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Abstract: Vitamin E is a fat-soluble antioxidant that can protect the polyunsaturated fatty acids
(PUFAs) in the membrane from oxidation, regulate the production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS), and modulate signal transduction. Immunomodulatory effects
of vitamin E have been observed in animal and human models under normal and disease conditions.
With advances in understating of the development, function, and regulation of dendritic cells (DCs),
macrophages, natural killer (NK) cells, T cells, and B cells, recent studies have focused on vitamin E’s
effects on specific immune cells. This review will summarize the immunological changes observed
with vitamin E intervention in animals and humans, and then describe the cell-specific effects of
vitamin E in order to understand the mechanisms of immunomodulation and implications of vitamin
E for immunological diseases.
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1. Vitamin E: Definition, Structure, Sources, and Functions

1.1. Definition and Structure

Vitamin E is the collective term for four tocopherols (α-, β-, γ-, and δ-tocopherols) and four
tocotrienols (α-, β-, γ-, and δ-tocotrienols) found in food. These forms have antioxidant activities,
but cannot be interconverted, and only α-tocopherol meets the human vitamin E requirement [1].
Tocopherols have a chromanol ring and a phytyl tail, while tocotrienols have a chromanol ring and an
unsaturated tail. The α-, β-, γ-, and δ- forms differ in the number and position of methyl groups on the
chromanol structure. Natural tocopherols have only RRR stereochemistry, but synthetic tocopherols
are mixtures of eight stereoisomers (RRR-, RSR-, RRS-, RSS-, SRR-, SSR-, SRS-, SSS-), because there are
three asymmetric carbon atoms (2R, 4’R, 8’R) present in the phytyl tail. The structures of tocopherols
and tocotrienols are shown in Figure 1.
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Figure 1. The structures of tocopherol and tocotrienols. 

1.2. Sources 

The major dietary sources of vitamin E are vegetable oils. Nuts are good sources of vitamin E as 
well [2]. Soybean, sunflower, corn, walnut, cottonseed, palm, and wheat germ oils contain relatively 
higher amounts (more than approximately 50 mg vitamin E/100 g oil) of vitamin E than other oils. 
The proportions of α-, β-, γ-, and δ-tocopherols vary depending on the oil type. Safflower and 
sunflower oils are high in α-tocopherol, soybean and corn oils contain mainly γ-tocopherol, and 
cottonseed oil contains similar proportions of α- and γ-tocopherols. Therefore, the types of oils 
consumed through the diet affect the dietary intake levels of α-tocopherol. Vitamin E supplements 
are quite popular and contribute considerably to vitamin E intake among some populations. Either 
natural or synthetic forms of α-tocopherol are used as supplements. 

Despite the relatively higher intake of γ-tocopherol from the diet than α-tocopherol, α-
tocopherol is the major form of vitamin E in the circulation because α-tocopherol transfer protein (α-
TTP) has the preferential binding affinity for α-tocopherol. α-TTP is involved in the transfer of α-
tocopherol to the plasma membrane [1]. 

1.3. Functions 

Vitamin E is a major fat-soluble antioxidant that scavenges peroxyl radicals and terminates the 
oxidation of polyunsaturated fatty acids (PUFAs). In the presence of vitamin E, peroxyl radicals react 
with α-tocopherol instead of lipid hydroperoxide, the chain reaction of peroxyl radical production is 
stopped, and further oxidation of PUFAs in the membrane is prevented [1]. Tocopheroxyl radicals—
produced from α-tocopherol and peroxyl radicals—are reduced by vitamin C or glutathione, form 
tocopherol dimers, undergo further oxidation, or act as prooxidants. The antioxidant activity of 
vitamin E may be responsible for the regulation of several enzymes involved in signal transduction 
because the activity of signaling enzymes is regulated by the redox state. 

Vitamin E inhibits protein kinase C (PKC) activity by increasing PKC-α dephosphorylation 
through the activation of protein phosphatase 2A. The inhibition of PKC by vitamin E has been 
reported in various cells, and consequently, the inhibition of platelet aggregation; reduced 
proliferation of monocytes, macrophages, neutrophils, and vascular smooth muscle cells; and 
decreased superoxide production in neutrophils and macrophages have been observed [3,4]. 

Vitamin E may directly bind to the enzymes involved in the generation of lipid mediators or to 
the transport proteins involved in signal transduction. Vitamin E may affect the membrane protein 
interaction and translocation of the enzymes to the plasma membrane and therefore change the 
activity of signal transduction enzymes [4]. 
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1.2. Sources

The major dietary sources of vitamin E are vegetable oils. Nuts are good sources of vitamin
E as well [2]. Soybean, sunflower, corn, walnut, cottonseed, palm, and wheat germ oils contain
relatively higher amounts (more than approximately 50 mg vitamin E/100 g oil) of vitamin E than
other oils. The proportions of α-, β-, γ-, and δ-tocopherols vary depending on the oil type. Safflower
and sunflower oils are high in α-tocopherol, soybean and corn oils contain mainly γ-tocopherol,
and cottonseed oil contains similar proportions of α- and γ-tocopherols. Therefore, the types of oils
consumed through the diet affect the dietary intake levels of α-tocopherol. Vitamin E supplements are
quite popular and contribute considerably to vitamin E intake among some populations. Either natural
or synthetic forms of α-tocopherol are used as supplements.

Despite the relatively higher intake of γ-tocopherol from the diet than α-tocopherol, α-tocopherol
is the major form of vitamin E in the circulation because α-tocopherol transfer protein (α-TTP) has the
preferential binding affinity for α-tocopherol. α-TTP is involved in the transfer of α-tocopherol to the
plasma membrane [1].

