before measurements were made.

Thermal cameras can be radiometrically corrected by quantitatively relating their output to source
radiance or temperature. Typically, this would be performed by measuring the output digital numbers
while the camera views one or more blackbody sources [37]. In this study, the non-uniformity across
the image was corrected using a two-point calibration technique [38], which requires measuring a
blackbody at two distinct and known temperatures. If the output digital numbers are linearly related
to the input radiance, then for a given wavelength:

R(λ) = G(λ)S(λ) + O(λ), (1)

where R is spectral radiance emitted by target surface, G is spectral response (gain) of the sensor, S
are digital numbers recorded by the sensor, O is spectral radiance emitted by sensor’s internal parts
(offset), and λ is wavelength. If the radiances of two blackbodies at different known temperatures
(“cold” and “hot”) are given by:

Rc = P(λ, Tc); Rh = P(λ, Th), (2)

where Pc and Ph are band-integrated “cold” and “hot” blackbody radiances, respectively; Tc and Th
are their temperatures; and P is Planck blackbody radiance. Then, by measuring image intensities,
there is enough information to solve Equation (1) for gain and offset parameters:

G =
Rh − Rc

Sh − Sc
, O = Rh − G Sh. (3)

This equation was then adjusted to account for the emissivity of the blackbody source (εBB):

G =
εBBRh − εBBRc

Sh − Sc
, O = εBBRh − G Sh. (4)

As Equation (1) is sensitive to any nonlinearity between the input radiance and output data
numbers, it was first ensured the average and pixel level sensor responses were linear in terms of
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emitted flux versus digitized flux over a range of temperatures at both image and pixel level. Imagery
of the blackbody at 298.15 K to 333.15 K was then used to calculate the gain and the bias of each detector
across the array. To minimize any temporal differences in temperature offsets recorded within each
pixel, averages of 10 consecutive images, taken at 10 s intervals, were used. To check the effectiveness
of the derived non-uniformity correction, the offset and gain matrices were applied to a temporal
set of the imagery. The camera was set to store one raw image of a blackbody at 298.15 K (25.0 ◦C)
every minute over the course of 109 min. The kinetic temperature values acquired by the camera were
computed using an emissivity value for the blackbody of 0.96.

2.2. Plant Preparation and Experiment Design

Twenty specimens of potted two-year-old Japanese larch trees were selected and kept throughout
2016 in an indoor growth room made of glass. The plants were divided into control and
drought-stressed groups in August 2016, and since then watered at 2–3 days intervals, with reduced
amount provided to the drought group. In control trees, the soil moisture content was aimed to be
maintained above 50% (but no more than 80%), whilst, in the drought stress group, between 10% and
30%. The air temperature within the room was set to 16 ◦C, and for the last month prior to acquiring
imagery, temperature varied between 16 and 22 ◦C as on warm days the cooling system could not
retain a constant low temperature.

Two separate pairs of structurally similar trees (one treated, one control) were selected for the
experiments conducted on 7 and 10 October 2016, during which the Optris PI-450 thermal camera was
used to take images. The first trial involved a moderately stressed tree, whilst the second used a mildly
stressed tree; soil moisture measurements (using CS650 soil water content reflectometer, Campbell
Scientific, Inc. Logan, UT, USA) prior to commencing imaging showed 7% and 33% moisture levels for
the drought-stressed trees, and 48% and 63% for the control trees. The tree stress status was based
on the soil moisture measurements and the visual examination of the canopies. The difference in soil
moisture between equivalent trees in the two experiments was assumed to be caused by different tree
sizes, hence different water consumption.

The experiments were performed in a greenhouse to utilize sunlight; additional light sources
were also used to ensure plants were undergoing photosynthesis. Two lamps (400 Watt high pressure
sodium system) were attached to the roof of the greenhouse approximately one meter from top of the
plants, pointing downwards, directly towards the trees. In this set-up, any shadowing of the lower
parts of the trees was only expected to come from overhead branches. To minimize the effects of wall
reflectance, immediate surroundings were covered with a uniform, non-reflective black paper. A small
calibration target, constructed from high-emissivity carpet underlay foam, was placed alongside
the plants.

