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Abstract: Zinc is an essential trace element for living organisms and their biological processes.
Zinc plays a key role in more than 300 enzymes and it is involved in cell communication, proliferation,
differentiation and survival. Zinc plays also a role in regulating the immune system with implications
in pathologies where zinc deficiency and inflammation are observed. In order to examine the
experimental evidence reported in the literature regarding zinc levels in the body of patients with
autoimmune disorders compared to control individuals, a systematic review and meta-analysis were
performed. From 26,095 articles identified by literature search, only 179 of them were considered
potentially relevant for our study and then examined. Of the 179 articles, only 62 satisfied the
inclusion criteria. Particularly for Fixed Model, Zn concentration in both serum (mean effect = −1.19;
confidence interval: −1.26 to −1.11) and plasma (mean effect = −3.97; confidence interval: −4.08 to
−3.87) samples of autoimmune disease patients was significantly lower than in controls. The data
presented in our work, although very heterogeneous in the manner of collecting and investigating
samples, have proved to be extremely consistent in witnessing a deficiency of zinc in serum and
plasma of patients compared to controls.
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1. Introduction

Zinc is an essential trace element for living organisms and their biological processes [1,2]. The body
cannot accumulate zinc and it is, therefore, essential to take this element consistently in the diet.
Although dietary zinc levels vary substantially, eukaryotic cells need to maintain intracellular zinc
homeostasis to ensure its proper function. This homeostasis is regulated in mammals by import and
export processes, vesicle retaining zinc (zincosomes) and association to metallothioneins (MTs) [3,4].
Zinc plays a key structural or catalytic role in more than 300 enzymes and is involved at all levels of
cellular signal transduction. Zinc is involved in cell communication, cell proliferation, differentiation
and survival. Therefore, zinc also plays a key role in regulating the immune system, both innate
and adaptive, with consequent implications in pathologies where zinc deficiency and inflammation
are observed.

The understanding of zinc’s importance in human health unfortunately begun only in the 1960s.
Zinc deficiency is associated with a decline in the immune system, with inflammation leading to
chronicity [5]. In addition, dietary zinc deficiency was considered to be very rare, although it affects
20–25% of the world’s population [6,7]. Data from the World Health Organization [8] report that zinc
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deficiency is the fifth largest health risk factor in developing countries and the eleventh in the world [9].
Rarely is zinc deficiency seen as a serious deficit; more frequently it is seen as a less accentuated deficit.
Patients with severe deficits present: lymphopenia, decreased ratio between T helper (Th) to cytotoxic
T cells, reduced natural killer (NK) cell activity, and increased monocytes cytotoxicity. This condition
characterizes the malabsorption autosomal recessive syndrome, Acrodermatitis enteropathica, due to
a mutation of a zinc-importing protein, ZIP4 [10].

Less accentuated zinc deficiency states can be caused by nutritional deficits due, for example, to a
diet high in lignin and phytates, in vegetarians and vegans, chelating zinc, so preventing its proper
absorption [11,12]. This state is characterized by slight weight loss, rough skin, oligospermia and
hyperammoniaemia [13].

Several clinical trials of zinc supplementation have been conducted in patients with zinc
deficit suffering from various pathologies (viral, bacterial and parasitic infections or autoimmune
diseases) [14], or as vaccine supplements [15]. Although there is countless evidence supporting
the fact that controlled zinc supplementation can prevent chronic inflammation and other zinc
deficiency-related illnesses, or even improve symptoms (as seen in both humans and animal
models), to date zinc supplementation does not fall into commonly used medical practices in risk
subjects/populations. The purpose of this study was to examine the experimental evidence reported
in the literature over the last 40 years regarding zinc levels in the body of patients with autoimmune
disorders compared to control individuals. The biological matrices for which it was possible to collect
enough bibliographic material to perform a meta-analysis were predominantly serum and plasma; to a
lesser extent data were collected on urine, hair and spinal fluid.