1.3. Functions

Vitamin E is a major fat-soluble antioxidant that scavenges peroxyl radicals and terminates the
oxidation of polyunsaturated fatty acids (PUFAs). In the presence of vitamin E, peroxyl radicals react
with α-tocopherol instead of lipid hydroperoxide, the chain reaction of peroxyl radical production
is stopped, and further oxidation of PUFAs in the membrane is prevented [1]. Tocopheroxyl
radicals—produced from α-tocopherol and peroxyl radicals—are reduced by vitamin C or glutathione,
form tocopherol dimers, undergo further oxidation, or act as prooxidants. The antioxidant activity of
vitamin E may be responsible for the regulation of several enzymes involved in signal transduction
because the activity of signaling enzymes is regulated by the redox state.

Vitamin E inhibits protein kinase C (PKC) activity by increasing PKC-α dephosphorylation
through the activation of protein phosphatase 2A. The inhibition of PKC by vitamin E has been
reported in various cells, and consequently, the inhibition of platelet aggregation; reduced proliferation
of monocytes, macrophages, neutrophils, and vascular smooth muscle cells; and decreased superoxide
production in neutrophils and macrophages have been observed [3,4].

Vitamin E may directly bind to the enzymes involved in the generation of lipid mediators or to
the transport proteins involved in signal transduction. Vitamin E may affect the membrane protein
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interaction and translocation of the enzymes to the plasma membrane and therefore change the activity
of signal transduction enzymes [4].

2. Modulation of Immune Responses and Infectious Diseases by Vitamin E Supplementation

2.1. Immune Responses in Animals

Dietary interventions of vitamin E at supplemental levels have been shown to enhance
cell-mediated and humoral immune responses in various species of animals. Increased lymphocyte
proliferation, immunoglobulin levels, antibody responses, natural killer (NK) cell activity,
and interleukin (IL)-2 production have been reported with vitamin E supplementation (Table 1).

2.2. Immune Responses in Humans

In humans, many intervention studies have reported increased lymphocyte proliferation
in response to mitogenic stimulation, enhanced delayed type hypersensitivity (DTH) response,
increased IL-2 production, and decreased IL-6 production with vitamin E supplementation above
the recommended levels. However, some studies showed no difference or decreased lymphocyte
proliferation responses and decreased chemiluminescence. (Table 2). Differences in dose of vitamin E
supplementation used, magnitude of vitamin E level changes with supplementation, age of subjects,
and methodology (determination of antibody levels with or without specific vaccination) might have
contributed to the different results observed.

2.3. Infectious Diseases in Animals

The immunostimulatory effect of vitamin E has resulted in enhanced resistance against several
pathogens. Animal studies in which infectious disease models were used to test the effects of vitamin
E supplementation are listed in Table 3.

The mechanisms involved with protection against infectious agents were increased macrophage
activity and antibody (Ab) production for D. pneumoniae type 1 [5], and higher NK activity and Th1
response for influenza virus [6,7].

2.4. Infectious Diseases in Humans

In humans, the effects of vitamin E on the natural incidence of infectious diseases have been
determined in several studies (Table 4). Many studies provided evidence that the immunostimulatory
effects of vitamin E confer improved resistance to infections. However, the magnitudes of the effects
were rather small, and in some studies, positive effects were only observed in subgroups of subjects.
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Table 1. Modulation of immune responses by vitamin E in animal models.

Species Dosage and Duration Form of Vitamin E Used Results References

Chicks, female broiler (n = 6/group,
6 replicate)

100 mg/kg diet for 21 days DL-α-tocopheryl acetate ↑Plasma IgM levels at day 21
Dalia et al. 2018 [8]↔Splenic expressions of TNF-α, IFN-γ, IL-2, IL-10

Pregnant cows (n = 24/group) 250 IU/day from day 107 of
gestation to day 21 of lactation NA ↑IgG and IgA concentration in sow plasma Wang et al. 2017 [9]

Domestic cats (39 castrated male and
33 intact female) (n = 8/group) 225, 450 mg/kg diet for 28 days α-tocopherol ↑Lymphocyte proliferation (ConA, PHA) O’ Brien et al. 2015 [10]

Young and old mice (n = 11–13/group) 500 mg/kg diet for 6 weeks DL-α-tocotrienol
↑Lymphocyte proliferation in old (ConA, PHA)

Ren et al. 2010 [11]↑IL-1β production in young

Young rats (n = 6/group) 50, 200 mg/kg diet for
8–10 weeks ↑Lymphocyte proliferation (ConA, LPS) Bendich et al. 1986 [12]

Old mice (n = 10/group) 500 mg/kg diet for 6 weeks DL-α-tocopheryl acetate

↑Lymphocyte proliferation (ConA, LPS)

Meydani et al. 1986 [13]↑DTH response
↑IL-2 production
↓PGE2 production

Young and old mice (n = 5/group) 500 IU (500 mg) for 9 weeks DL-α-tocopherol acetate
↑Lymphocyte proliferation (ConA) in young

Wakikawa et al. 1999 [14]↔Lymphocyte proliferation (ConA) in old
↑IFN-γ in young under restraint stress

Young rats (n = 10/group) 50, 100, 250, 500, 2500 mg/kg
diet for 7 days

DL-α-tocopheryl acetate
↑Lymphocyte proliferation (>100 mg/kg diet,

ConA) (>250 mg/kg diet, LPS) Moriguchi et al. 1990 [15]
↑NK activity (>250 mg/kg diet)

Old rats (n = 5/group) 585 mg/kg diet for 12 months DL-α-tocopheryl nicotinate ↑Lymphocyte proliferation (ConA, PHA) Sakai S & Moriguchi 1997 [16]↑IL-2 production

