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Abstract: In the current study, we investigated the inhibitory activity of pyridoxine, pyridoxal,
and pyridoxamine, against various digestive enzymes such as α-glucosidases, sucrase, maltase,
and glucoamylase. Inhibition of these enzymes involved in the absorption of disaccharide can
improve post-prandial hyperglycemia due to a carbohydrate-based diet. Pyridoxal (4.14 mg/mL
of IC50) had the highest rat intestinal α-glucosidase inhibitory activity, followed by pyridoxamine
and pyridoxine (4.85 and 5.02 mg/mL of IC50, respectively). Pyridoxal demonstrated superior
inhibition against maltase (0.38 mg/mL IC50) and glucoamylase (0.27 mg/mLIC50). In addition,
pyridoxal showed significant higher α-amylase inhibitory activity (10.87 mg/mL of IC50) than that of
pyridoxine (23.18 mg/mL of IC50). This indicates that pyridoxal can also inhibit starch hydrolyzing by
pancreatic α-amylase in small intestine. Based on these in vitro results, the deeper evaluation of the
anti-hyperglycemic potential of pyridoxine and its derivatives using Sprague-Dawley (SD) rat models,
was initiated. The post-prandial blood glucose levels were tested two hours after sucrose/starch
administration, with and without pyridoxine and its derivatives. In the animal trial, pyridoxal
(p < 0.05) had a significantly reduction to the postprandial glucose levels, when compared to the
control. The maximum blood glucose levels (Cmax) of pyridoxal administration group were decreased
by about 18% (from 199.52 ± 22.93 to 164.10 ± 10.27, p < 0.05) and 19% (from 216.92 ± 12.46 to
175.36 ± 10.84, p < 0.05) in sucrose and starch loading tests, respectively, when compared to the control
in pharmacodynamics study. The pyridoxal administration significantly decreased the minimum,
maximum, and mean level of post-prandial blood glucose at 0.5 h after meals. These results indicate
that water-soluble vitamin pyridoxine and its derivatives can decrease blood glucose level via the
inhibition of carbohydrate-hydrolyzing and absorption-linked enzymes. Therefore, pyridoxal may
have the potential to be used as a food ingredient for the prevention of prediabetes progression to
type 2 diabetes.
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1. Introduction

Type 2 Diabetes Mellitus (T2DM), a common disorder of glucose metabolism, is linked to insulin
resistance and high calorie diets. T2DM is associated with changes in dietary pattern towards high calorie
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sweetened foods with disaccharides such as maltose and sucrose [1]. T2DM accounts for the vast majority
of diabetes cases in adults [2], and expecting to reach 366 million diabetes patients by the year 2030 [3].
Specifically in the United States, it is expected that 1/3 of all adults will have diabetes by 2030 [4].

High blood glucose levels are typical in type 2 diabetes patients, and more specifically
this is characterized by a postprandial increase of glucose levels following food consumption,
due to digestion of carbohydrates by pancreatic α-amylase and small intestinal α-glucosidases,
resulting in elevated liberation of glucose [5]. A strategy to reduce high blood glucose levels
following meal administration, is through the inhibition of enzymes that hydrolyze carbohydrates,
in the small intestine [6,7]. Therefore, commercial available α-glucosidase inhibitors, Acarbose®

(Bayer AG, Leverkusen, Germany), Voglibose® (Takeda, Tokyo, Japan), and Miglitol® (Bayer AG,
Leverkusen, Germany) are generally prescribed either alone, or in combination with insulin sensitizers
in T2DM patients, clinically.

Pyridoxine (Vitamin B6) has been used for managing normal cognitive function and in lowering
the incidence of coronary heart disease (CHD) among the seniors [8–10]. In addition, vitamin
B6 administration has been shown to decrease complications of diabetes and the incidence of
neurodegenerative diseases [11]. Reduced levels of vitamin B6 have been associated with the existence
of both type 1 and type 2 diabetic diabetes [11–13]. Other studies have shown that B6 administration
reduces the clinical symptoms of retinopathy and neuropathy in diabetic patients [14,15]. When the
effect of vitamin B6 was evaluated on STZ-mice, a blood glucose level reduction was observed [16],
and in type 2 diabetes patients HbA1c levels were reduced [17]. Other in vitro evaluations of the
vitamin B6 derivative pyridoxamine have indicated the effect on the inhibition of formation of AGE
products [18].