2. Materials and Methods

2.1. Search Strategy

In order to select the included studies, a literature search was undertaken of PubMed, Cochrane
Central Register of Controlled Trials, Web of Science and Science Direct databases from inception to
23 January 2017 and without any limitation of on year of publication. Keywords used were zinc and
((dietary or supplement) or (serum or plasma)) and (autoimmune disease or autoimmunity). Typing,
in the search window, the keywords in the databases chosen, without any restrictions, the result was a
list of publications for which only the title, authors and abstracts were available. After eliminating the
duplicates the titles and abstracts of the remaining articles were read and those not relevant for the
purpose of this meta-analysis were excluded. After this step, the entire manuscript of each remaining
paper, defined as eligible, was read, thus excluding those that did not fall within the criteria defined in
the “study eligibility criteria” (Section 2.3, below). Finally, the papers that satisfied all selection criteria
have been included in the meta-analysis.

Full search details for all databases are presented in Table S1 (Supplemental Material). This study
was performed according to Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) requirements [16,17]. The standard flowchart, which describes the process selection,
is reported in Figure 1.
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Figure 1. PRISMA flowchart diagram describing the systematic reviews process. PRISMA = Preferred 
Reporting Items for Systematic reviews and Meta-Analyses. 

2.2. Study Selection 

All reference lists were downloaded for elimination of duplicates. Furthermore, title and abstract 
of each reference were screened by two independent reviewers to perform the eligibility assessment 
of full text for this review. Study eligibility was restricted to human studies and English language. 

2.3. Study Eligibility Criteria 

Observational studies, prospective and retrospective studies, case-control studies or 
randomized controlled trials (RCTs) investigating the relationship between zinc status and 
autoimmune diseases were eligible for inclusion. In particular, only diseases for which the 
autoimmunity was a franc condition were included in this study. The American Autoimmune 
Related Diseases Association (AARDA) [18] was consulted to verify that the diseases considered in 
this study were really autoimmune diseases. 

The studies were selected if zinc concentration in biological samples or dietary/supplemental 
zinc were an index of zinc status. 

Moreover, the presence of both number of subject involved (≥5) and the statistical parameters 
were taken into account for the meta-analysis process. On the other hand, letters, conference 
proceedings, reviews, duplicated data, data of both animal and cellular studies, and studies that did 
not indicate data of interest were excluded. Although studies on animals are not considered eligible 
for the meta-analysis process, a discussion on them was performed separately. Also, thirteen studies 

Figure 1. PRISMA flowchart diagram describing the systematic reviews process. PRISMA = Preferred
Reporting Items for Systematic reviews and Meta-Analyses.

2.2. Study Selection

All reference lists were downloaded for elimination of duplicates. Furthermore, title and abstract
of each reference were screened by two independent reviewers to perform the eligibility assessment of
full text for this review. Study eligibility was restricted to human studies and English language.

2.3. Study Eligibility Criteria

Observational studies, prospective and retrospective studies, case-control studies or randomized
controlled trials (RCTs) investigating the relationship between zinc status and autoimmune diseases
were eligible for inclusion. In particular, only diseases for which the autoimmunity was a franc
condition were included in this study. The American Autoimmune Related Diseases Association
(AARDA) [18] was consulted to verify that the diseases considered in this study were really
autoimmune diseases.

The studies were selected if zinc concentration in biological samples or dietary/supplemental
zinc were an index of zinc status.

Moreover, the presence of both number of subject involved (≥5) and the statistical parameters
were taken into account for the meta-analysis process. On the other hand, letters, conference
proceedings, reviews, duplicated data, data of both animal and cellular studies, and studies that
did not indicate data of interest were excluded. Although studies on animals are not considered
eligible for the meta-analysis process, a discussion on them was performed separately. Also, thirteen
studies were excluded because we did not have access to the full text, maybe the most of these studies
were published more than 20 years ago.
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2.4. Study Quality Assessment and Data Extraction

The Newcastle-Ottawa Scale (NOS) for case-control studies was used to assess the quality of the
included studies [19]. Ten full-text studies were excluded because control data was not complete in
reference to both number of controls and their relationship with cases. Two independent reviewers
extracted data from each eligible study. The data extracted included the type of study (observational
studies, prospective and retrospective studies, case-control studies, randomized controlled trials),
country, year of publication, sample size, age and sex of patients, autoimmune disease, zinc status in
biological samples, type of samples, method of samples analysis, statistical method, standard deviation
and statistical significance.

