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Abstract: Suboptimal zinc status is common in very young children and likely associated with
increased risk of infection and detrimental effects on growth. No studies have determined potentially
modifiable “predictors” of zinc status in toddlers from high-income countries. This cross-sectional
analysis of 115 toddlers from the Baby-Led Introduction to SolidS (BLISS) study used weighed
diet records (three non-consecutive days) to assess dietary intake, and a venous blood sample
(trace-element free techniques) to assess plasma zinc, at 12 months of age. “Predictors” of plasma
zinc were determined by univariate analysis and multiple regression. Mean (SD) plasma zinc was
9.7 (1.5) µmol/L, 60% were below the IZiNCG reference limit of <9.9 µmol/L. Median (25th, 75th
percentiles) intake of zinc was 4.4 (3.7, 5.4) mg/day. Red meat intake (p = 0.004), consumption of
zinc-fortified infant formula (3–6 mg zinc/100 g) (p = 0.026), and food fussiness (p = 0.028) were
statistically significant “predictors” of plasma zinc at 12 months. Although higher intakes of red meat,
and consumption of infant formula, are potentially achievable, it is important to consider possible
barriers, particularly impact on breastfeeding, cost, and the challenges of behavior modification. Of
interest is the association with food fussiness—further research should investigate the direction of
this association.

Keywords: zinc status; plasma zinc; toddlers; food fussiness; red meat; infant formula; zinc intake;
complementary feeding

1. Introduction

During early childhood the risk of zinc deficiency is increased [1], primarily because of a higher
physiological requirement for zinc due to the high growth rate during this time [2]. However, zinc
intake is also an issue because the complementary foods typically offered when solids are introduced
(e.g., fruit, vegetables, cereals) are generally low in absorbable zinc, and because after six months of
age breast milk no longer provides sufficient zinc to meet requirements [3].

Suboptimal zinc status has frequently been reported in studies of young children from
high-income countries, including New Zealand [4–13]. Inadequate zinc status during early childhood
is associated with an increased risk of infection [14,15]. This is particularly important as many toddlers
participate in child care programs where the exposure to illness is high [16]. Inadequate zinc status can
also have detrimental effects on growth [17]. Therefore, it is also important to determine what factors
may be modifiable during early childhood that might improve the zinc status of this age group.

Several international studies have indicated that various biological and methodological factors
affect zinc status, including age [5,18,19], season [20,21], inflammation or infection [18,22], time of the
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day [22–25], and fasting status [22,24,25]. Yet, to our knowledge, no study has assessed modifiable
“predictors” of zinc status in healthy infants or toddlers after standardizing these factors that are
known to affect plasma zinc concentrations.

The aim of this paper was to examine associations between dietary, biochemical, and other
variables, and plasma zinc concentration, and to determine potentially modifiable “predictors” of
plasma zinc at 12 months of age.

2. Materials and Methods

2.1. Study Design

This is a cross-sectional analysis of data collected in the Baby-Led Introduction to SolidS (BLISS)
study [26]. BLISS was a randomized controlled trial investigating the impact of a modified version of
Baby-Led Weaning (BLW) on several infant outcomes including growth [27], iron [28], and zinc [29]
status, and choking [30]. Written consent was obtained from all adult participants before randomization
to one of two groups: BLISS (infant self-feeding using a modified version of BLW) or Control (usual
care) between November 2012 and March 2014. The Lower South Regional Ethics Committee of New
Zealand approved the study (LRS/11/09/037).

2.2. Outcome Assessment

2.2.1. Questionnaire Data

Demographic data, including maternal age, ethnicity, education, and parity, were collected at
baseline (late pregnancy) by questionnaire. The participant’s current address was used to determine
household deprivation using the New Zealand Index of Deprivation (NZDep) score [31]. Infant sex,
birth weight, and gestational age at birth were accessed through hospital records. Parents completed a
questionnaire (self-administered) at 12 months of age which included questions from the Children’s
Eating Behaviour Questionnaire on food fussiness [32]. Using response options of “never”, “rarely”,
“sometimes”, “often”, or “always”, parents indicated whether their child enjoyed tasting new foods,
consumed a wide variety of foods, were interested in tasting new foods, refused new foods, decided
whether a food was disliked before tasting, and whether there was difficulty in pleasing the toddler
with meals. Higher mean scores represent higher levels of food fussiness [32] and Cronbach α for our
sample ranged from 0.64 to 0.88 for individual questions.