However, pyridoxine and its derivatives have not been thoroughly evaluated for their possible
blood glucose lowering effect and there is no study suggesting the exact mechanism of vitamin B6 for
this specific health benefit. Therefore, the aim of this study is to investigate mode of action and effect
of pyridoxine and its derivatives on postprandial hyperglycemia. To determine the above, inhibitory
activities of pyridoxine, pyridoxal, and pyridoxamine are investigated against the α-glucosidase and
α-amylase (anti-hyperglycemia potential). Anti-hyperglycemic effect of these compounds was also
evaluated in Sprague-Dawley (SD) rat models. This work will contribute towards the understanding
of the activity and the mechanism of action of vitamin B6 and its derivatives, specifically towards the
management and prevention of type 2 diabetes.

2. Materials and Methods

2.1. Materials

Water-soluble pyridoxine and its derivatives was used from reagent companies in Sigma-Aldrich
(Sigma-Aldrich Co. LLC., St. Louis, MO, USA), Daejung (Daejung Chemicals & Metals
Co., Ltd., Gyeonggi-do, Korea), Duksan (Duksan Pure Chemical Co., Ltd., Gyeonggi-do,
Korea), and Junsei (Junsei Chemical Co., Ltd., Tokyo, Japan). Rat intestinal acetone powder,
p-nitrophenyl-α-D-glucopyranoside (pNPG), porcine pancreatic α-amlyase enzyme powder, starch,
sucrose, and maltose were purchased from Sigma-Aldrich (St. Luis, MO, USA). Unless noted, all chemicals
were purchased from Sigma-Aldrich (St. Luis, MO, USA).

2.2. Carbohydrate-Hydrolyzing Enzyme Inhibition Assay

2.2.1. Rat Intestinal α-Glucosidase Inhibition Assay

The rat intestinal α-glucosidase assay was administered as per the method of Kwon et al. [19]
with slight modification. A total of 1 g of rat-intestinal acetone powder was suspended in 3 mL
of 0.1 M sodium phosphate buffer (pH 6.9), and the suspension was sonicated 12 times for 30 s
at 4 ◦C. After centrifugation (10,000× g, 30 min, 4 ◦C), the resulting supernatant was used for the
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assay. Sample solution (50 µL) and 0.1 phosphate buffer (pH 6.9, 100 µL) containing α-glucosidase
(Sigma-Aldrich, St. Luis, MO, USA) solution (1.0 U/mL) was incubated at 37 ◦C for 10 min.
After pre-incubation, 5 mM p-nitrophenyl-α-D-glucopyranoside solution (50 µL) in 0.1 M phosphate
buffer (pH 6.9) was added to each well at timed intervals. The reaction mixtures were incubated
at 37 ◦C for 30 min. Before and after incubation, absorbance was read at 405 nm and compared to
a control, which had 50 µL of buffer solution in place of the extract by micro-plate reader (SUNRISE;
Tecan Trading AG, Salzburg, Austria). The α-glucosidase inhibitory activity was expressed as inhibition
% and was calculated as follows:

Inhibition(%) =

(
∆A 405 (Control)− ∆A 405(Extract)

∆A 405 (Control)

)
× 100

2.2.2. Porcine Pancreatic α-Amlyase Inhibition Assay

The porcine pancreatic α-amlyase inhibition assay was administered as per the method of
Kwon et al. [20] Sample solution (200 µL) and 0.02 M sodium phosphate buffer (pH 6.9 with 0.006 M
sodium chloride, 500 µL) containing α-amylase solution (0.5 mg/mL, 5.0 MU/mL) were incubated at
25 ◦C for 10 min. After preincubation, 500 µL of a 1% starch solution in 0.02 M sodium phosphate buffer
was added. The reaction mixture was then incubated at 25 ◦C for 10 min. The reaction was stopped
with 1.0 mL of dinitrosalicylic acid (DNS). The reaction mixture was then incubated in a boiling water
bath for 5 min and cooled to room temperature. The reaction mixture at 540 nm with ELISA microplate
reader (SUNRISE; Tecan Trading AG, Saltzburg, Austria).