Table 1 reports the general characteristics of selected studies included in meta-analysis in reference
to serum samples whereas Table 2 indicates the baseline characteristics for meta-analysis related to
plasma samples. Furthermore, Table 3 reports the general information about the studies that are related
to hair, urine and Cerebral Spinal Fluid (CSF) samples.

Table 1. Characteristics of selected studies included in meta-analysis in reference to serum samples.

Authors Year Disease
No. Zn Status (µg/mL)

Direction
Patients Controls Patients Controls

Aaseth et al. [20] 1978 RA 22 12 0.654 0.850 low zinc in patients
Abdel Fattah et al. [21] 2016 AA 50 50 0.755 0.857 low zinc in patients

Arreola et al. [22] 1990 T1D 22 11 0.734 1.114 low zinc in patients
Banford et al. [23] 1982 RA 85 49 12.100 12.100 no difference

Bhat et al. [24] 2009 AA 50 50 78.000 88.000 low zinc in patients
Bideci et al. [25] 2005 T1D 28 15 0.961 1.231 low zinc in patients

Brandao-Neto et al. [26] 1999 T1D 10 10 1.040 1.020 no difference
Car et al. [27] 1992 T1D 15 15 0.562 0.772 low zinc in patients

Dijkmans et al. [28] 1987 RA 25 18 0.667 0.942 low zinc in patients
Dore-Duffy et al. [29] 1983 MS 63 62 831.000 817.000 no difference
Dore-Duffyet al. [30] 1990 RA 57 18 0.850 0.997 low zinc in patients

Erdal et al. [31] 2008 HT 43 49 1.093 1.015 no difference
Ghazavi et al. [32] 2012 MS 60 60 0.402 1.278 low zinc in patients
Hagglof et al. [33] 1983 T1D 66 79 0.915 1.000 low zinc in patients

Hansson et al. [34] 1975 RA
37 70 1.066 1.055 low zinc in patients
42 26 1.052 0.965 low zinc in patients

Haugen et al. [35] 1992 JIA 8 17 0.909 0.981 low zinc in patients
Helgeland et al. [36] 2000 JIA 14 22 0.830 0.870 low zinc in patients
Helliwell et al. [37] 1984 RA 50 50 0.804 0.883 low zinc in patients

Isbir et al. [38] 1994 T1D 20 20 0.565 0.696 low zinc in patients
Jansen et al. [39] 2012 T1D 8 8 0.768 0.883 low zinc in patients

Javanbakht et al. [40] 2012 PV 43 58 0.906 0.988 no difference
Kapaki et al. [41] 1989 MS 15 28 1.030 1.100 no difference

Kiilerich et al. [42] 1986 T1D 7 12 0.798 0.948 low zinc in patients
Kiilerich et al. [43] 1990 T1D 10 104 1.007 0.948 no difference
Kobbah et al. [44] 1988 T1D 30 44 0.785 0.909 low zinc in patients

Lin et al. [45] 2016 T1D 88 76 0.910 0.940 no difference

Iyanda et al. [46] 2011 AA
20 20 0.792 0.933 low zinc in patients
20 20 0.782 0.933 low zinc in patients

Maldonado et al. [47] 1991 T1D 22 22 1.111 1.197 no difference
Mierzecki et al. [48] 2011 RA 74 30 0.801 0.720 low zinc in patients

Negoro et al. [49] 2004 SS 31 15 0.706 0.866 low zinc in patients
Nicoloff et al. [50] 2005 T1D 35 20 0.675 1.268 low zinc in patients

Onal et al. [51] 2011 RA 32 52 0.430 0.748 low zinc in patients

Palm et al. [52] 1982 MS
21 21 0.850 0.968 low zinc in patients
29 29 0.791 0.863 low zinc in patients

Raz et al. [53] 1989 T1D 23 22 0.928 0.170 low zinc in patients
Sahebari et al. [54] 2014 SLE 123 100 0.701 0.860 low zinc in patients

Silverio Amancio et al. [55] 2003 JIA
20 10 0.897 0.900 no difference
21 13 0.976 0.950 no difference

Ullah et al. [56] 2017 RA 61 61 0.856 0.959 low zinc in patients
Yazdanpanah et al. [57] 2011 PV 25 25 0.770 1.207 low zinc in patients