2.2.2. Anthropometric Assessment

Research staff measured toddler weight (Seca, Model 334, Hamburg, Germany) and length
(Rollameter 100c length board, Harlow Healthcare, South Shields, UK) in duplicate when they were
12 months of age. Infants were weighed without clothes (wearing only a standard weight nappy which
was subtracted from their weight on data entering), and length was measured with no shoes, complying
with the World Health Organization (WHO) protocols [33]. Weight-for-age and length-for-age z-scores
were calculated using the WHO child growth standards reference data [34].

2.2.3. Dietary Assessment

Weighed three-day diet records (WDRs) were used to assess dietary intake at 12 months of age.
Parent participants were given detailed written and oral instructions for completing the WDR and then
recorded all foods and beverages consumed on three randomly assigned non-consecutive days (two
weekdays and one weekend day) over a three-week period. Each day of the week was represented
approximately an equal number of times among participants to control for day-of-the-week effects.
Dietary scales (Salter Electronic, Salter Housewares Ltd., Tonbridge, UK), accurate to ±1 g were given
to each participant to complete the WDR. The completed WDRs were entered into Kai-culator (Version
1.13s, University of Otago, Dunedin, New Zealand), a New Zealand dietary analysis software program
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that includes dietary data from the New Zealand Food Composition Database (FOODfiles 2010, Plant
and Food Research) [35]. “Meat, fish, poultry”, heme iron, and non-heme iron [36] and phytate were
not available in the New Zealand Food Composition Database, but were determined using values
from the literature and information from the manufacturers [29].

2.2.4. Biochemical Assessment

A venous (antecubital vein) blood sample was collected from participants at 12 months of
age using trace-element free lithium heparin anticoagulated tubes (7.5 mL; S-Monovette, Sarstedt,
Nümbrecht, Germany) and standardized procedures, as recommended by the International Zinc
Nutrition Consultative Group (IZiNCG) [37]. A local anesthetic (Ametop gel, Smith & Nephew,
London, UK) was applied to the toddler’s arm 1–2 h before the appointment, and infants were
seated on a parent’s knee for the phlebotomy. Strict procedures were used to control for known
predictors of plasma zinc concentrations: time of blood collection [22–25], fasting status [22,24,25],
and inflammation [18,22]. To standardize food intake prior to the blood test, parents were asked to
feed their baby milk (as much as they wanted of the milk they usually have, e.g., breast milk, infant
formula, or cow’s milk) 90 min prior to the blood test appointment, and then to give no other food
or drink until after the blood test. To reduce the impact of inflammation, if the child was unwell on
the day before the scheduled blood test (i.e., presence of fever, diarrhea, or vomiting), the blood test
was delayed for 14 days. A questionnaire was also administered at the blood test appointment which
asked parents to confirm the timing of the milk feed, whether any illness was present and whether any
zinc-containing preparations were used in the past month.

Plasma zinc was determined using flame atomic absorption spectrophotometry (Perkin Elmer
AAnalyst 800), in the Department of Human Nutrition, University of Otago. The accuracy and
precision of the analyses were checked using certified controls and in-house pooled samples (after
every 15 samples). The analysed mean (SD, CV) value for the zinc control (UTAK Laboratories, Inc.,
Valencia, CA, USA) was 65.8 µmol/L (1.9 µmol/L, 2.9%), compared to the manufacturers’ concentration
of 65 µmol/L. Since the samples were collected from the toddlers in the morning, low plasma zinc
concentrations were defined as a concentration < 9.9 µmol/L [37]. Plasma zinc concentration is used
to indicate “zinc status” in this paper as has been recommended by IZiNCG [37], in the absence of a
more appropriate biomarker for determining “zinc status”.