2.2.3. Maltase, Sucrase, and Glucoamylase Inhibition Assay

The crude enzyme solution prepared from rat intestinal acetone powder Sigma-Aldrich Co.
(St. Louise, MO, USA) was used as the small intestinal maltase, sucrose, and glucoamylase, showing
specific activities of 0.70, 0.34, and 0.45 units/mL, respectively. Rat intestinal acetone powder (1.0 g) was
suspended in 3 mL of 0.1 M sodium phosphate buffer, and the suspension was sonicated 12 times for 30 s
at 4 ◦C. After centrifugation (10,000× g, 30 min, 4 ◦C), the resulting supernatant was used for the assay.
Maltase, sucrose, and glucoamylase inhibitory activity were assay by modifying a method developed
by Dahlqvist [21]. The inhibitory activity was determined by incubating a solution of an enzyme (50
µL), 0.1 M phosphate buffer (pH 7.0, 100 µL) containing 0.4 mg/mL sucrose or maltose or 1% soluble
starch, and a solution (50 µL) with various concentrations of sample solution (between 0.05 and 1.0 mM)
at 37 ◦C for 30 min. The reaction mixture was heated in a boiling water bath to stop the reaction for 10
min, and the amount of liberated glucose was then measured by the glucose oxidase [22]. The inhibitory
activity was calculated from the formula as follows. Inhibition (%) = (C − T)/C × 100, where C is the
enzyme activity without inhibitor, and T is the enzyme activity with inhibitor.

2.3. The Sucrose/Starch Loading Test

Effect on hyperglycemia induced by carbohydrate loads in Sprague-Dawley (SD) rats was
determined by an inhibitory action of water-soluble vitamins and Acarbose on postprandial
hyperglycemia. All animal procedures were approved by Institutional Animal Care and Use Committee
(IACUC) of the Hannam University (Approval number: HNU2017-003). Four-week-old male SD
rats were purchased from Raon Bio Co. (Gyeonggi-do, Korea) and fed a solid diet (Raon Bio Co.,
Gyeonggi-do, Korea) for one week. The rats were housed in a ventilated room at 23 ± 2 ◦C with
50 ± 5% relative humidity, and under an alternating 12 h light/dark cycle. After 7 groups of 4 male
SD rats (130~150 g) were fasted for 24 h, 2.0 g/kg of sucrose or starch were orally administrated
concurrently with 0~100 mg/kg inhibitors (water-soluble vitamins and Acarbose). The blood samples
were then taken from the tail after administration and blood glucose levels were measured at 0, 0.5, 1,
2, and 3 h. The glucose level in blood was determined by glucose oxidase method and compared with
that of the control group, which had not taken the inhibitors.
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2.4. Statistical Analysis

All data are presented as mean ± Standard deviation (SD). Statistical analysis was carried out
using statistical package SPSS 10 (Statistical Package for Social Science; SPSS Inc., Chicago, IL, USA),
and the significance of each group was verified with the analysis of one-way analysis of variance
(ANOVA) followed by Duncan’s test of p < 0.05.

3. Results

3.1. Rat Intestinal α-Glucosidase Inhibitory Activity of Water-Soluble Vitamins

α-Glucosidase inhibitors, such as Acarbose® and Voglibose®, delay the digestion of
oligosaccharide and disaccharide to monosaccharide by inhibiting α-glucosidases on the small
intestinal brush-border, and reduce the rate of glucose absorption [6]. Inhibition of these enzymes
involved in the absorption of disaccharide can improve post-prandial hyperglycemia due to the
consumption of carbohydrate-based diet. As a result, administration of such inhibitors prior to meal
consumption result in reduced postprandial blood glucose concentrations.

To screen the α-glucosidase inhibitory effects of vitamin B6 and its derivatives, we examined
α-glucosidase activity using rat acetone powder (Figure 1). Pyridoxal exhibited the highest inhibitory
effect among the tested compounds, resulting in a 79.83% inhibition at the highest tested dose
(7 mg/mL) (Figure 2). Pyridoxamine and pyridoxine appeared to have similar inhibitory activities,
but showed significantly less activity compared with pyridoxal (Figure 2). When the IC50 values were
calculated, we observed that pyridoxal had the lowest value (4.15 mg/mL), while pyridoxine had the
highest (5.02 mg/mL) (Table 1).