Yilmaz et al. [58] 2005 SLE 27 20 0.875 0.990 low zinc in patients
Zoli et al. [59] 1998 RA 57 20 85.600 108.100 low zinc in patients

Abbreviations: AA, Alopecia Areata; HT, Hashimoto Thyroiditis; JIA, Juvenile Idiopathic Arthritis; MS, Multiple
Sclerosis; PV, Pemphigus Vulgaris; RA, Rheumatoid Arthritis; SLE, Systemic Lupus Erythematosus; SS, Sjogren’s
Syndrome; T1D, Type 1 Diabetes.
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Table 2. Characteristics of selected studies included in meta-analysis in reference to plasma samples.

Authors Year Disease
No. Zn Status (µg/mL)

Direction
Patients Controls Patients Controls

Arreola et al. [60] 1986 T1D 9 12 73.490 112.460 low zinc in patients

Bacon et al. [61] 1990
JIA 8 9 0.805 0.983 low zinc in patients
JIA 14 9 0.859 0.983 low zinc in patients
JIA 12 9 0.875 0.983 low zinc in patients

Balogh et al. [62] 1980 RA 140 100 11.740 15.100 low zinc in patients

Crofton et al. [63] 1983
CD 12 15 0.582 0.974 low zinc in patients
CD 10 15 0.628 0.974 low zinc in patients

Cunningham et al. [64] 1994 T1D 14 15 0.950 0.910 no difference
Dore-Duffy et al. [29] 1983 MS 68 60 845.000 788.000 low zinc in patients
Dore-Duffy et al. [30] 1990 RA 57 17 0.795 0.890 low zinc in patients

Ho et al. [65] 1986 MS 45 23 0.890 0.880 high zinc in patients
Kennedy et al. [66] 1975 RA 113 100 0.857 0.990 low zinc in patients

Melchior et al. [67] 1989
T1D 14 36 0.947 0.943 no difference
T1D 12 36 0.879 0.817 no difference

Milanino et al. [68] 1993
RA 120 70 0.895 1.019 low zinc in patients
RA 10 0.526 0.106 low zinc in patients

Mocchegiani et al. [69] 1989 T1D 15 16 0.793 1.064 low zinc in patients

Naveh et al. [70] 1997
RA 13 8 0.590 1.110 low zinc in patients
RA 16 8 0.600 1.110 low zinc in patients

Pereira et al. [71] 2011 AH 23 25 0.719 0.807 low zinc in patients
Quilliot et al. [72] 2001 T1D 25 20 0.940 0.970 low zinc in patients

Rohn et al. [73] 1993 T1D 45 12 0.942 0.981 no difference

Ruiz et al. [74] 1998

T1D 16 9 1.020 1.079 no difference
T1D 13 7 1.046 1.059 no difference
T1D 31 19 1.020 1.040 no difference
T1D 34 24 1.046 1.040 no difference
T1D 31 17 1.033 1.046 no difference
T1D 25 14 1.013 1.059 no difference

Smith et al. [75] 1989 MS 27 33 0.987 1.000 no difference
Tuncer et al. [76] 1999 RA 38 20 1.087 1.253 low zinc in patients

Viktorinova et al. [77] 2009 T1D 11 34 0.885 0.942 no difference
Yazar et al. [78] 2005 RA 25 25 0.663 0.658 no difference

Abbreviations: AH, Autoimmune Hepatitis; Cd, Celiac Disease; JIA, Juvenile Idiopathic Arthritis; MS, Multiple
Sclerosis; RA, Rheumatoid Arthritis; T1D, Type 1 Diabetes.

Table 3. Characteristics of selected studies included in meta-analysis in reference to hair, urine and
CSF samples.