Young calves (n = 8/group) 125, 250, 500 IU (125, 250,
500 mg)/day for 24 weeks

DL-α-tocopheryl acetate
↑Lymphocyte proliferation (PHA, ConA,

pokeweed mitogen) Reddy et al. 1987 [17]
↑Antibovine herpesvirus Ab titer to booster in

125 IU/day group

Young mice (n = 8/group) 200 mg/kg diet for 6–12 weeks α-tocopheryl acetate ↑Ab response
Tanake et al. 1979 [18]↑Helper T cell activity

Mice (n = 10/group) 500 mg/kg diet for 6 months α-tocopherol acetate (Tekland,
Madison, WI)

↓IL-6 and PGEs (unstimulated) production by
macrophages Beharka et al. 2000 [19]

↓Nitric oxide production (LPS) by macrophages

Ab, antibody; ConA, concanavalin A; IFN-γ, interferon-γ; LPS, lipopolysaccharide; PGE2, prostaglandin E2; PHA, phytohemagglutinin; TNF, Tumor necrosis factor.



Nutrients 2018, 10, 1614 5 of 18

Table 2. Modulation of immune responses by vitamin E in humans.

Subjects Age Amount and Duration of Supplementation Form of Vitamin E Used Effects on Immune Function References

Young (n = 5) and senior
athletes (n = 5) 18–25, 35–57 4.6 ± 0.3 mg/100 mL of vitamin E-enriched

beverage 5 days/week for 5 weeks α-tocopherol acetate ↑15LOX2, TNF-α expression Capo et al. 2016 [20]

Healthy women (n = 108) 18–25 400 mg TRF/day for 56 days

D-α-tocotrienol ↑IL-4 (TT vaccine), IFN-γ (ConA)
Mahalingam et al. 2011 [21]D-γ-tocotrienol

D-δ-tocotrienol ↓IL-6 (LPS)
D-α-tocopherol

Healthy men and women
(n = 19, 34) 20–50 200 mg/day for 56 days α-tocopherol ↔IL-4, IFN-γ production (ConA) Radhakrishnan et al. 2009 [22]

Adult males and young boys
(n = 18) 25–30, 13–18 300 mg/day for 3 weeks DL-α-tocopheryl acetate

↓Lymphocyte proliferation (PHA)
Prasad 1980 [23]↔DTH

↓Bactericidal activity

Institutionalized adult males
and females (n = 103) 24–104 200, 400 mg/day for 6 months α-tocopherol acetate ↔Ab development to influenza virus Harman and Miller 1986 [24]

Healthy elderly males and
females (n = 32) ≥60 800 mg/day for 30 days DL-α-tocopheryl acetate

↑Lymphocyte proliferation (ConA)

Meydani et al. 1990 [25]↑DTH
↑IL-2 production (ConA)
↓PGE2 production (PHA)

Eldery males and females
(n = 74) ≥65 100 mg/day for 3 months DL-α-tocopheryl acetate ↔Lymphocyte proliferation (ConA, PHA)

De Waart et al. 1997 [26]↔IgG, IgA levels

Healthy elderly males and
females (n = 88) ≥65 60, 200, 800 mg/day for 235 days DL-α-tocopherol ↑DTH and antibody titer to hepatitis B with 200, 800 mg Meydani et al. 1997 [27]

Healthy elderly males and
females (n = 161) 65–80 50, 100 mg/day for 6 months DL-α-tocopheryl acetate

↑No. of positive DTH reaction with 100 mg

Pallast et al. 1999 [28]
↑dDiameter of induration of DTH reaction in a

subgroup supplemented with 100 mg
↔IL-2 production
↓IFN-γ production

Healthy young adults (n = 31)
and premature infants (n = 10) 24–31 600 mg/day for 3 months40 mg/kg body

weight for 8–14 days ↓Chemiluminescence Okano et al. 1990 [29]

Cigarette smoker (n = 60) 33 ± 4 900 IU/day for 6 weeks ↓Chemiluminescence Richards et al. 1990 [30]

Healthy males (n = 40) 24–57 200 mg/day for 4 months all-rac-α-tocopherol Prevented fish-oil-induced suppression of ConA
mitogenesis Kramer et al. 1991 [31]

Healthy elderly (n = 40) >65 100, 200, or 400 mg/day for 3 months DL-α-tocopherol ↑DTH (maximal diameter) in 100, 200, 400 mg groups
Wu et al. 2006 [32]↑Lymphocyte proliferation (ConA) in 200 mg group

Sedentary young and elderly
males (n = 21) 22–29, 55–74 800 IU (727 mg)/day for 48 days DL-α-tocopherol ↓IL-6 secretion

Cannon et al. 1991 [33]↓Exercise-enhanced IL-1β secretion

ConA, concanavalin A; DTH, delayed type hypersensitivity; IFN-γ, interferon-γ; 15LOX2, 15-lipoxygenase-2; PGE2, prostaglandin E2; PHA, phytohemagglutinin; TRF, tocotrienol-rich
fraction; TT vaccine, tetanous toxoid vaccine.
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Table 3. Effects of vitamin E supplementation on infectious diseases in animal models.