Our observations suggest that pyridoxal has the highest inhibitory potential against α-glucosidase
while pyridoxine had the lowest (Figure 2 and Table 1).
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Figure 2. Dose-dependent changes in rat intestinal α-glucosidase (A) and porcine pancreatic α-amylase
inhibitory activities (B) (% inhibition) of pyridoxine, pyridoxal, and pyridoxamine. The results are
expressed as mean ± S.D. with three independent experiments in triplicate. Different corresponding
letters indicate significant differences at p < 0.05 by Duncan’s test. The first letters in uppercase
(A–H) indicate significant differences among all samples. The second letters in lowercase (a–c) are
different among types of vitamin within the same concentration.

Table 1. The half maximal inhibitory concentration (IC50) of pyridoxine and its derivatives on rat
intestinal α-glucosidase, sucrase, maltase, glucoamylase, and porcine pancreatic α-amylase activities.

IC50 (mg/mL)

Rat intestinal
α-Glucosidase

Porcine Pancreatic
α-Amylase

Rat Intestinal
SUCRASE

Rat Intestinal
Maltase

Rat Intestinal
Glucoamylase

Pyridoxine 5.02 ± 0.05 a 23.17 ± 0.29 a 0.32 ± 0.03 a 0.87 ± 0.08 a 0.63 ± 0.04 a

Pyridoxal 4.15 ± 0.17 b 12.92 ± 1.22 c 0.32 ± 0.03 a 0.37 ± 0.13 b 0.26 ± 0.08 b

Pyridoxamine 4.85 ± 0.06 a 14.93 ± 0.96 b 0.35 ± 0.01 a 1.08 ± 0.10 a 0.60 ± 0.06 a

The results are expressed as mean ± S.D. a–c Different letters indicate statistically significant differences between
groups one-way ANOVA followed by Duncan’s test of p < 0.05.

3.2. Porcine Pancreatic α-Amlyase Inhibition Assay

When the pancreatic α-amlyase inhibitory activity was evaluated, we observed no inhibitory
effect at 2 mg/mL concentrations in all samples. Pyridoxine showed no inhibitory effects, even at the
highest tested dose (7 mg/mL) (Figure 2). Pyridoxal and pyridoxamine showed α-amylase inhibitory
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effects at the two highest tested doses (5 and 7 mg/mL) with pyridoxal appearing to have a higher
inhibitory effect (Figure 2). When the IC50 values were calculated, we observed that pyridoxal had the
lowest value (12.92 mg/mL), while pyridoxine had the highest (23.17 mg/mL) (Table 1).

Our observations are similar to our previous results, suggesting that pyridoxal has the highest
inhibitory potential against α-amylase, while pyridoxine had the lowest (Figure 2 and Table 1).

3.3. Maltase, Sucrase, and Glucoamylase Inhibition Assay

Since α-glucosidase inhibitory effects of the vitamin B6 group was shown, we examined whether
vitamin B6 group could selectively inhibit enzymes in the small intestine, namely sucrase, maltase,
and glucoamylase.

The sucrase inhibitory effect of the tested compounds revealed that all of them had similar
inhibitory effects (Figure 3, Table 1). All samples demonstrated maltase inhibitory activity in
a dose-dependent manner (Figure 3) and pyridoxal resulted in the highest maltase inhibitory activity
at all tested doses (0.5 mg/mL—48.39%, 1 mg/mL—70.10%, and 2 mg/mL—83.29%) (Figure 3).
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The results are expressed as mean ± S.D. with three independent experiments in triplicate.
Different corresponding letters indicate significant differences at p < 0.05 by Duncan’s test. The first
letters in uppercase (A–H) indicate significant differences among all samples. The second letters in lowercase
(a–c) are different among types of vitamin within the same concentration.

Similar to maltase inhibitory activity, all tested vitamin B6 structures resulted in dose-dependent
glucoamylase inhibition (Figure 3), and pyridoxal had the highest inhibitory effect at all tested doses
(42.84% at 0.2 mg/mL, 66.07% at 0.5 mg/mL, and 78.59% at 1 mg/mL) (Figure 3).