Authors Year Disease
No. Biological

Sample
Zn Status (µg/g)

Direction
Patients Controls Patients Controls

Afridi et al. [79] 2015 RA

15 14

Hair

122.00 178.00 low zinc in patients
15 12 117.00 167.00 low zinc in patients
12 13 135.00 203.00 low zinc in patients
11 13 126.00 203.00 low zinc in patients

Afridi et al. [80] 2012 RA

39 47

Hair

112.00 225.00 low zinc in patients
34 52 138.00 250.00 low zinc in patients
23 22 122.00 178.00 low zinc in patients
20 19 135.00 203.00 low zinc in patients

Hagglof et al. [33] 1983 T1D 74 30 Hair 160.90 190.80 low zinc in patients
Mierzecki et al. [48] 2011 RA 71 75 Hair 150.37 150.37 no difference
Kiilerich et al. [43] 1990 T1D 10 28 Urine 1006.85 509.96 high zinc in patients
Milanino et al. [68] 1993 RA 75 50 Urine 437.9 457.50 no difference

Maldonado et al. [47] 1991 T1D 13 8 Urine 353 984.00 low zinc in patients

Naveh et al. [70] 1997 RA
16 8 Urine 538 984.00 low zinc in patients
22 22 Urine 1396 611.00 high zinc in patients

Kapaki et al. [41] 1989 MS 15 28 CSF 34.73 34.70 no difference
Melo et al. [81] 2003 MS 18 19 CSF 19.00 23.50 no difference

Abbreviations: MS, Multiple Sclerosis; RA, Rheumatoid Arthritis, T1D, Type 1 Diabetes.
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In most of the included studies, the measurement unit of the zinc concentration data were different
for the same biological media. For this reason, all data of zinc in both serum and plasma samples were
converted in µg/mL, whereas zinc data in hair samples were converted in µg/g.

2.5. Statistical Analysis

Data were processed by MetaEasy Excel add-in (Microsoft Corporation, Redmond, WA, USA),
which used seven different methods. In particular, three methods refer to dichotomous data and
four methods refer to continuous data. In order to improve their heterogeneity, data were grouped
depending on different biological media: serum, plasma, hair, urine and cerebrospinal fluid. Means
of zinc status in both patients and controls, standard deviations of zinc status in both patients and
controls, number of subjects involved and p-value were used. p-value < 0.05 was considered as
statistically significant.

Also, overall estimates of effect were performed with seven models: Fixed Effects (FE),
DerSimonial-Laird (DL), Q method (Q), Maximum-Likelihood (ML), Profile—Likelihood (PL), t-Test
(T) and Permutations method (PE). Heterogeneity was assessed by different measures: Cochrane’s
Q, τ2 test, I2 test and H2M test. Publication bias was evaluated using funnel plot 3 considering the
estimate of effects and their standard errors as a precision indicator (1/SE) [82].

3. Results

From 26,095 articles identified by literature search, 21,766 duplicates were deleted. After the
screening of 4329 remaining articles, 4150 of them were excluded because they were irrelevant for our
study. Afterwards, 179 papers were considered potentially relevant for our study but only 62 of them
satisfied the inclusion criteria (see Section 2.4). Therefore, 117 articles were excluded and the reasons
for their exclusion is shown in PRISMA diagram (Figure 1). In particular, 13 of the 117 papers were
excluded because, with the means available to the Italian library system, it was not possible to retrieve
them. However, the 13 papers are listed in Table S2 (Supplemental Material).

3.1. Zn Status and Autoimmune Diseases

The relationship between Zn status and autoimmune diseases has been investigated by many
authors since the 1970s. The 62 studies included in the meta-analysis were case-control studies. Also,
all of them were published between 1975 and 2017 and they are related to different autoimmune
diseases. Indeed, 22 studies describe the zinc status in Type 1 Diabetes (T1D), 18 full-text are related
to Rheumatoid Arthritis (RA), 7 articles investigated zinc status in Multiple Sclerosis (MS) patients
while 15 papers are related to other diseases among which Alopecia Areata (AA), Systemic Lupus
Erythematosus (SLE), Pemphigus Vulgaris (PV), Autoimmune Hepatitis (AH), Celiac Disease (CD),
Hashimoto Thyroiditis (HT), Sjogren’s syndrome (SS), Juvenile Idiopathic Arthritis (JIA).