Subjects Age Dose and Duration of
Supplementation

Form of Vitamin E
Used

Infection Organism and
Route of Infection

Results: Effects of Vitamin E
Supplementation References

Mice BALB/c
(n = 3–6/group) 6 months

100 mg/kg for 8 days before
MRSA-challenge δ-, γ-Tocotrienol

MRSA, inoculated onto
superficial surgical wounds

Higher NK cytotoxicity Pierpaoli et al. 2017 [34]
Higher IL-24 mRNA expression levels

Young and aged male
mice C57BL/6
(n = 6/group)

2, 22–26 months 500 mg/kg for 4 weeks prior to
infection

D-α-tocopheryl
acetate

Streptococcus pneumoniae,
intra-tracheally injected

1000-fold fewer bacteria in their lung

Bou Ghanem et al. 2015 [35]
Age-associated higher production of

proinflammatory cytokines (TNF-, IL-6)
were reduced

3-fold reduction in the number of PMNs

Worm-free lambs
(n =10/group) 28–32 weeks 5.3 IU (3.56 mg)/kg BW for

12 weeks
D-α-tocopherol H. contortus L3 larvae, route

NA

No difference in serum IgG or peripheral
mRNA expression of IL-4 or IFN-γ De Wolf et al. 2014 [36]

Lower PCV, FEC, and worm burden

Male mice BALB/c
(n = 6–7/group)

At weaning

Deficient, Adequate
(38.4 mg/kg diet), or

Supplemented (384 mg/kg
diet) for 4 weeks

DL-α-tocopheryl
acetate

HSV-1, intranasally

Higher viral titre and ILβ, TNF-α,
RANTES in the brain with E deficiency

Sheridan & Beck. 2008 [37]No difference in expressions of IL-6,
TNFα, IL-1β, and IL-10 between

adequate and supplemented

Mice C57BL
(n = 6–9/group) 22 months 500 mg/kg diet for 8 weeks DL-α-tocopherol

acetate
Influenza by nasal

inoculation
Lower viral titer

Han et al. 2000 [6]Higher IL-2 and IFN-γ production

Mice, C57BL/6
(n = 4–9) 22 months 500mg/kg diet for 6 weeks DL-α-tocopherol

acetate
Influenza A/PC/1/73

(H3N2) by nasal inoculation Lower viral titre Hayek et al. 1997 [7]

Mice, C57BL/6 (n = 6) 5 weeks 160 IU/L liquid diet for 4, 8, 12,
16 weeks

all-rac-α-tocopheryl
acetate

Murine LP-BM5 leukaemia
retrovirus by IP injection

Restored IL-2 and IFN-γ production by
splenocytes following infection Wang et al. 1994 [38]

Calves, Holstein
(n = 7) 1d

1400 or 2800 mg orally once per
week, 1400 mg injection once

per week for 12 weeks

DL-α-tocopheryl
acetate

Bovine rhinotracheitis virus,
in vitro

Serum from vitamin E-supplemented
calves inhibited the replication of bovine

rhinotracheitis virus in vitro
Reddy et al. 1986 [39]

Mice, Swiss Webster
(n = 10) 4 weeks 180 mg/kg diet for 4 weeks DL-α-tocopheryl

acetate
Diplococcus pneumoniae type I

by IP injection Higher survival Heinzerling et al. 1974a [5]

Mice, BALB/C
(n = 25) NA

25 or 250 mg/kg bw orally for
4 days, starting 2 days before

burn injury

DL-α-tocopheryl
acetate

Pseudomonas aeruginosa,
subeschar injection to burned

mice
Lower mortality rate Fang et al. 1990 [40]

Mice, BALB/C (NA) 3 weeks 4000mg/kg diet for 2, 4, or
14 weeks

Vitamin E injectable
(aqueous)

Listeria monocytogenes by IP
injection No difference in resistance Watson & Petro 1982 [41]

Rats, Sprague-Dawley
(n = 6) 3 weeks 180 mg/kg diet + 6000 IU

vitamin A/kg diet for 6 weeks
DL-α-tocopheryl

acetate
Mycoplasma pulmonis by

aerosol Higher resistance to infection Tvedten et al. 1973 [42]

Lambs (n = 10) NA 1000 IU orally, 300 mg/kg diet
for 23 days

DL-α-tocopheryl
acetate

Chlamydia by intratracheal
inoculation

Faster recovery (higher food intake and
weight gains) Stephens et al. 1979 [43]
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Table 3. Cont.

Subjects Age Dose and Duration of
Supplementation

Form of Vitamin E
Used

Infection Organism and
Route of Infection

Results: Effects of Vitamin E
Supplementation References

Turkey, broadbreasted
white poults (n = 6)

1 day
500 mg/kg diet for 14 days

before infection and 18–21 days
after infection

DL-α-tocopheryl
acetate

Histomonas meleagridis, oral

No effect on mortality by vitamin E
supplementation alone Schildknecht & Squibb 1979 [44]

Lower mortality and lesion score in
combination with ipronidazole

Pigs (n = 6) NA
200 mg/pig per day for 59

days before infection and 22
days after infection

DL-α-tocopheryl
acetate

Treponema hyodysenteriae, oral
Improved weight gain and recovery rate

Teige et al. 1982 [45]No beneficial effect on appetite and
diarrhoea

Sheep (n = 12) 3–6 months 300 mg/kg diet starting 2
weeks before first vaccination

DL-α-tocopheryl
acetate

Clostridium perfringens type D
by IV injection after two IM

vaccinations

Higher Ab titre

Tengerdy et al. 1983 [46]Fail to prove beneficial effect of vitamin
E on protection (none of the vaccinated

lambs died)

Cows (n = 20) NA 740 mg/cow per day, duration
NA

DL-α-tocopheryl
acetate

Natural occurrence of clinical
mastitis due to Streptococci,

Coliform, Staphylococci,
Clostridium bovis

Lower clinical cases of mastitis Smith et al. 1984 [47]

Chicks, broiler
(n = 12–14)

1day 150 mg or 300mg/kg diet for 2
weeks before infection

DL-α-tocopheryl
acetate

Escherichia coli, orally and
post-thoracic air sac

Lower mortality Heinzerling et al. 1974b [48]
Higher Ab titre

Chicks, broiler
(n = 10) 1 day

300 mg/kg diet for 6 weeks,
starting 3 weeks before first

infection

DL-α-tocopheryl
acetate E. coli, post-thoracic air sac Lower mortality Tengerdy & Nockels 1975 [49]