Based on these dose-dependent results, half maximal concentration (IC50) of samples in vitro
system was shown in Table 1. Pyridoxal yielded to the lower IC50 value for maltase and glucoamylase
(0.38 and 0.27 mg/mL, respectively), suggesting higher inhibition potential. Against sucrase all tested
samples yielded similar and not significant different IC50 values (Table 1), suggesting that all tested
compounds have similar inhibitory potential against this carbohydrate-hydrolyzing enzyme.

3.4. Starch/Sucrose Loading Test

A sucrose loading test using SD rat models was established, during which we evaluated the
changes in the postprandial blood glucose levels, as described in the materials and methods.

In the pyridoxal-treated group with starch, the blood glucose level was 175.36 ± 10.84 mg/dL at
30 min after administration. Compared to the pyridoxine-treated group (201.78 ± 18.99 mg/dL) and
starch group (216.92 ± 12.46 mg) (Figure 4), pyridoxal-treated group suppresses the rising of plasma
glucose level by 26.41 mg/dL, and 41.56 mg/dL, respectively, after administration. At 30 min after
administration, we found that the pyridoxal-treated group showed the lowest increase in blood glucose
level (79.78 ± 10.84 mg/dL), which was 27.91 mg/dL less than that of the pyridoxine-treated group
(107.69 ± 18.99 mg/dL) and 44.45 mg/dL less than that of the starch group (124.23 ± 12.46 mg/dL).
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in the starch loading test. After fasting for 24 h, six-week-old, male SD rats were orally administered
with a starch solution (2.0 g/kg) with or without samples (pyridoxine, pyridoxal, pyridoxamine,
and Acarbose). Each point represents mean ± S.D. (n = 5). The letters in lowercase (a–d) indicate
significant differences (p < 0.05) at 0.5 h and 1.0 h, respectively, via Duncan’s test.

Among the three tested compounds, change of blood glucose level in the pyridoxal-treated group
with sucrose was increased by 64.88 ± 12.06 mg/dL at 30 min after administration (Figure 5). This is lower
than the pyridoxine-treated group (92.86 ± 10.10 mg/dL) and the sucrose group (101.27 ± 20.18 mg/dL)
by 27.98 mg/dL and 36/39 mg/dL, respectively. At 30 min after administration, we found that the blood
glucose level of the pyridoxal-treated group was 164.74 ± 12.06 mg/dL, which was 27.76 mg/dL less
than that of the pyridoxine-treated group (192.50 ± 10.10 mg/dL) and 35.89 mg/dL less than that of the
sucrose-treated group (200.63 ± 20.18 mg/dL).
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Figure 5. Postprandial blood glucose-lowering effects of pyridoxine, pyridoxal, and pyridoxamine in
the sucrose loading test. After fasting for 24 h, six-week-old, male SD rats were orally administered
with a sucrose solution (2.0 g/kg) with or without samples (pyridoxine, pyridoxal, pyridoxamine,
and Acarbose). Each point represents mean ± S.D. (n = 5). The letters in lowercase (a–c) indicate
significant differences (p < 0.05) at 0.5 h and 1.0 h, respectively, via Duncan’s test.
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3.5. Pharmacodynamics Parameters

Pharmacodynamic parameters of the sucrose and starch loading test are shown in Table 2. In terms
of Tmax, there is no significance between sucrose/starch and vitamin B6-treated groups. In contrast,
vitamin B6-treated groups resulted in significantly decreased Cmax and AUCt values (both with sucrose
and starch loading), but less effective than the Acarbose group.

In sucrose loading, pyridoxal and pyridoxamine resulted to the highest reduction both in terms
of Cmax and AUC (Table 2). In the case of starch loading, pyridoxal resulted in the greatest reduction
of Cmax, while all tested compounds had similar AUC values (Table 2). In terms of absolute values,
the maximum blood glucose levels (Cmax) of the pyridoxal administration group were decreased
by about 18% (from 199.52 ± 22.93 to 164.10 ± 10.27, p < 0.05) and 19% (from 216.92 ± 12.46 to
175.36 ± 10.84, p < 0.05) in the sucrose and starch loading tests, respectively, when compared to the
control in the pharmacodynamics study.