3.2. Zn Status in Serum Samples

The meta-analysis results show that, for all models, Zn concentration in serum of autoimmune
disease patients was significantly lower than controls (FE: mean effect = −1.19 and confidence interval:
−1.26 to −1.11; DL: mean effect = −1.29 and confidence interval: −1.91 to −0.67; Q: mean effect = −1.29
and confidence interval: −1.91 to −0.67; ML: mean effect = −1.29 and confidence interval: −1.96
to −0.63; PL: mean effect = −1.29 and confidence interval: −1.97 to −0.61; T: mean effect = −1.29
and confidence interval: −1.99 to −0.60; PE: mean effect = −1.29 and confidence interval: −2.95 to
−0.49). Indeed, 70% of the articles considered show that patients have a zinc deficiency compared to
the control group.

Regarding the heterogeneity of data, the elaboration shows the following results: Cochrane
Q = 2589.53; τ2 = 3.88 (for DL model); τ2 = 4.52 (for ML and PL models); I2 = 98.49%; H2M = 65.39.
Forest plot in Figure 2 shows the study effects for each study and the overall estimates effects. Despite
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high heterogeneity, overall estimates effects were positive for all models. Moreover, overall effects that
were calculated with FE models were more efficient than effects calculated with the other models.
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3.3. Zn Status in Plasma Samples

As already seen for serum, also in plasma samples the meta-analysis results show that, for all
models, Zn concentration in the serum of autoimmune disease patients was significantly lower than
controls. Indeed, for 62% of the articles included in the meta-analysis process, patients had lower zinc
concentrations than controls.

As shown in Figure 3, only FE model overall estimates effects could be considered favorable
(FE: mean effect = −3.97 and confidence interval: −4.08 to −3.87). Even in this case, as in the previous
one, data was highly heterogeneous.

3.4. Zn Status in Hair, Urine and Cerebrospinal Fluid Samples

In reference to Zn hair concentration, only FE model overall estimates effects could be considered
favorable (FE: mean effect = −2.49 and confidence interval: −2.72 to −2.28). However, heterogeneity
was considerable and the number of studies was limited. On the other hand, no significant variations
in urinary and CSF zinc were observed between patients and controls.

3.5. Publication Bias

To evaluate the presence of publication bias, Funnel Plots were calculated. As shown in Figure 4,
in both meta-analysis related to serum Zn and plasma Zn, it is possible to observe the presence of bias
in the selected literature.
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4. Discussion

This review of the literature on the possible linkage between zinc levels (especially in serum and
plasma) and autoimmune diseases has revealed a huge amount of studies on this subject, although the
selection due to meta-analysis methods has narrowed the final analysis to 62 publications, temporally
distributed as shown in Figure S1 (Supplemental Material).

As expected, the data presented in this review, although very heterogeneous in the manner of
collecting and investigating samples, etc., have proved to be extremely consistent in witnessing a
deficiency of zinc in serum and plasma of patients compared to controls. A recurring question found
in many studies was whether alterations in the homeostasis of this element represent the basis of the
inflammatory status or consequences thereof.

As is well known, there are populations such as Finnish or Sardinian with polygenic predisposition
to autoimmune diseases, in whom there has been a natural selection in favor of certain genetic loci,
playing a role in the immune response. In particular, certain HLA (Humane Leucocyte Antigens)
haplotypes, such as HLA-DR3-B18 in Sardinia and HLA-DR4 in Finland, are particularly frequent
in those populations, terribly increasing the relative risk of developing multiple sclerosis [83], type 1
diabetes [84] and even comorbidity of these two and other autoimmune pathologies [85]. In addition,
recent works have also shown that DNA genetic variations largely drive the development and function
of specific leukocyte subsets [86], in particular those who may have key pro-inflammatory or regulatory
roles in autoimmune diseases [87].

Of note, there is the repeated observation of a sex-related bias in different autoimmune diseases,
but often not attributable to known genetic causes [88,89], and that environmental influences at various
timepoints contribute to a shift towards unbalanced immune responses [90,91].