Chicks, Leghorn
(n = 22) 1 day 300 mg/kg diet for 4 weeks

before infection
DL-α-tocopheryl

acetate E. coli by IV injection Lower mortality Likoff et al. 1981 [50]

Pigs (n = 10) 6–8 weeks
100, 000 mg/t diet for 10

weeks, starting 2 weeks before
infection

Vitamin E;
Tompson-Hayward,
Minneapolis, MN,

USA

E. coli by IM injection Higher serum Ab titre Ellis & Vorhies 1976 [51]

Ab, antibody; FEC, fecal egg count; HSV, Herpes simplex virus; MRSA, IFN-γ, interferon-γ; IM, intramuscular; IV, intravenous; Methicillin-resistant Staphylococcus aureus; NK, natural
killer; PCV, packed cell volume; PMN, polymorphonuclear leukocyte, RANTES, regulated on activation, normal T cell expressed and secreted; TNF-α, tumor necrosis factor-α.
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Table 4. Effects of vitamin E supplementation on infectious diseases in humans.

Subjects Age Dose and Duration of
Supplementation

Form of Vitamin E
Used

Infection Organism and Route
of Infection

Results: Effects of Vitamin E
Supplementation References

Male smoker 50–69 50 mg/d for median of 6 years DL-α-tocopheryl
acetate

Natural incidence of pneumonia

69% Lower incidence of pneumonia
among subgroups including participants
who smoked 5–19 cigarettes per day at
baseline and exercised at leisure time Hemila et al. 2016 [52]
14% Lower incidence of pneumonia

among subgroups including participants
who smoked ≥20 cigarettes per day at

baseline and did not exercise

HIV-infected
pregnant Tanzanian

women
25.4

30 mg during pregnancy
(multivitamin form with 20 mg

vitamins B1, 20 mg B2, 25 mg B6, 100
mg niacin, 50 µg B12, 500 mg C,

and 800 µg folic acid)

NA
Natural incidence of malaria
after having received malaria

prophylaxis during pregnancy

Lower incidence of presumptive clinical
malaria, but higher risk of any malaria

parasitemia
Olofin et al. 2014 [53]

Patients with
HCV-related cirrhosis 54–75 900 IU (604.03 mg for D- or 818.18

mg for DL-)/day for 6 months α-tocopherol Natural incidence of cirrhosis

Reduced glutathione (GSH) and
glutathione peroxidase, which are

significantly lower in cirrhotic patients
(p < 0.05), were comparably improved

by vitamin E regimens

Marotta et al. 2007 [54]

Patients with chronic
HCV 18–75

945 IU (634.23 mg)/day for 6 months
with 500 mg ascorbic acid and 200

µg of selenium
D-α-tocopherol Natural incidence of HCV No difference in median log plasma

HCV-RNA Groenbak et al. 2006 [55]

Nursing home
residents

>65 200 IU/day for 1 year DL-α-tocopherol Natural incidence of respiratory
infections

Fewer numbers of subjects with all and
upper respiratory infections Meydani et al. 2004 [56]

Lower incidence of common cold
No effect on lower respiratory infection

Male smokers 50–69 50 mg/day during 4-year follow-up α-tocopherol Natural incidence of common
cold episodes

Lower incidence of common cold
Hemila et al. 2002 [57]Reduction was greatest among older city

dwellers who smoked fewer than 15
cigarettes per day

Male smokers 50–69 years 50 mg/day for median of 6.1 years DL-α-tocopheryl
acetate

Natural incidence of pneumonia
No overall effect on the incidence of

pneumonia. Hemila et al. 2004 [58]
Lower incidence of pneumonia among
the subjects who had initiated smoking

at a later age (>21)

Non-institutionalized
individuals >60 years 200 mg/day for median of 441 days α-tocopherol acetate

Natural incidence and severity of
self-reported acute respiratory

tract infections

No effect on incidence and severity of
acute respiratory tract infections Graat et al. 2002 [59]

HCV, hepatitis C virus.
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3. Vitamin E and Immune Cells

The immunomodulatory mechanisms of α-tocopherol in immune cells are depicted in Figure 2.

Nutrients 2018, 10, x FOR PEER REVIEW  10 of 18 

 

3. Vitamin E and Immune Cells 

The immunomodulatory mechanisms of α-tocopherol in immune cells are depicted in Figure 2. 

 
Figure 2. Immunomodulatory effects of vitamin E on immune cells. Abbreviations: PGE2, 
prostaglandin E2; COX2, Cyclooxygenase 2; NO, Nitric oxide; CD, Clusters of Differentiation; DCs, 
Dendritic cells; IL-12, Interleukin-12; Ab, antibody; NK, Natural killer. 

3.1. Macrophages 

Macrophages, important effector cells in the innate immune response, serve as antigen 
presenting cells (APC) and regulate NK cells and T cells by producing cytokines, reactive oxygen 
species (ROS), reactive nitrogen species (RNS), and prostaglandins. Cytokines produced by T cells 
and other immune cells can shift the macrophages into different populations with distinct 
physiologies [60]. 