Our findings suggest that vitamin B6 and its derivatives can inhibit the breakdown of disaccharide
to monomer in brush-border and suppress the entrance of blood glucose into the bloodstream.

Table 2. Pharmacodynamic (PD) parameters of control, pyridoxine, pyridoxal, pyridoxamine,
and Acarbose in SD rats ingested with starch or sucrose.

Groups PD Parameters

Cmax (mg/dL) Tmax (h) AUCt (h·mg/dL)

BGL (mg/dL)

Starch 2.0 g/kg 216.92 ± 11.58 d 0.50 ± 0.00 a 299.02 ± 12.10 c

Acarbose 0.005 g/kg 126.60 ± 9.44 a 0.50 ± 0.00 a 228.88 ± 13.09 a

Pyridoxine 0.1 g/kg 200.00 ± 20.89 c,d 0.50 ± 0.00 a 274.28 ± 15.62 b

Pyridoxal 0.1 g/kg 172.67 ± 11.45 b 0.50 ± 0.00 a 268.27 ± 8.80 b

Pyridoxamine 0.1 g/kg 191.54 ± 13.70 c 0.50 ± 0.00 a 275.10 ± 7.31 b

BGL (mg/dL)

Sucrose 2.0 g/kg 199.52 ± 22.93 c 0.50 ± 0.00 a 303.57 ± 14.71 c

Acarbose 0.005 g/kg 126.92 ± 6.87 a 0.86 ± 0.24 b 237.94 ± 8.82 a

Pyridoxine 0.1 g/kg 192.48 ± 9.03 c 0.50 ± 0.00 a 290.64 ± 15.55 c

Pyridoxal 0.1 g/kg 164.10 ± 10.27 b 0.50 ± 0.00 a 272.99 ± 5.96 b

Pyridoxamine 0.1 g/kg 174.50 ± 18.29 b 0.50 ± 0.00 a 269.14 ± 13.40 b

The results are expressed as mean ± S.D. The letters in lowercase (a–d) indicate statistically significant differences
between groups one-way ANOVA followed by Duncan’s test of p < 0.05.

4. Discussion

In this manuscript, we are presenting the first report of vitamin B6 and its derivatives, for the
potential management of type 2 diabetes, via the inhibition of small-intestinal α-glucosidases.
Our significant in vitro and in vivo findings indicate that pyridoxine (vitamin B6) has α-glucosidase
inhibitory activity, resulting in reduced postprandial blood glucose levels following sucrose and
starch ingestion.

The purpose of this research was to evaluate the mode of action and type 2 diabetes-relevant effect
of vitamin B6 and its derivatives. More specifically, we evaluated the effect on in vivo postprandial
hyperglycemia via the in vitro inhibition of carbohydrate-hydrolyzing enzymes. Vitamin B6
(pyridoxine, pyridoxal, and pyridoxamine) forms are readily absorbed by passive diffusion in the
jejunum and ileum [23], while alpha-glucosidases are expressed and located in the duodenum [24].
Our studies suggest that the blood glucose lowering effect of pyridoxine is possibly due to the
α-glucosidase inhibitory activities. Furthermore, our studies show that pyridoxine, one of essential
vitamins has high activity of enzyme inhibition (on sucrase, maltase, and glucoamylase). These results
could be attributed to the structural similarities between pyridoxine and Acarbose and Voglibose,
the pharmacological agents used for the inhibition of carbohydrate-hydrolyzing enzymes (Figure 1).
Compared to Acarbose, pyridoxine resulted in an enhanced inhibitory effect against α-glucosidases,
but the inhibitory effect against α-amylase was significantly reduced, suggesting fewer side-effects.
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When the postprandial blood glucose levels in adult, normal SD rats were measured, we observed
that pyridoxine administration resulted in a significant reduction in post-prandial blood glucose levels
after 30 min (Figures 4 and 5). More specifically, we observed a blood glucose reduction around
18% at 30 min when pyridoxal administration was compared to control. Taking into consideration
that pyridoxine is present in a wide variety of food products, knowledge of this additional health
benefit of pyridoxine can assist in the development of efficacious anti-hyperglycemia supplements and
food products.
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