Zinc has been recognized as one of these factors, as its homeostasis is essential against
inflammatory diseases to regulate different aspects of the immune system, both for innate and adaptive
immune response, cell cycle progression, cell maturation and differentiation [92]. Zinc deficiency is
therefore associated with an incorrect maturation and function of T and B cells, an unbalanced ratio
between Th1 and Th2 [93], and between regulatory and pro-inflammatory T cells, and a weakening
of NK cell function. Zinc can inhibit Th17 lymphocytes, which confer susceptibility to autoimmune
diseases owing to their strong inflammatory properties, as well as a variety of other proinflammatory
responses on T-cells and B-cells [94,95].
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These unbalanced states can, however, be restored by zinc integration [96–98]. As demonstrated
in several studies analyzed in this meta-analysis, patients with multiple sclerosis exhibit low levels
of zinc in the plasma [99–101]. This is also observed in the mouse model, affected by experimental
autoimmune encephalomyelitis (EAE), in which the symptoms decrease in severity and even regress
after zinc treatment, inducing proliferation of regulatory T cells and decreasing pro-inflammatory
cells [102–105]. Even in type 1 diabetes, the autoimmune diabetes, zinc homeostasis plays a key role by
acting on various molecular mechanisms [106,107]. The protagonist in beta-pancreatic cells is definitely
the ZnT8 zinc importer, essential for the transport of insulin secretory vesicles, and for the formation of
insulin granules [108–110]. Even in this case, the benefits of zinc supplementation are known. Chronic
zinc deficiency increases inflammation potentially leading to its chronic perpetuation [5].

Alternatively, hypozincemia could represent a common result of inflammation during the
autoimmune disorders here discussed. It has been shown that induction of acute-phase response
upregulates Zip14 via IL-6 and IL-1 signaling [111], inducing liver sequestration and redistribution
in the cellular compartment [112]. Furthermore, the experiments conducted by Bonaventura and
colleagues on synovial cells isolated from joints of patients affected by rheumatoid arthritis are
illuminating. The authors have shown that exposure of cells to pro-inflammatory cytokines such
as interleukin-17 and tumor necrosis factor alpha, increases the expression of zinc importer carriers,
resulting in enhanced intracellular Zn uptake and further increasing inflammation and interleukin-6
production. These experiments have clarified the existence of a feedback loop between inflammation
and cellular zinc uptake [113].

Indeed, in pathologies such as multiple sclerosis, serum levels of zinc decrease mainly during
relapses; in pathologies characterized by chronic inflammation, such as rheumatoid arthritis,
a continuous recruitment of zinc within the cells would be established, hence a continuous depletion
of zinc in serum. Probably, in the induction of autoimmunity, there is a role for either a primary
zinc deficiency and for its secondary reduction due to inflammation, that warrant further focused
studies for a thorough determination of timing (preclinical phase of disease vs. overt disease or during
pregnancy, childhood, and elderly), cause/pathophysiology, degree of reduction and span/duration
(over time) of hypozincemia. Finally, zinc also acts as a co-factor for many proteins implicated in the
epigenome establishment. This means that the development of a new organism may be conditioned,
from the earliest stages, by possible imbalance in zinc homeostasis [114]. Therefore, interventions to
correct any nutritional imbalances should be anticipated during the stages of pregnancy and lactation.
In fact, zinc deficiencies during pregnancy are associated with fetal or adult illness, also due to the
improper development of the immune system [115–117].

One aspect not to be overlooked is the bioaccessibility and then the bioavailability of this and
other elements. In this regard, environmental studies [118,119] are also desirable for helping to clarify
the potential environmental impact of exposures/deficiencies to particular elements, essential for/toxic
to human health, including any corrective measures to improve the conditions in which man lives
and works and therefore having a strong impact on human health. In fact, in the mining exploration
field, it is well known that the abundance of some elements is typically linked to some lithologies
and/or metallogenic contexts. This relative abundance (or deficiency) affects any media linked to
these environments such as water [119–126], soil [89,118,119,124,127–132] and so also the biological
sphere. However, it should be considered that the complexity and dynamism of the environment
could complicate the interpretations [133].

Given the importance of zinc in regulating the functioning of the immune system, it is, therefore,
logical to associate an imbalance in the homeostasis of this element with the state of autoimmunity.
It would therefore be desirable to mount a screening campaign for the evaluation of zinc levels in
neonatal, preschool and school-age children, and hence a relevant campaign for the integration of
essential elements for man, including zinc. In populations at higher genetic risk of autoimmunity it
would be therefore interesting to have a clinical trial investigate personalized zinc supplementation for
preventing and/or treating autoimmune diseases.
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