The effects of vitamin E on prostaglandin (PG)E2 production by macrophages from the aged 
have been suggested as one of the mechanisms by which vitamin E improves the age-associated 
decrease in the T cell-mediated immune response [61]. In a co-culture experiment in which purified 
T cells and macrophages from young and old mice were cultured together, T cells from young mice 
showed suppressed proliferation and IL-2 secretion when cultured with macrophages from old mice. 
When macrophages from old mice were pre-incubated with 10 μg/mL vitamin E for 4 h, co-cultures 
of old macrophages and young T cells showed significant improvement in proliferation. Vitamin E 
pre-incubation of old macrophages improved proliferation and IL-2 production in co-cultures of old 
macrophages and old T cells [62]. Macrophages from old mice produced significantly higher levels 
of PGE2, which was due to higher cyclooxygenase (COX) activity. Macrophages from old mice 
expressed higher levels of inducible COX2 protein and mRNA [63]. These increases in PGE2 synthesis 
and COX activity were lowered by in vivo vitamin E supplementation [64]. Macrophages isolated 
from old mice fed a diet containing 500 ppm vitamin E for 30 days produced lower amounts of PGE2 
and had lower COX activity than those from old mice fed a control diet containing 30 ppm vitamin 
E, but the COX2 mRNA levels and protein expression of the control and supplemented groups did 
not differ. Thus, vitamin E’s effect on COX activity seemed to be through post-translational 

Figure 2. Immunomodulatory effects of vitamin E on immune cells. Abbreviations: PGE2,
prostaglandin E2; COX2, Cyclooxygenase 2; NO, Nitric oxide; CD, Clusters of Differentiation; DCs,
Dendritic cells; IL-12, Interleukin-12; Ab, antibody; NK, Natural killer.

3.1. Macrophages

Macrophages, important effector cells in the innate immune response, serve as antigen presenting
cells (APC) and regulate NK cells and T cells by producing cytokines, reactive oxygen species (ROS),
reactive nitrogen species (RNS), and prostaglandins. Cytokines produced by T cells and other immune
cells can shift the macrophages into different populations with distinct physiologies [60].

The effects of vitamin E on prostaglandin (PG)E2 production by macrophages from the aged
have been suggested as one of the mechanisms by which vitamin E improves the age-associated
decrease in the T cell-mediated immune response [61]. In a co-culture experiment in which purified
T cells and macrophages from young and old mice were cultured together, T cells from young mice
showed suppressed proliferation and IL-2 secretion when cultured with macrophages from old mice.
When macrophages from old mice were pre-incubated with 10 µg/mL vitamin E for 4 h, co-cultures
of old macrophages and young T cells showed significant improvement in proliferation. Vitamin E
pre-incubation of old macrophages improved proliferation and IL-2 production in co-cultures of old
macrophages and old T cells [62]. Macrophages from old mice produced significantly higher levels of
PGE2, which was due to higher cyclooxygenase (COX) activity. Macrophages from old mice expressed
higher levels of inducible COX2 protein and mRNA [63]. These increases in PGE2 synthesis and COX
activity were lowered by in vivo vitamin E supplementation [64]. Macrophages isolated from old
mice fed a diet containing 500 ppm vitamin E for 30 days produced lower amounts of PGE2 and
had lower COX activity than those from old mice fed a control diet containing 30 ppm vitamin E,
but the COX2 mRNA levels and protein expression of the control and supplemented groups did not
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differ. Thus, vitamin E’s effect on COX activity seemed to be through post-translational mechanisms
rather than through its effect at transcriptome or translational levels. In a subsequent study, it was
shown that vitamin E reduced COX activity in macrophages from old mice by decreasing peroxynitrite
production [65]. The inhibition of COX activity by vitamin E in old mice disappeared specifically with
the addition of a nitric oxide (NO) donor in the presence of a superoxide to elevate peroxynitrite levels
in the macrophage culture. There is a complex interplay between the nitric oxide synthase (NOS)
and COX pathways and NO increases COX2 activity, which seems to be due to the NO preventing
self-deactivation of COX by the superoxide as NO interacts with the superoxide [66].

In vivo supplementation of vitamin E (1500 IU D-α-tocopheryl acetate/day for 16 weeks)
in allergic asthmatic patients prevented the suppression of alveolar macrophage nuclear factor
(erythroid-derived 2)-like 2 (NRF2) activity after allergen challenge [67]. This study presented the
possibility of vitamin E’s protective role in allergies and asthmas through regulation of macrophage
NRF2 activity, but, further studies are needed to confirm the findings because of the small number of
patients (nine mild non-smoking allergic asthmatics) and the lack of appropriate controls.

3.2. Natural Killer Cells

NK activity seems to be related with vitamin E status. The NK activity of a boy with Shwachman
syndrome who had a severe vitamin E deficiency was low, but improved after eight weeks of 100 mg/d
α-tocopherol supplementation. When α-tocopherol supplementation was stopped, NK activity and
CD16+ CD56+ cells decreased. NK activity and CD16+ CD56+ cells were restored upon resuming
eight weeks of 100 mg/d α-tocopherol supplementation [68]. In 37 women aged 90–106 years old,
NK cell cytotoxicity was positively associated with plasma vitamin E concentration [69]. A two-week
supplementation of 750 mg vitamin E in colorectal cancer patients resulted in increased NK activity in
six out of seven patients. Vitamin E treatment did not result in changes in perforin expression or IFN-γ
production; therefore, mechanisms of improved NK activity by vitamin E could not be determined
from the study [70].

NO appears to be involved in the impairment of NK cell function. Co-culture of NK cells and
myeloid-derived suppressor cells (MDSCs) showed that NK cell cytotoxicity and IFN-γ were impaired
by MDSCs and that the inhibition of inducible nitric oxide synthase (iNOS) rescued the impairment
by MDSCs. Exposure of NK cells to NO by treatment with an NO producer caused the nitration of
tyrosine residues on CD16+ NK cells. These results suggested that MDSCs impair NK cell function
via the production of NO and the nitration of protein tyrosine residues [71]. Vitamin E might exert its
effects on NK cell function by modulating NO levels.