Direct temperature measurements were performed with type K welded tip fast response
thermocouple sensors (conductor diameter of 0.315 mm, accuracy of ±2.2 ◦C). Each plant had a
thermocouple wrapped inside of needle clumps in the upper and lower part of the foliage. The sensors
were not firmly attached to needles to avoid causing mechanical damage. The temperature of the
air and the calibration target was also monitored using thermocouples. The full set-up is presented
in Figure 1. The experiments were undertaken in southern Scotland at 14 and 12 local time on 7
and 10 October 2016. In the case of Experiment 1, the plants were initially imaged under natural
light conditions; the experiment lasted 60 min, with lamps turned on between Minutes 8 and 55.
Weather conditions remained consistent, with a thick cloud cover obstructing the sun. Experiment 2
lasted 47 min and was performed with the lamps on; on that day, the conditions were variable, with
intermittent sunshine and moving, thick clouds. The thermal camera was placed approximately 1.5 m
away from the plants and acquired imagery at approximately one-minute intervals. The emissivity
of the canopy foliage was assumed to be 0.95 (average leaf emissivity value reported by Jones [39],
based on a range of plant species).
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Figure 1. Experiment 1 set-up with calibration target on the right; thermocouples were wrapped inside
of needle clumps, as shown on the inset.

2.3. Calibration Target’s Emissivity Value Retrieval

A MIDAC M2000 series Fourier Transform InfraRed (FTIR) spectrometer (MIDAC, Westfield, MA,
USA) was used to perform TIR spectral emissivity measurements of the calibration target’s surface.
It is equipped with a mercury cadmium telluride sensor and zinc selenide optics, offering a spectral
range of 2–15.4 µm and a selectable resolution of 32–0.5 cm−1. For this study, the spectrometer
was set to perform 8 scans with 16 background scans at 2 cm−1 resolution. The calibration of
the spectrometer typically involves measuring spectra of reference radiation sources with known
temperatures [40]; in this study a blackbody system built by Electron Systems was utilized, which
consists of three blackbodies (εBB = 0.96) , two of which were used and set to 15 ◦C and 60 ◦C.
The radiance of the target can be described by a basic mathematical model as a function of the spectrum
measured by the spectrometer shown in Equation (1), where S would become the uncalibrated energy
spectrum measured by the spectrometer. The gain and offset parameters followed the same calculation
process, utilizing measurements of the spectral radiance emitted by the two blackbodies. Calibration
measurements of the blackbodies along with downwelling radiance (DWR) measurements were
performed at regular intervals to account for changes in background radiance and spectrometer
temperature. The DWR measurements were acquired using a diffusive gold highly reflective surface
(InfraGold panel), with a reported emissivity of less than 0.06 (εG), the radiance of which (RG,
as received by the FTIR spectrometer) can be described as:

RG(λ) = [εG(λ)RBB(TG, λ) + (1− εG(λ))RDWR(λ)]τA(λ) + RA(λ), (5)

where RBB(TG,λ) is the radiance emitted by a blackbody at the gold plate’s temperature, RDWR is the
downwelling radiance, RA is atmospheric radiance between the plate and spectrometer and τA is the
atmospheric transmission between the plate and spectrometer. The measurements were performed
over a path shorter than 1 m (from a distance of approximately 30 cm), thus the atmospheric terms τA

and RA could be ignored, and the above equation could be rearranged to:

RDWR(λ) =
RG(λ)− εG(λ)RBB(TG, λ)

1− εG(λ)
. (6)

The calculated DWR was subsequently subtracted from upwelling target radiance to isolate target
emission and obtain absolute emissivity for each of the measurements:

εS(λ) =
R(λ)− RDWR(λ)