C-reactive protein (CRP; a measure of acute inflammation), and α1-acid glycoprotein (AGP;
a measure of chronic inflammation) were analysed using a Cobas C311 automatic electronic analyser
(Roche Diagnostics, GmbH, Mannheim, Germany). These analyses were carried out in the Department
of Human Nutrition laboratories (University of Otago, Dunedin, New Zealand). The mean (SD, CV)
for the CRP control (Roche Diagnostics, GmbH, Mannheim, Germany) was 9.5 mg/L (0.4 mg/L, 4.6%),
compared with the manufacturer’s concentration of 9.1 mg/L. The multilevel controls for AGP (Roche
Diagnostics, GmbH, Mannheim, Germany) were 0.5 g/L (0.01 g/L, 1.1%) and 0.8 g/L (0.01 g/L, 1.4%),
compared with the manufacturer’s concentrations of 0.7 g/L and 1.2 g/L, respectively.

Complete blood count, which includes hemoglobin (Sysmex XE 5000 automatic electronic analyser,
Kobe, Japan) was determined by Southern Community Laboratories Ltd. (Dunedin, New Zealand),
the local clinical laboratory, where external quality control measures are completed regularly.

2.3. Statistical Analysis

There were no statistically significant differences in zinc status between the two study groups
(Control vs. BLISS) of the BLISS study [29], so the data were combined to enable this cross-sectional
analysis. Medians and lower and upper percentiles (25th and 75th) were used to describe the dietary
variables. Participant characteristics are presented as means and standard deviations.

Plasma zinc was adjusted for inflammation using the Biomarkers Reflecting Inflammation and
Nutrition Determinants of Anemia (BRINDA) multiple linear regression approach described by Larson
and colleagues [38]. The adjustment has two components: slopes of the associations between the
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inflammation markers and plasma zinc concentration, and difference between observed values and
the 10th percentile (to avoid over-adjustment amongst individuals with low levels of inflammation).
For the first component, two linear regression models were conducted using the natural log of plasma
zinc concentration as the dependent variable and natural logs of CRP and AGP as the independent
variables to determine the slope of the association (i.e., β1 and β2). For the second component, the
10th percentile for the natural logs of CRP and AGP were determined and the difference between the
natural log of the observed value and this 10th percentile was calculated for each participant (e.g.,
lnCRPdiff). The adjusted plasma zinc was then calculated for each participant: Adjusted plasma zinc
concentration = exp[unadjusted lnplasmazinc − β1(lnCRPdiff) − β2(lnAGPdiff)].

Univariate unadjusted and adjusted (for group) linear regression analyses were used to describe
associations between potential “predictor” variables and plasma zinc concentration. The “predictor”
variables were decided a priori to be of interest, either based on previous associations described in
the literature, or because they were considered to potentially have an association with zinc status
in toddlers. The variables from baseline that were investigated were: parity, maternal education,
socioeconomic status (SES; assessed as the level of household deprivation (NZDep score) [31]), and
infant sex. The variables from 12 months that were investigated were: hemoglobin concentration,
weight-for-age z-score, length-for-age z-score, food fussiness score, topical zinc preparation use in
the past month; and the intake of: energy, total dietary zinc, phytate, “meat, fish, poultry”, red meat,
cow’s milk, dairy (excluding cow’s milk). It was not possible to model breast milk and infant formula
intake because there were so many non-consumers, so breast milk, and infant formula (all formulas
in New Zealand are iron- and zinc-fortified), were used as dichotomous (i.e., yes vs. no) variables.
The age when complementary foods were introduced was also investigated. Although other variables
are also known to predict zinc status in childhood (e.g., age, season, time of blood collection, and
fasting status), these factors were standardized during data collection and therefore not included in
the analyses. Plasma zinc concentration was adjusted for inflammation as described above.

Variables that had an adjusted association of p < 0.10 in these univariate analyses, and that
were also potentially modifiable, were considered for inclusion in the final multivariate model. This
meant that hemoglobin concentration, maternal education, household deprivation, and breast milk
consumption were excluded, even though they met the p < 0.10 criterion, because they were not
considered to be modifiable. Although mothers who were breastfeeding at 12 months could potentially
modify the amount their toddler was given, it was not considered to be practically possible to start
breastfeeding at 12 months if the toddler had been weaned. Intervention group was not included in
the final regression model as it had very little impact on the univariate analyses. Product-moment
correlations were used to examine the association between the potentially modifiable “predictors” and
plasma zinc concentrations. The final model used robust standard errors to overcome problems with
the distribution of some of the variables.

All analyses were conducted using Stata, version 14.2 (StataCorp LP, College Station, TX, USA).