3.3. Dendritic Cells

Dendritic cells (DCs) are effective antigen-presenting cells that recognize pathogens and present
pathogen-derived antigens to T cells. The interaction of DCs with pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns (DAMPs) elicits the activation and
maturation of DCs. The increased expression of surface major histocompatibility complex (MHC)
molecules and co-stimulatory molecules and the increased production of cytokines occur with the
activation of DCs, which allows the effective induction of the T cell response [72–74]. DCs are also
involved in tolerance and autoimmunity. DCs might promote tolerance by the generation of Treg cells
and/or by the induction of T cell unresponsiveness. DCs might be involved in the pathogenesis of
autoimmune disease by promoting the priming or differentiation of self-reactive T cells [72]. Therefore,
understanding the regulation of DCs by vitamin E will provide insight into the mechanisms of vitamin
E’s immune response modulation and implications of vitamin E in immunological diseases.

Several studies have shown that vitamin E could regulate the maturation and functions of
DCs. Tan et al. [75] investigated the effects of α-tocopherol and vitamin C, alone or in combination,
on the phenotype and functions of human DCs generated from peripheral blood mononuclear cells
(PBMCs). During the differentiation of human PBMCs into DCs, various concentrations of α-tocopherol
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were treated in culture starting from day 2, cells were stimulated on day 5, and then the surface
phenotype was determined on day 6. The expression of human leukocyte antigen(HLA)-DR, CD40
CD80, and CD86 appeared to be increased with lower concentrations of α-tocopherol (<0.05 mM), but
the combination of vitamin E and C prevented DC activation, as the upregulation of surface markers
was not observed. DCs treated with 0.5 mM vitamin E and 10 mM vitamin C showed lower levels
of intracellular ROS and inhibition of the nuclear factor (NF)-κB, PKC, and p38 mitogen-activated
protein kinase (MAPK) pathways. When bone marrow-derived dendritic cells (BMDCs) from Balb/c
mice were treated with 500 µM of α-tocopherol for 2 h, upregulation of phosphorylated inhibitor of κB
(IκB) by lipopolysaccharide (LPS)-stimulation was suppressed. Vitamin E treatment for 24 h resulted
in a reduced number of CD11+CD86+ cells and ROS-positive cells, lower production of IL-12p70
and TNF-α, and decreased transwell migration of BMDCs. These effects of vitamin E on BMDCs
were partly dependent on Klotho expression. Vitamin E treatment on BMDCs resulted in higher
Klotho transcript and protein levels, and silencing of Klotho by transfection of Klotho siRNA abolished
the inhibitory effects of vitamin E on IL-12p70 production, number of ROS-positive cells, and DC
migration [76]. Klotho is a membrane protein that has been shown to mediate calcium transport into
the cells; regulate intracellular signaling pathways such as p53/p21, cyclin adenosine monophosphate
(cAMP), PKC, and Wnt; and inhibit the NF-κB pathway [77]. Therefore, the upregulation of Klotho
by vitamin E could be one of the mechanisms by which vitamin E modulates NF-κB mediated DC
function and maturation. However, the level of α-tocopherol used for in vitro treatment (500 µM) was
high and, therefore, further research is needed to elucidate the physiological relevance of vitamin E
treatment on the expression of Klotho and its involvement in the modulation of DC function.

In vivo supplementation of α-tocopherol at 150, 250, and 500 mg/kg diet in allergic female mice
reduced the lung CD11b+ DCs and mRNA levels of IL-4, IL-33, thymic stromal lymphopoietin (TSLP),
eotaxin 1 (CCL11), and eotaxin 2 (CCL24) in allergen challenged pups. Furthermore, when BMDCs
from 10-day-old neonates born to a control female were treated with 80 µM α-tocopherol for 24 h,
the number of CD45+ CD11b+ CD11+ DCs and the number of CD45+ CD11b+ CD11c+ Ly6c− MHCII−

DCs were reduced. Maternal supplementation with α-tocopherol was effective in decreasing allergic
responses in offspring from allergic mothers by affecting the development of subsets of DCs that
are critical for allergic responses [78]. On the other hand, γ-tocopherol supplementation exerted an
opposite response in the same model. In vivo supplementation of γ-tocopherol at 250 mg/kg diet in
allergic female mice resulted in a higher number of lung eosinophils, a higher number of lung CD11c+

CD11b+ DCs, and higher levels of lung lavage CCL11 in the offspring [79].
Modulation of the immune response by vitamin E has been observed in animal and human

studies, and DCs play a critical role in bridging innate and adaptive immune systems and initiating
adaptive immune responses. Despite the importance of DCs’ role in adaptive immune responses
and in diseases such as autoimmune diseases, few studies have investigated the DC-specific effect of
vitamin E.

3.4. T Cells

The effects of vitamin E on immune cells have been studied the most with T cells.
The dysregulation of immune function occurs with aging and the most significant changes are observed
in T cells. Age-associated changes in T cells include, but are not limited to, (1) defects in T cell receptor
(TCR) signal transduction such as a decrease in linker for the activation of T cells (LAT) phosphorylation
by zeta chain of T cell receptor associated protein kinase 70 (ZAP-70), (2) decreased intracellular influx
of calcium following stimulation, (3) diminished synapse formation, (4) diminished activation of the
mitogen activated protein kinase (MAP kinase) pathway, (5) decreased nuclear factor of activated
T-cells (NFAT) binding activity, and (6) a shift of the T cell population toward memory T cells [80]. As a
result, diminished production of IL-2 and reduced proliferative capacity of naive T cells are observed
and impaired T cell functions contribute to increased susceptibility to infectious diseases and poor
response to immunization.
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Vitamin E has been shown to increase the cell division and IL-2 producing capacity of naïve T
cells, increase the percentage of T cells capable of forming an effective immune synapse, and reverse
the age-associated defect in the phosphorylation of LAT in T cells from old animals [81–83].