RBB(TS, λ)− RDWR(λ)
. (7)
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To ensure the upwelling target radiance was higher than the DWR during the lab measurements,
the target samples were heated up (between two metal plates) in a convection oven prior to
measurements. Metal plates were used to avoid rapid heat dissipation during transportation of
samples. Immediately prior to measurements, the top plate was removed, and then target spectra were
collected. In total, eight spectral measurements of the target were used to obtain absolute emissivity.
During the measurement, the target was at 29.9 ◦C to 30.5 ◦C, whilst the gold panel remained at
temperatures from 27.8 ◦C to 28 ◦C (measured with a contact thermocouple). The retrieved target’s
emissivity within the camera’s spectral range, i.e., 7.5 µm to 13 µm, varied from 0.89 to 0.98, and for
further use it was integrated into a single value, denoted as total emissivity, of 0.92. The measurement
procedure and the retrieved spectral emissivity are shown in Figure 2.
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Figure 2. Emissivity retrieval procedure: heating up of the sample in a convection oven between
two metal plates, measurements setup, and average absolute spectral emissivity (black) of the target
retrieved from eight spectral measurements (grey).

2.4. Image Processing

The first step of image processing was the application of corrections derived as in Section 2.1 to
all acquired thermal imagery. Following this step, the emissivity values of the calibration target and of
the canopy foliage were accounted for, resulting in two sets of imagery for further processing.

The signal that reaches the thermal camera is composed of target radiance, but also of background
radiance. Background radiance is variable in time, and in indoor environments with emissions from
walls, ceiling and other surrounding objects, can introduce a significant error to analysis. To account
for changes in background radiance throughout the experiments, the developed calibration target was
used. For each of the acquired images, the target’s central 3500 pixels were used to retrieve an average
target temperature value, which was compared against the thermocouple measurements. The obtained
differences between image and thermocouple readings of the target surface were then subtracted from
the camera readings to normalize them for the changes in the background radiance levels.

Following the correction and prior to further analysis, background masks were created by means
of temperature thresholding. For each of the experiments, the image with highest plant-to-background
temperature contrast (defined as the temperature difference between central part of the stressed canopy
and of the background in top part of the image) was used. Based on this image, ten temperature
thresholds, one for each set of 25 image rows, were manually chosen to separate plant foliage from
the surroundings. The choice of thresholds was aided by comparison with visible imagery, which
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allowed the number of mixed pixels located at the edges of the canopy to be minimized. Multiple
thresholds were required for accurate separation as both the temperature of the background and of the
plants depended on the distance from the heat source. The derived masks allowed for extraction of
canopy pixels, as presented in Figure 3. To ensure that the selection of canopy pixels was consistent
throughout the experiments, the same masks were applied to all imagery within each of the datasets.
Furthermore, for a comparison between plants, a second mask (low canopy volume mask) was created
excluding image rows in which either of the trees in each of the experiments had a limited foliage;
such rows were likely to be affected by mixed pixels (containing the response from both the canopy
and the background). Any image row constituting of less than 30 canopy pixels was therefore masked
(the resultant mask in shown in Figure 3).
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Another point of interest was the vertical distribution of temperature within the canopies, and how
this changed over time. To analyze this, average foliage temperature values for each image row
were computed. To minimize large variations in readings between consecutive rows and aid the
interpretation, the readings retrieved from all images were smoothed first using Kaiser window
smoothing [41], with window size of 11 and beta parameter set to 4.

Lastly, average canopy temperature values (following application of the low canopy volume
mask) were calculated for each image to compare the thermal response of control and stressed plants
over time. The significance of the difference between the canopy temperature means at each time
stamp was tested using Welch’s unequal variance t-test [42] at 0.01 confidence level (H0 = the true
difference in means is equal to zero, null hypothesis rejected at p ≤ 0.01). To provide an indication of
the variation of temperature within the canopies, standard deviation was calculated.