3. Results

3.1. Participant Characteristics at Baseline

Baseline maternal and infant characteristics are presented in Table 1 for participants who provided
a plasma zinc sample (n = 115). Participants who provided a plasma zinc sample had similar baseline
characteristics to those who did not, with none of the variables in Table 1 differing statistically
significantly between those who did and did not provide a sample. Of those who provided a sample,
similar proportions were primiparous and multiparous, 73% self-identified as being of New Zealand
European ethnicity, and 52% had a university qualification. The level of household deprivation was
high for 23% of participants (lower than the 30% expected for the New Zealand population [31]).
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Table 1. Maternal and infant baseline characteristics of participants who provided plasma zinc data at
12 months of age 1.

Total (n = 115)

Maternal and Household Variables at Baseline

Maternal parity

First child 44 (38)
Two children 47 (41)
Three or more children 24 (21)

Maternal ethnicity

New Zealand European 84 (73)
Māori 22 (19)
Other 2 9 (8)

Maternal education

School only 33 (29)
Post-secondary 22 (19)
University 60 (52)

Household deprivation 3

1–3 (Low) 30 (26)
4–7 59 (51)
8–10 (High) 26 (23)

Infant variables at baseline

Sex

Female 61 (53)
Male 54 (47)

Group 4

Control 58 (50)
BLISS 57 (50)

1 Data presented as n (%). 2 Other ethnicities were Asian and Pacific. 3 Household deprivation categorized using the
NZDep scale in which decile 1 indicates the lowest level of deprivation and 10 indicates the highest [31]. 4 As part
of the BLISS randomized controlled trial, participants were randomized to either the Control or BLISS group after
stratification for maternal education and parity [27].

3.2. Participant Characteristics at 12 Months of Age

Dietary intake, biochemical indices, and anthropometry of toddlers who provided plasma zinc
data at 12 months of age are presented in Table 2. Adjusting plasma zinc for acute (CRP) and chronic
(AGP) inflammation did not alter the mean plasma zinc concentration at 12 months (Table 2).

Table 2. Characteristics of toddlers who provided plasma zinc data at 12 months of age (n = 115).

Median (25th, 75th) 1

Biochemical Variables

Unadjusted plasma zinc, µmol/L (mean (SD)) 9.7 (1.5)
Adjusted plasma zinc, µmol/L (mean (SD)) 2 9.7 (1.5)
Hemoglobin, g/L (mean (SD)) 3 117 (8.7)
C-reactive protein, mg/L 0.1 (0.0, 0.5)
α1-acid glycoprotein, g/L 0.61 (0.47, 0.87)

Dietary variables 4

Energy, kJ/day 3543 (3090, 4168)
Zinc, mg/day 4.4 (3.7, 5.4)
Phytate, mg/day 230 (150, 318)
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Table 2. Cont.

Median (25th, 75th) 1

Phytate:zinc molar ratio 5 5.0 (3.4, 7.1)
“Meat, fish, poultry”, g/day 18.9 (9.5, 30.5)
Red meat, g/day 4.4 (0, 11.5)
Cow’s milk, g/day 21.6 (5.9, 132)
Dairy, g/day 6 39.9 (9.5, 73.9)

Breast milk (n (%))

No 47 (45)
Yes 57 (55)

Infant formula (n (%))

No 59 (57)
Yes 45 (43)

Other variables

Weight, kg (mean (SD)) 7 9.8 (1.1)
Length, cm (mean (SD)) 7 75.8 (2.6)
Weight-for-age z-score (mean (SD)) 7,8 0.37 (0.96)
Length-for-age z-score (mean (SD)) 7,9 0.26 (0.93)
Food fussiness score (mean (SD)) 7,10 2.1 (0.6)
Age complementary foods introduced, weeks (mean (SD)) 23.5 (3.6)

Topical zinc preparation use in the past month (n (%))

No 56 (49)
Yes 59 (51)

1 Data presented as median (25th, 75th), unless otherwise specified. 2 Adjusted plasma zinc = exp[unadjusted
lnplasmazinc − (regression coefficient for lnCRP) * (lnCRPdiff) − (regression coefficient for lnAGP) * (lnAGPdiff)]
from Larson et al. [38]. 3,4 Available data for 3 n = 114, 4 n = 104. 5 Calculated as [phytate (mg)/660]/[zinc (mg)/65.4].
6 Excludes cow’s milk. 7 Available data for n = 114. 8 Weight-for-age z-score calculated using the World Health
Organization child growth standards reference data [34]. 9 Length-for-age z-score calculated using the World Health
Organization child growth standards reference data [34]. 10 Food fussiness was determined using the six questions
on food fussiness from the Children’s Eating Behaviour Questionnaire [32]. Lowest score: 1.0, highest score: 5.0.