In vitro pre-incubation with 46 µM vitamin E for 4 h increased proliferation and IL-2 production in
T cells purified from old mice stimulated with anti-CD3 and anti-CD28. Increased IL-2 production was
due to both an increase in the number of activation-induced IL-2+ cells and an increase in the level of
IL-2 accumulated per cell. Vitamin E specifically increased the naive T cells’ ability to progress through
the cell division cycle in old mice [81]. The gene expression profile of T cells isolated from young and
old mice fed a diet supplemented with 500 ppm vitamin E for four weeks provided evidence that
vitamin E influences cell cycle-related molecules at the gene expression level. Higher expression of
cell cycle-related genes Ccnb2, Cdc2, and Cdc6 was observed in stimulated T cells from old mice fed
the vitamin E-supplemented diet compared with those fed the control diet, which was not observed
in young mice [84]. Cyclin B2, encoded by Ccnb2, binds to cyclin-dependent kinase 1 (also known
as Cdc2) and regulates the events during both the G2/M transition and progression through mitosis.
Cdc6 is a key regulator in the early steps of DNA replication, as the binding of Cdc6 to chromatin is
a necessary and universal step in the acquisition of replication competences [85]. These alterations
in the expression of cell cycle-related genes observed with vitamin E might contribute to vitamin E
improving the proliferative ability of old T cells.

Marko et al. [82] showed that pre-incubation of CD4+ T cells isolated from old T cells with 46 µM
vitamin E for 4 h increased the percentage of CD4+ T cells displaying effective immune synapses.
Redistribution of Zap70, LAT, Vav, and phospholipase Cγ (PLCγ) into immune synapse increased
significantly with vitamin E treatment. This change was confirmed with in vivo supplementation
of vitamin E. In old mice fed a diet containing 500 ppm vitamin E for eight weeks, LAT and Vav
showed significantly higher redistribution into the T cell/APC contact area when purified CD4+

T cells were stimulated with murine CD3ε hybridoma. In a subsequent study, it was shown that
vitamin E could reverse the age-associated defect in the phosphorylation of LAT on tyrosine 191 [83].
The phosphorylation of LAT is required for the recruitment of adaptor and effector proteins. Therefore,
it plays a pivotal role in the assembly of microcluster structures in the initiation of T cell activation
signals. This evidence suggests that vitamin E can modulate the early stages of T cell activation.

Vitamin E seems to modulate Th1 and Th2 responses. The polarization of CD4 T cells to T
helper (Th)1 or Th2 cells has implications for the protection against different pathogens (intracellular
vs. extracellular pathogens) and the development of different types of chronic diseases (inflammatory
vs. allergic diseases). PBMCs isolated from allergic donors treated with vitamin E (12.5–50 µM)
showed dose-dependent decreases in IL-4 production [86]. IL-4 mRNA levels in activated PBMCs
were downregulated by 25 µM vitamin E treatment. Jurkat T cells treated with 50 µM vitamin E
exhibited downregulation of IL-4 promoter activity, which might be related to vitamin E blocking the
interaction of transcription factors with PRE-1 and P1. In vivo supplementation of vitamin E enhancing
the Th1 response has been observed in mice infected with influenza virus and in colorectal cancer
patients [6,87]. In colorectal cancer patients, two weeks of supplementation with 750 mg vitamin E
led to an increased frequency of IL-2 producing CD4+ T cells and increased IFN-γ production [87].
In old mice infected with influenza virus, 500 ppm vitamin E supplementation for eight weeks prior
to infection lowered the viral titer in the lung, and this protective effect of vitamin E was associated
with the enhancement of Th1 response. IFN-γ production levels correlated negatively with viral
titer, and old mice fed a vitamin E-supplemented diet produced significantly higher levels of IFN-γ
and IL-2 [6]. The gene expression profile of T cells isolated from young and old mice fed a diet
supplemented with 500 ppm vitamin E for four weeks provided evidence that vitamin E influences the
Th1/Th2 balance at the gene expression level. The increase in IL-4 expression following stimulation
was lower in T cells from old mice fed the vitamin E-supplemented diet compared with those fed the
control diet, and the ratio of IFN-γ and IL-4 expression levels was significantly higher in the vitamin E
group than in the control group [84].
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Vitamin E can affect activation-induced cell death in T cells. In vitro treatment of primary human
T cells with 25 µM vitamin E suppressed CD95L expression and activation-induced cell death [88].
The reduction of CD95L mRNA levels and the proportion of CD95L-positive cells were related to the
suppression of NF-κB and AP-1 binding to the CD95L promoter target site by vitamin E. On the other
hand, α-tocopheryl succinate was shown to trigger apoptosis in Jurkat cells with caspase-activation
involved [89].

3.5. B Cells

Vitamin E supplementation has been reported to enhance humoral responses. Higher antibody
responses have been observed in animals and humans [19,27]. However, it is hard to differentiate
whether vitamin E’s direct effect on B cells or indirect effect through T cells contributes to higher
antibody responses.

4. Conclusions

Vitamin E has been shown to enhance immune responses in animal and human models and
to confer protection against several infectious diseases. Suggested mechanisms involved with these
changes are (1) the reduction of PGE2 production by the inhibition of COX2 activity mediated through
decreasing NO production, (2) the improvement of effective immune synapse formation in naive T
cells and the initiation of T cell activation signals, and (3) the modulation of Th1/Th2 balance. Higher
NK activity and changes in dendritic function such as lower IL-12 production and migration were
observed with vitamin E, but underlying mechanisms need to be further elucidated

Several considerations are warranted for the advancement in our understanding of vitamin E’s
role in immunity. For in vitro studies to support implications for the regulation of immunological
diseases, the physiological relevance of vitamin E levels used for treatment should be considered.
Different forms of vitamin E exert differential effects on immune cells. Cell-specific effects of vitamin
E provide valuable evidence regarding the immunomodulatory mechanisms of vitamin E, but the
interplay between immune cells should not be ignored, because interactions between immune cells are
critical in the regulation of immune function.
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