3. Results

3.1. Camera Performance in Laboratory Conditions

During camera calibration in laboratory settings, a significant temperature shift was observed
over the course of the first 30 min, indicating a need for camera stabilization prior to undertaking
any imaging (Figure 4). Moreover, after the readings had stabilized, it was revealed that the sensor
overestimated the blackbody’s temperature by over 3.5 K throughout the imaging period. Further
investigation of temperature readings at a pixel level showed non-uniformity in the photo response
of the detectors in the array; the temperature readings across the imagery varied significantly, with
differences exceeding 2 K in some cases (Figure 4). The variation within the response across the
imagery was initially assumed to have come from “vignetting” effect, which is the main optical artifact
in cameras. It results in a darkening of the image at its periphery due to a transmission coefficient
decreasing with increasing distance from the optical axis. However, in the case of the investigated
camera, no such pattern was evident. Instead, an increase in recorded temperature value towards
the right-hand side of the image was observed. This spatial pattern of offsets remained the same
throughout the experiment. We suspect the observed non-uniformity and temperature offset were
probably caused by a joint effect of the imperfections of the optics and degradation of the calibration
of the sensor.
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Figure 4. Temperature readings over time of a blackbody at 298.15 K (dashed line), as recorded by
100 randomly chosen pixels, alongside recorded image offsets from the blackbody temperature (given
in K) at Minute 80. The temperature readings were adjusted for the blackbody’s emissivity value
(εBB = 0.96). The initial spike in values (first 30 min) was due to the camera warming up period.

The derived non-uniformity correction accounted for the overestimation in the average temperature
readings (Figure 5); the imagery was representing the actual blackbody temperature with maximum
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offsets of mean image temperature of 0.23 K. The variation in temperature readings across the imagery
had also been minimized, with 95.4% (2σ) of the pixels falling within ±0.14 K (average across the time
series) of the mean temperature reading. The resultant gain and offset matrices were used to correct
all acquired thermal imagery. The validity of the derived calibration parameters was subsequently
confirmed after six months on the same blackbody source, following a similar measurement set-up.
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Figure 5. Corrected mean image temperature of a blackbody at 298.15 K (dashed line), as recorded by a
camera over time, alongside recorded image offsets from the blackbody temperature (given in K) at
Minute 80. The temperature readings were adjusted for the blackbody’s emissivity value (εBB = 0.96).
Shaded areas represent one-sigma standard deviation; the initial spike in values (first 30 min) was due
to the camera warming up period.

3.2. Changes in Background Radiation inside the Greenhouse

At the beginning of the Experiment 1, undertaken under cloudy weather conditions, the difference
between the calibration panel thermocouple and image measurements was around 2 ◦C (Figure 6).
Upon the turning on of an additional light source, a substantial increase in background radiance was
observed (change of 1.4 ◦C). Throughout the rest of the experiment, the background radiance influence
remained constant as shown by the differences between the image and thermocouple measurements.
Furthermore, the standard deviation of the target pixels remained at the same low level, showing a
consistent response from the whole investigated area of the target.

During Experiment 2, the measurements were much more variable (Figure 6); this was due to
changing weather conditions, i.e., moving cloud cover. Occasional periods of sunshine increased the
shortwave radiation inside the greenhouse leading to an increase in temperature of the air and surfaces.
Consequently, the longwave background radiation emitted by surrounding objects increased (causing
differences between the image and thermocouple measurements up to 6 ◦C). This influence can also be
observed in the image standard deviation value of the target, which almost doubled. Otherwise, prior
to clouds clearing, the difference between image and thermocouple values remained at the same level
as in Experiment 1 (around 2.5 ◦C, apart from a single spike caused by a brief sunshine period).

As presented, the image readings were significantly affected by the large variations in background
radiance emitted from surrounding objects, in particular in Experiment 2. If left unaccounted for, these
changes would inhibit temporal analysis of the datasets.
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3.3. Thermocouple and Image Measurements of Trees over Time

During Experiment 1, air temperature inside of the greenhouse was stable until the additional
light source was turned on. Afterwards, a substantial, yet steady, increase in air temperature from
21 ◦C to around 24 ◦C was observed. Thermocouples attached to different parts of the canopies showed
different rates of temperature increase (Figure 7). At the beginning of the experiment, all measurements
were close together, showing barely any difference in temperature readings. However, with additional
radiation, readings started to separate, with higher increases recorded for upper sections of the
trees. Throughout Experiment 2, the air temperature varied more as a result of moving cloud cover.
Intermittent sunshine caused temperature spikes, whilst partial cloud clearing led to a drastic ambient
temperature increase from 20◦C to 25 ◦C. In this experiment, from the beginning, there was a clear
difference between the upper and lower parts of the canopies. However, there were no considerable
differences between the mildly stressed and the control plant, until after Minute 30, when readings
from the canopy top separated. The upper parts of the canopies were located closer to the light
source, and consequently were receiving more direct radiation, leading to a steeper increase in the
temperature when compared to the lower parts. Within Experiment 1, there were visible differences in
temperature readings between the control and stressed canopies, the second being warmer. However,
those observations cannot be conclusive, as the differences could have been caused by the distribution
of the thermocouples on trees, e.g., placement at uneven distance from the light source. Therefore,
the thermocouple measurements were primarily used for validating thermal camera readings and
assessing the performance of the normalization for the background radiance.