Median (25th, 75th percentiles) intakes of zinc were 4.4 (3.7, 5.4) mg/day and the phytate-to-zinc
molar ratio was 5:1 (3.4:1, 7.1:1). The mean (SD) plasma zinc concentration was 9.7 (1.5) µmol/L, with
60% (n = 69) of toddlers below the IZiNCG morning non-fasting reference limit of <9.9 µmol/L [37].
The distribution of the plasma zinc values is presented in Figure 1.
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The mean (SD) BMI and BMI z-score of participants in the BLISS study groups were
16.9 (1.36) kg/m2 and 0.20 (0.89) for the Control group, and 17.3 (1.69) kg/m2 and 0.44 (1.13) for
the BLISS group [27]. One (0.9%) participant was considered stunted (using the WHO classification
of a length-for-age z-score < −2 SD [39]) and another (0.9%) was underweight (using the WHO
classification of a weight-for-age z-score < −2 SD [39]) at 12 months of age.

3.3. Univariate Associations between Potential “Predictor” Variables and Plasma Zinc Concentrations

Unadjusted and adjusted univariate associations with plasma zinc concentration are presented
in Table 3. Toddlers of mothers with university education had an almost 1 µmol/L lower plasma
zinc concentration than toddlers whose mothers had a school education only, after adjusting for
group (p = 0.022) (Table 3). Toddlers living in high-deprivation households had an almost 1 µmol/L
higher plasma zinc concentration compared with toddlers living in low-deprivation households, after
adjusting for group (p = 0.043) (Table 3).

Table 3. Univariate associations between potential “predictor” variables and plasma zinc concentration
(µmol/L) at 12 months of age.

Change in Plasma Zinc Concentration (µmol/L) 1 for Each Unit
Change in the Potential “Predictor”

Unadjusted Adjusted for Group

n (%) B (95% CI) p B (95% CI) p

Biochemical variables

Hemoglobin, g/L 114 (99) 0.05 (0.01, 0.08) 0.005 0.05 (0.02, 0.08) 0.004

Dietary variables

Energy, kJ/day 104 (90) 0.00 (−0.00, 0.00) 0.07 0.00 (−0.00, 0.00) 0.07
Zinc, mg/day 104 (90) 0.23 (0.07, 0.39) 0.005 0.23 (0.07, 0.39) 0.005
Phytate, mg/day 104 (90) 0.00 (−0.00, 0.00) 0.70 0.00 (−0.00, 0.00) 0.71
“Meat, fish, poultry”, g/day 104 (90) 0.02 (0.00, 0.03) 0.015 0.02 (0.00, 0.03) 0.016
Red meat, g/day 104 (90) 0.02 (0.00, 0.03) 0.015 0.02 (0.00, 0.03) 0.016
Cow’s milk, g/day 104 (90) 0.00 (−0.00, 0.00) 0.66 0.00 (−0.00, 0.00) 0.69
Dairy, g/day 2 104 (90) −0.00 (−0.01, 0.00) 0.50 −0.00 (−0.01, 0.00) 0.54

Breast milk

No 47 (45) 1.00 (reference) - 1.00 (reference) -
Yes 57 (55) −0.53 (−1.11, 0.06) 0.077 −0.52 (−1.11, 0.06) 0.080

Infant formula

No 59 (57) 1.00 (reference) - 1.00 (reference) -
Yes 45 (43) 0.76 (0.18, 1.33) 0.010 0.77 (0.19, 1.34) 0.010

Other variables

Maternal parity

First child 44 (38) 1.00 (reference) - 1.00 (reference) -
Two children 47 (41) −0.17 (−0.81, 0.47) 0.60 −0.16 (−0.80, 0.48) 0.62
Three or more children 24 (21) −0.41 (−1.19, 0.36) 0.29 −0.39 (−1.18, 0.39) 0.32