The thermocouple measurements were compared to the image readings, extracted from the
corresponding regions. The differences between the temperatures recorded by the thermocouples
and the camera were calculated (with image temperatures subtracted from the thermocouple
measurements), and are shown in Figure 7. In Experiment 1, image temperature extracted for each
thermocouple location were on average different by 1.64 ◦C, which is within the thermocouple accuracy
threshold of±2.2 ◦C. However, the temperature values acquired for Experiment 2 marginally exceeded
the threshold with average difference of 2.26 ◦C. The image canopy temperature readings were
normalized for changes in background radiance levels, which allowed minimization of the temporal
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variability of measurements. The standard deviation of the offsets from the thermocouple readings
was reduced from 0.46 ◦C to 0.20 ◦C in Experiment 1 and from 1.00 ◦C to 0.32 ◦C in the Experiment 2.
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Figure 7. Temperature readings acquired by the thermocouples (top); and the thermal camera (middle)
for the lower and upper parts of tree crowns; and differences between the two (bottom). Experiment
1 involved a moderately, whilst Experiment 2 a mildly stressed tree. Shaded areas indicate times at
which the additional light sources were turned off.

3.4. Vertical Distribution of Canopy Temperature

The temporal and vertical variation in canopy temperature extracted from the imagery, alongside
pixel count histograms, for both experiments is shown in Figure 8. For all of the trees, the upper
parts of the canopies were considerably warmer than the lower parts. The difference increased as
time went by, caused by an input of additional shortwave radiation and consequent warming up of
the room. This effect was probably mainly caused by the proximity to the light (and consequently
heat) source and limited foliage of the tree top. In canopy parts characterized by very low volume,
the temperature was higher, which is particularly evident in the transition from a single tree leader
to sections with branches. For example, for the control tree in Experiment 2, the difference amounts
to about 4 ◦C. The higher temperature in the areas of scarce foliage is likely to have been caused by
inclusion of mixed pixels, containing readings from both the canopy and background. Despite attempts
to exclude all mixed pixels during the masking stage, some may have remained and contributed to
higher temperature measurements. Therefore, for comparison between the plants, the low canopy
volume mask was applied prior to further analysis.

For all remaining rows, the temperature differences between the stressed and control plants were
computed, as shown in Figure 9. In Experiment 1, the control tree was colder than the stressed tree
in most image rows, and this difference was further accentuated over time. The only region where
the stressed plant was colder were rows 110–120, most likely an artifact of structural differences;
within this region, the stressed plant consists of multiple branches clumped closely together, whilst the
control plant has limited foliage. Conversely, in Experiment 2, the temperature differences between
the trees seemed to be dictated primarily by structural variances across the canopies, rather than stress;
lower temperatures were recorded in rows of high foliage volume, and foliage clumping around the
main stem.
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for each image row.

3.5. Differences in Thermal Response of Control and Stressed Plants

To further explore the thermal response of control and stressed plants over time, average canopy
temperature values were calculated for each image. Utilizing the derived low canopy volume mask,
mean, median and standard deviation values of the rest of the pixels were computed. The mean and
median response over time, alongside the difference in mean temperatures between stressed and
control plants for both experiments, are shown in Figure 10.