Maternal education

School only 33 (29) 1.00 (reference) - 1.00 (reference) -
Post-secondary 22 (19) −0.33 (−1.15, 0.49) 0.43 −0.35 (−1.18, 0.48) 0.41
University 60 (52) −0.77 (−1.42, −0.12) 0.020 −0.77 (−1.42, −0.11) 0.022

Household deprivation 3

1–3 (Low) 30 (26) 1.00 (reference) - 1.00 (reference) -
4–7 59 (51) 0.09 (−0.60, 0.78) 0.80 0.07 (−0.61, 0.76) 0.83
8–10 (High) 26 (23) 0.80 (0.02, 1.56) 0.044 0.80 (0.03, 1.57) 0.043

Sex

Male 54 (47) 1.00 (reference) - 1.00 (reference) -
Female 61 (53) −0.21 (−0.78, 0.36) 0.47 −0.23 (−0.81, 0.34) 0.42

Weight-for-age z-score 4 114 (99) 0.02 (−0.28, 0.32) 0.91 0.02 (−0.28, 0.32) 0.90



Nutrients 2018, 10, 306 8 of 15

Table 3. Cont.

Change in Plasma Zinc Concentration (µmol/L) 1 for Each Unit
Change in the Potential “Predictor”

Unadjusted Adjusted for Group

n (%) B (95% CI) p B (95% CI) p

Length-for-age z-score 5 114 (99) 0.14 (−0.16, 0.45) 0.35 0.16 (−0.15, 0.47) 0.32
Food fussiness score 6 114 (99) −0.44 (−0.89, 0.02) 0.06 −0.41 (−0.88, 0.06) 0.09
Age complementary foods
introduced, weeks 115 (100) 0.03 (−0.05, 0.11) 0.39 0.03 (−0.05, 0.11) 0.47

Topical zinc preparation use in the
past month

No 59 (51) 1.00 (reference) - 1.00 (reference) -
Yes 56 (49) −0.07 (−0.64, 0.50) 0.82 −0.07 (−0.64, 0.50) 0.81

Bold indicates p < 0.10. 1 Adjusted plasma zinc = exp[unadjusted lnplasmazinc − (regression coefficient for
lnCRP) * (lnCRPdiff) − (regression coefficient for lnAGP) * (lnAGPdiff)] from Larson et al. [38]. 2 Excludes cow’s
milk. 3 Household deprivation categorized using the NZDep scale in which decile 1 indicates the lowest level
of deprivation and 10 indicates the highest [31]. 4 Weight-for-age z-score calculated based on the World Health
Organization standards [34]. 5 Length-for-age z-score calculated based on the World Health Organization standards
[34]. 6 Food fussiness was determined using the six questions on food fussiness from the Children’s Eating Behaviour
Questionnaire [32]. Lowest score: 1.0, highest score: 5.0.

3.4. Multiple Regression Analysis of “Predictors” of Plasma Zinc Concentrations at 12 Months of Age

The correlation matrix shows the strength of the association between the continuous modifiable
“predictor” variables (Table 4). Energy, zinc intake, “meat, fish, poultry”, and red meat were strongly
correlated with each other as well as being significantly correlated with plasma zinc, so it was only
appropriate for one of them to be used in the final model. Red meat was the variable included in the
final model because it was a specific component of the BLISS study intervention [26] and a component
of the other variables. Therefore, the final model comprised red meat intake, consumption of infant
formula (formulas contained 3–6 mg zinc per 100 g), and food fussiness score (Table 5).

Table 4. Correlations (r) between potentially modifiable “predictor” variables, and between these
continuous variables and plasma zinc concentration.

Potentially Modifiable “Predictor” Variables

Plasma Zinc Energy Zinc Red Meat MFP Infant Formula Food Fussiness

Potentially
modifiable
“predictor”
variables

Plasma zinc -
Energy 0.18 -

Zinc 0.27 * 0.82 ** -
Red meat 0.24 * 0.59 ** 0.73 ** -

MFP 0.24 * 0.53 ** 0.70 ** 0.70 ** -
Food fussiness −0.18 −0.15 −0.07 −0.01 0.01 0.10 -

Abbreviations: MFP, “meat, fish, poultry”. * p < 0.05, ** p < 0.001.

Table 5. Multiple regression analysis of “predictors” of plasma zinc concentrations at 12 months of age
(n = 103).