In Experiment 1, the mean and median values for the moderately stressed plant were the same,
indicating symmetric distribution of temperature values across the canopy. However, for the control
tree, the distribution became skewed upon the turning on of lamps (turned on between Minutes 8
and 55): the mean was greater than the median, whilst interquartile range by Minute 20 increased by
0.54 ◦C (as opposed to 0.45 ◦C for the stressed plant). This suggests that the canopies responded to
the change in environmental conditions in a different manner; the stressed plant warmed up fairly
uniformly, whilst the control canopy only showed high levels of temperature change in its upper
part. As a result, the overall temperature difference between the trees drastically increased after the
additional light source was turned on, i.e., from 0.75 ◦C to 1.5 ◦C. This difference started declining
again after the lamps were turned off. Nevertheless, the difference in standard deviation over time
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between the two plants remained at the same level of approximately 0.2 ◦C, despite the sudden increase
(by around 0.8 ◦C) when the additional light source was turned on. Welch’s t-test showed that the
difference between the canopy temperature means was statistically significant throughout the whole
experiment, even under low illumination conditions.Remote Sens. 2017, 9, 957 14 of 20 
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Figure 10. Mean and median temperature values over time for plants, alongside standard deviation
(top); and difference in mean temperatures between stressed and control plants with 99% confidence
intervals derived with Welch’s t-test (bottom). If confidence interval overlaps Tdiff = 0 ◦C, the
temperature means are not significantly different at the given confidence level.

Throughout Experiment 2, despite slightly different canopy structure and volume distribution,
the mean and median temperature values of the plants were nearly identical. The standard deviation
of both plants increased significantly by around 1.1 ◦C, with greater differences between the upper
and lower canopy caused by the occasional periods of sunshine increasing the amount of shortwave
radiation and air temperature inside of the greenhouse. However, the mild stress, under which the plant
was put, did not exhibit itself in statistically significant differences in canopy temperature; the overall
temperature difference between the trees continuously oscillated around 0 ◦C, notwithstanding drastic
environmental change in radiance and ambient temperature.

4. Discussion

The experiments showed that the thermal camera, following calibration and a basic normalization
for background radiation, is capable of monitoring temporal temperature change in conifer tree
foliage. A significant non-uniformity was found across the camera’s field of view with differences
exceeding 2 ◦C in some cases. In thermography of plants, where differences in temperature are
usually small, such non-uniformity, if left unaccounted for, might significantly affect the results when
measurements originating from different pixels are compared. For ground-based applications, the
relative temperature change within the same pixels may still be investigated, such as in Kim et al. [31],
providing pixel level sensor responses are linear in terms of emitted flux versus digitized flux over
a range of desired temperatures, since the same error in the estimation of absolute temperature
would persist. Following the non-uniformity correction, the spatial variation of canopy temperature
was well characterized, showing that thermal imagery can provide a reliable means for thermal
analysis of conifers. Nevertheless, we were unable to fully determine accuracy of retrieval of absolute
canopy temperature values, as the readings for one of the experiments marginally exceeded the
typical type K thermocouple accuracy threshold of ±2.2 ◦C. A high uncertainty was introduced
into thermocouple measurements, disallowing absolute validation of the camera readings. Due to
foliage type, to avoid causing mechanical damage, the thermocouples were not firmly attached to
needles, and instead, they were wrapped inside of needle clumps. It is therefore very likely that the
thermocouple measurements were not only affected by the needle surface temperature, but also, to
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some degree, by the surrounding air. Nevertheless, even though absolute temperature values could
not be fully ascertained, the background correction did normalize the camera readings over time.
The differences between all thermocouples and image values were relatively stable throughout the
experiments (exhibiting standard deviation of temperature offsets of 0.20 ◦C in Experiment 1 and
0.32 ◦C in the Experiment 2). The camera effectively monitored the temperature trend over time for
all thermocouple locations, and recorded temperature differences between the different locations.
The canopy temperature could otherwise be measured using thermo-radiometers. However, these
return an aggregation of temperature measurements for an area, the extent of which depends on the
view angle and distance from the canopy [43]; in this study, point measurement was more appropriate
for validation of the intra-crown temperature variation.