Change in Plasma Zinc Concentration (µmol/L) 1 for Each Unit Change in the “Predictor”

B (SE) p

Red meat intake, 10 g/day 0.12 (0.04) 0.004
Infant formula

No 1.00 (reference) -
Yes 0.64 (0.28) 0.026

Food fussiness score 2 −0.49 (0.22) 0.028

Bold indicates a statistically significant difference at p < 0.05. 1 Adjusted plasma zinc = exp[unadjusted lnplasmazinc
− (regression coefficient for lnCRP) * (lnCRPdiff) − (regression coefficient for lnAGP) * (lnAGPdiff)] from
Larson et al. [38]. 2 Food fussiness was determined using the six questions on food fussiness from the Children’s
Eating Behaviour Questionnaire [32]. Lowest score: 1.0, highest score: 5.0.
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Toddlers had a 0.12 µmol/L higher plasma zinc concentration per 10 g of red meat consumed
per day (p = 0.004), and toddlers who consumed zinc-fortified infant formula had on average a
0.64 µmol/L higher plasma zinc concentration compared with those who did not consume infant
formula (p = 0.026) (Table 5). Food fussiness was also significantly associated with plasma zinc
concentration. A one-unit increase in food fussiness score (possible score range: 1.0 to 5.0, where
highest scores represent increased food fussiness) was associated with a 0.49 µmol/L lower plasma
zinc concentration (p = 0.028).

The R2 for the final model was 0.13 (p < 0.001) indicating that 13% of the variance in plasma zinc
concentration (µmol/L) was explained by these three “predictors”.

4. Discussion

In this cross−sectional analysis, a large proportion (60%) of toddlers had plasma zinc
concentrations below the recommended reference limit of <9.9 µmol/L [37]. Red meat intake,
consumption of infant formula, and food fussiness were significant potentially-modifiable “predictors”
of zinc status at 12 months of age.

Whether the high proportion of toddlers with plasma zinc values below the reference limit is of
concern is uncertain. The current reference limit applied here was not based on data for children less
than three years of age [2] and, hence, may be inappropriate for toddlers aged 12 months [40,41].

Several variables were significantly associated with plasma zinc concentration in the univariate
analysis including hemoglobin, maternal education, household deprivation, dietary intakes of: energy,
zinc, “meat, fish, poultry”, red meat, and consumption of breast milk and infant formula. In
contrast to findings from previous studies [18,24,42,43], no association was seen between plasma
zinc concentration and growth indicators (length-for-age and weight-for-age z-scores), or dietary
phytate intake. However, in the final regression model, the variables that were significantly associated
with plasma zinc concentration at 12 months, and were potentially modifiable, were red meat intake,
consumption of zinc-fortified infant formula, and food fussiness score.

The magnitude of the association between plasma zinc concentration and red meat was small
(0.12 µmol/L per 10 g of intake). This small effect can be illustrated by the increase in red meat
consumption required to theoretically produce an increase in plasma zinc concentration from the
observed mean of 9.7 µmol/L to the recommended reference level of 9.9 µmol/L [37]. At 17 g/day,
this increase in red meat intake is substantially higher than the median intake of this group (4.4 g/day),
indicating that such an increase would be challenging. Although a previous intervention in New
Zealand toddlers reported a 17 g per day increase in red meat consumption, the meals were provided
ready-prepared and free of charge to the parents [44]. This suggests that modifying red meat intake
alone is unlikely to be sufficient to increase plasma zinc concentrations meaningfully at 12 months of
age. Although there have been concerns about the possible health effects of excessive intakes of red
meat in adults [45], we are aware of no published studies that have investigated whether there may be
detrimental effects of an increased intake of red meat in infants and toddlers. An increase in red meat
intake of 17 g/day, as discussed in the current study, would result in total intakes of approximately
150 g/week—substantially lower than the recommended safe level for adults of 500 g/week (no
corresponding figures exist for infants). The saturated fat content of red meat may also be a concern.
However, in adults, an increased intake of lean red meat in an otherwise healthy diet does not appear
to adversely affect serum lipids [46].