For a more accurate correction of the background radiation, at least two different calibration
targets of known emissivity and surface temperature would have to be utilized. With temperature
readings from at least two targets (ideally colder and hotter than the measured object, i.e., plants),
radiometric calibration coefficients could be calculated based on a linear regression, which would allow
brightness temperature (as measured by the camera) to be related to the actual surface temperature.
Initially, we tried utilizing diamond diffusion foil as the second target, which proved infeasible due
to strong directional dependence of its emissivity. In a UAV survey setting, the same approach
based on an empirical line correction can be used, with at least three contrasting ground targets,
whose temperatures are continuously being monitored. Inclusion of a third target not only provides
redundancy, but also allows assessment of the quality of fit between recorded and actual temperatures.
To retrieve the calibration coefficients, the deployed targets would normally be imaged at the beginning
and the end of the survey [44], although additional mid-flight calibrations [43] may be preferred on
longer flights or if weather conditions are rapidly changing. Using the empirical line calibration
method, Gomez-Candon et al. [43] reported R2 value of 0.768 in linear regression of apple tree canopy
temperature measurements from calibrated thermal imagery and from radio-thermometers positioned
1.2 m above top of the tops of the canopies. Alternatively, surface temperatures may be obtained
using radiative transfer equation, such as MODTRAN [45], as demonstrated by Berni et al. [46] who
observed reduction in RMSE of target temperature measurements from 3.44 K to 0.89 K following
the correction.

Spatio-temporal analysis of the imagery provided an insight into thermal properties of the plants.
In canopy parts characterized by very low volume the temperature was considerably higher. The
higher temperature in the areas of scarce foliage is likely to have been caused by inclusion of mixed
pixels, containing readings from both the canopy and background. Those areas could also potentially
have closed stomata as a result of increased insolation and transpiration, leading to an increase in
temperature. Potentially, larger influence of trunk pixels on the retrieved mean temperature was also
a contributor; Kim et al. [31] showed there is a consistent difference between leaves and trunks in
ponderosa pines, especially during the afternoon, with the latter being warmer. After exclusion of the
areas with minimal foliage, very mild stress did not exhibit itself, despite drastic changes in ambient
temperature and radiance levels; the temperature readings for both the stressed and control plant
were closely related throughout the whole test (Experiment 2). However, with higher stress levels
(Experiment 1), there was a clear distinction between the two plants, which then doubled after the
additional light source was turned on. The observed increase in temperature as a response to plant
water stress is in accordance with many previous studies [16,24,29]. Nevertheless, further work on
coniferous trees using nadir viewing imagery acquired under field conditions would be required to
fully assess the feasibility of using UAV-borne thermal imagery within forest environments.

The standard deviation of the crown temperature was suggested to be an indicator of stress
by some [24,47]. Fuchs [47], on a simulated cotton canopy, demonstrated that water stress, apart
from increasing crown temperature, widens the range of temperature variation within the canopy.
This is due to leaf orientation playing a great role in the energy budget, especially when stomata
are closed. In more stressed canopies greater variation in temperatures may be detected due to the
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change in leaf angle resulting from wilting. Gonzalez-Dugo et al. [24] observed that the variability
of canopy temperature increased during the early stages of water stress, and diminished when the
stress became more severe. No such trend was observed within this study; with mild stress, there was
no difference between the trees, whilst with the onset of moderate stress, the control plant exhibited
minimally higher intra-crown temperature variability. This indicator seems not to be applicable to
mildly or moderately stressed conifers; as it is attributed to the change in leaf orientation upon onset
of stress, the effect would be none or very minimal. However, it might prove feasible for coniferous
trees undergoing extreme levels of stress. In grapevines, the intra-crown variations in temperature
were not impacted by water status either, a supposed effect of the non-random distribution of leaf
angles in the canopies [48,49]. An additional limitation of this indicator is that the variation in canopy
temperature is also affected by external conditions. In both experiments shown here, the standard
deviation of canopy temperature exhibited a steep increase upon an increase in shortwave radiation
level, suggesting this indicator could only allow for a relative comparison between trees investigated
under same conditions. Gonzalez-Dugo et al. [24] also recognized that the intra-crown temperature
variability cannot be clearly compared without taking absolute canopy temperature into account.

The variations in canopy temperature are highly dependent on environmental factors. In a
ponderosa pine forest, the thermal dynamics were shown to be mainly controlled by air temperature,
water vapor and radiation [31]. Here, similarly, the increase in canopy temperature was dictated by
the increased radiation levels and ambient temperature. It was also observed that the plants warmed
up in different manners—the moderately stressed plant fairly uniformly, whilst the control canopy
exhibited lower levels of temperature change in its lower canopy. From the physiological point of
view, the increase in temperature difference between the two trees would be caused by the different
response of the plants to the additional radiation. A stressed plant would have its stomata closed
to prevent the loss of water through transpiration, also preventing the entry of carbon dioxide into
the leaves and disrupting the photosynthesis [13]. This could explain the observed fairly uniform
increase in temperature across the canopy, appearing to be mostly dependent on the change in ambient
temperature. In contrast, with random distribution of foliage in a control canopy, the leaf response may
vary depending on their shade history—some leaves upon illumination will have their stomata open,
others after some time of illumination may still keep their stomata closed [24,50]. Nevertheless, even
under low light conditions, there was a clear distinction in canopy temperature between the control
and the moderately stressed tree, showing potential of low-cost thermography for investigating stress
in conifers. As the differences between stressed and control plants were greatest when the amount of
illumination and air temperature increased, it is deduced UAV-borne thermal surveys investigating
tree stress should be performed at the time of maximum evaporative demand. Maximum evaporative
demand is normally expected to occur in the early afternoon [51], when air temperatures driven by
radiation peak. However, other environmental factors, such as humidity or wind speed, have also been
shown to also affect the evaporative demand, and consequently temperature at a canopy level [17].
The question remains how they may influence the ability to distinguish stressed plants, in particular in
countries with moderate air temperatures year-round, such as Scotland.

The approach shown in here of direct investigation of canopy temperature can only be applied in
a relative mode, comparing plants imaged under exactly the same conditions (in practice that means
plants located within the same image). This is due to leaf and canopy temperature being dependent
on air temperature, humidity, wind speed and absorbed net radiation [52]. Thermal stress indices
have been most commonly used to overcome this problem, normalizing the results for environmental
variation, and allowing for multi-spatial and/or multi-temporal comparison. The most commonly
used stress indices include the CTD (shown to be adversely affected by weather conditions [20]), CWSI
and Ig. CWSI and Ig were shown to not be influenced by the amount of incoming shortwave radiation
and vapor pressure deficit; however, they are affected by air temperature and wind speed [20]. Optimal
conditions, based on modeled discriminative power, for application of those indices include high air
temperature, incoming shortwave radiation and vapor pressure deficit and low wind speed [20].
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5. Conclusions

With the development of UAVs, high spatial resolution data have become more accessible than
ever before. Furthermore, UAVs can help in bridging the gap between ground surveys and other
more traditional remote sensing platforms. However, their main constraint is the limited payload
they offer, requiring the use of miniature sensors. In the thermal domain, miniaturized uncooled
sensors would normally have to be used, which have slower response times and are less sensitive
than cooled detectors. This study investigated whether a low-cost miniature thermal camera, destined
to be used on a UAV platform, is capable of providing reliable canopy temperature measurements
of conifers. Following camera calibration and a basic normalization for background radiation, both
the spatial and temporal variation of canopy temperature was well reflected. Furthermore, there
was a clear distinction in canopy temperature between the investigated control and the moderately
stressed tree, showing the potential of low-cost thermography for investigating stress in conifers.
However, a change in environmental conditions altered the magnitude of this difference, i.e., rising
radiation level and ambient temperature led to an increase in the difference between the average
canopy temperatures. The performance of thermography when applied to conifer stress investigation
may therefore depend on environmental conditions under which the data are acquired. Research in
a fully controlled environment could quantify the influence of different environmental factors, and
define conditions under which thermal imagery can be used most effectively in different climates. Such
guidance might help with planning UAV-borne campaigns utilizing low-cost sensors by identification
of best acquisition times, when temperature differences between plants are expected to be greatest.
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