Toddlers consuming zinc-fortified infant formula had a 0.64 µmol/L higher plasma zinc
concentration than toddlers who did not consume formula. While consuming infant formula may
seem achievable for toddlers, it is important to consider whether the consumption of infant formula
would then replace other milk feeding (particularly breast milk), and the cost. It is also not clear
from the analyses we have been able to carry out here how much infant formula is needed to have a
meaningful impact on zinc status—presumably there is a dose−response relationship of some sort,
and intakes were as high as 908 mL per day in some of these toddlers.
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The relationship between food fussiness and zinc concentrations is potentially exciting.
A one-point lower food fussiness score was associated with a plasma zinc concentration that was
0.49 µmol/L higher in this group of toddlers. This suggests that either a decrease in food fussiness
score could result in an increase in plasma zinc concentration (Figure 2A: direction 1), or an increase
in plasma zinc concentration could result in a lower food fussiness score (Figure 2A: direction 2).
Unfortunately, it is not possible to determine from this observational analysis whether food fussiness
caused lower plasma zinc concentration, or vice versa. There is very limited research in this area,
but it does appear that increased food fussiness may result in decreased zinc intake (Figure 2B:
pathway 1) [47] and there is a plausible mechanism for this association—if an infant or toddler is more
food fussy, then they may eat fewer foods that are high in zinc, and may also consume fewer foods that
enhance zinc absorption (e.g., meat). In turn, decreased zinc intakes may result in poorer zinc status
(Figure 2B: pathway 2). However, there is also evidence for the opposite pathway from low zinc status
to increased food fussiness. Lower zinc status may result in impaired taste acuity in children [42,48,49]
which may, in turn, result in higher food fussiness [50] (Figure 2B: pathways 3 and 4).

The only way to resolve the uncertainty about the direction of the association reported in the
current study would be to conduct a randomized controlled trial of zinc supplementation, with the
measurement of changes in taste acuity and food fussiness; or an intervention to reduce food fussiness
(such as the behavioral intervention by Birch et al. [51], which achieved an improvement in children’s
food preference by increasing the frequency of their exposure to a food) with measurement of the
subsequent impact on zinc intake and plasma zinc concentration.

The final regression model comprising red meat intake, infant formula consumption, and food
fussiness, explained 13% of the variance in plasma zinc concentrations. This highlights that many other
factors are contributing to zinc status in toddlers that were not included in this final model. More work
is necessary to determine further factors that have the potential to affect plasma zinc concentrations in
this age group, and whether any of these are potentially modifiable.

This study has a number of strengths, including rigorous dietary data collection using weighed
diet records, a method that is recommended for estimating dietary intakes of very young children [52].
The quality of the dietary assessment data is reflected in our ability to detect a significant association
between dietary zinc intake and zinc status. We used strict trace element-free methods to collect and
separate blood samples for determining plasma zinc concentrations, as recommended by IZiNCG [40].
Additionally, we were able to minimize variability due to fasting status by using a rigorous pre-sample
protocol that included encouraging parents to feed their child milk 90 min before the blood test, and
then no other food or drink until after the blood sample was collected; and to minimize the impact of
infection on plasma zinc concentrations, by delaying the blood test for 14 days if the child was unwell.

It is important to note the limitations of the current study which include that this was a
cross-sectional secondary analysis using data from the BLISS study—a randomized, controlled trial
that was not specifically designed to determine predictors of zinc status. Additionally, although the
biochemical and dietary data were both collected at, or soon after, the toddlers turned 12 months of
age, the dietary data were collected over a three-week period, and some participants’ blood samples
were delayed if they had been unwell, so the intakes presented here may not be a true reflection of
dietary intakes immediately before the blood sample was collected. Lastly, conclusions from this study
should be treated with caution as this was an observational study, so causation and the direction of
associations cannot be determined.
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5. Conclusions

In this cross-sectional analysis, intake of red meat and the consumption of zinc-fortified infant
formula were positively associated with plasma zinc concentrations, whereas food fussiness score was
inversely associated with plasma zinc. Although higher intakes of red meat and the consumption
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of infant formula are potentially achievable in the diets of toddlers, it is important to consider the
potential barriers associated with increasing intakes of both of these foods—particularly the possible
impact on breastfeeding, cost, and parents’ and toddlers’ willingness to modify their behavior. This
analysis provides compelling evidence for an association between food fussiness and zinc status,
however, further studies are required to determine the direction of this association.
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