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Abstract: Whole egg is a food source of dietary cholesterol and inconsistent research findings exist
about the effect of dietary cholesterol from whole egg on blood cholesterol concentration. We assessed
the effect of co-consuming cooked whole egg (CWE) on dietary cholesterol absorption from two
randomized-crossover studies. For study 1, 16 men consumed raw vegetables with no egg, 75 g CWE,
or 150 g CWE. For study 2, 17 women consumed cooked vegetables with no egg or 100 g CWE.
Triacylglycerol-rich lipoprotein fractions (TRL) were isolated from collected blood. In study 1,
total-cholesterol areas under the curve (AUC)0–10h in TRL were not different but triacylglycerol
AUC0–10h in TRL was greater for 150 g CWE vs. 75 g CWE and no egg. Similarly, in study 2,
total-cholesterol AUC0–10h in TRL was not different but triacylglycerol AUC0–10h in TRL was
greater for 100 g CWE vs. no egg. In both studies, whole egg consumption did not affect plasma
total-cholesterol AUC0–10h, while triacylglycerol AUC0–10h was increased. These results suggest that
the dietary cholesterol in whole egg was not well absorbed, which may provide mechanistic insight
for why it does not acutely influence plasma total-cholesterol concentration and is not associated
with longer-term plasma cholesterol control.

Keywords: whole egg; dietary cholesterol; triacylglycerol-rich lipoprotein fractions; total cholesterol;
triacylglycerol

1. Introduction

Cholesterol’s important functions in the human body include an essential structural component
in cell membranes and being a chemical precursor of steroid hormones and bile acids [1,2].
Cholesterol is also a major component of the human brain [3]. Although about 15–25% of total
body cholesterol comes from diet [4], dietary cholesterol is implicated in increasing blood total
and low density lipoprotein (LDL) cholesterol concentrations [5], and the risk of cardiovascular
diseases (CVD) [6,7]. Previous Dietary Guidelines for Americans recommended for the general
population of the United States to consume no more than 300 mg/day of dietary cholesterol [8,9].
However, research presented in the 2015 Dietary Guidelines Advisory Committee report [10]
and the 2013 American College of Cardiology/American Heart Association Lifestyle Guideline
for the Reduction of Cardiovascular Disease [11] brought into question the apparent association
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between dietary cholesterol consumption and blood cholesterol concentration, thus negating the
recommendation for Americans to limit dietary cholesterol intake.

Whole egg is a well-known food source of dietary cholesterol and contains unsaturated fat,
high-quality protein, and varying quantities of vitamins and minerals [12,13]. Despite the nutritional
benefits, egg consumption is generally discouraged due to the high cholesterol content in egg yolk [14].
However, inconsistent research findings exist about the effect of dietary cholesterol from whole egg on
CVD risk [15–17] and favorable changes in blood lipids and lipoproteins after whole egg consumption
are suggested [18]. Although consumption of increasing amounts of dietary cholesterol increased
postprandial plasma phospholipid concentration and triacylglycerol content within triacylglycerol-rich
lipoprotein (TRL) fractions [19], the absorption of dietary cholesterol from whole egg in humans
requires investigation. Specifically, postprandial changes in total cholesterol concentration within
TRL fractions, which includes biliary cholesterol and newly absorbed cholesterol from a consumed
meal [4,20], require investigation.

The main objective of this research was to assess the effect of consuming cooked whole eggs
on cholesterol absorption in adults, measured in TRL fractions. Triacylglycerol concentration within
TRL fractions was also measured and used as a control comparison. The results presented in this
manuscript were obtained using secondary data from two randomized, cross-over, controlled acute
feeding studies designed to assess the impact of consuming eggs on the absorption of fat soluble
nutrients from a co-consumed meal [21,22].

2. Materials and Methods

2.1. Studies 1 and 2: Ethics and Protocol Registration

The Purdue University Biomedical Institutional Review Board approved both studies. All subjects
signed an informed consent form and received monetary compensation for their participation. Clinical trial
profiles for study 1 and study 2 are described at NCT01951313 and NCT02679794, respectively.

2.2. Study 1: Subjects

Sixteen men from the greater Lafayette, IN, region completed the study (Figure 1). Inclusion criteria
included weight stability (±3 kg in the past 3 months); no vigorous exercising over the past 3 months;
no intestinal disorders including fat mal-absorption or lactose intolerance; normal liver and kidney
functions; fasting blood glucose <110 mg/dL; no smoking; not drinking more than 2 alcoholic
beverages per day; and not taking lipid-lowering medications or dietary supplements affecting plasma
cholesterol concentration.

2.3. Study 1: Study Design

For this single-blinded, randomized and crossover-design study [22], all subjects completed
3 trials; SAS 9.2 software (SAS Institute Inc., Cary, NC, USA) was used to randomize the trial orders.
The investigators were blinded with regard to treatment order until all subjects finished the protocol
and all sample analyses were completed, while the subjects and dietitians were not blinded. Prior to
each testing day, subjects consumed a prescribed low carotenoid diet for 7-day. On each of the three
testing days, subjects came to the Purdue clinical research center after a 12-h overnight period of
fasting and a catheter was placed into an antecubital vein. After a baseline blood sample was collected,
subjects consumed a test meal based on their randomization order. After the test meal was consumed,
blood samples were collected hourly for 10 h and lunch was consumed after blood was collected at
hour 5. The 3 periods of prescribed diet and testing were each separated by one-week dietary washout
periods when subjects consumed their habitual unrestricted diets.
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Figure 1. Consolidated Standards of Reporting Trials flow diagrams for study 1 and study 2.

2.4. Study 1: Test Meal

On each of the three testing days, subjects consumed a raw mixed-vegetable salad (0 mg dietary
cholesterol) including tomatoes, shredded carrots, baby spinach, lettuce, and Chinese wolfberry with
no egg, with 75 g cooked whole egg (CWE), or with 150 g CWE. All salads were also served with
3 g canola oil. A served raw mixed-vegetable salad with 3 g canola oil provided 92 kcal, 3 g protein,
12 g carbohydrate, 4 g fat, and 0 mg of cholesterol. The no egg, 75 g CWE, and 150 g CWE included
0 mg, 280 mg, and 560 mg of total cholesterol, respectively. Cooked whole eggs were prepared
uniformly from large eggs based on the American Egg Board’s recommendation [23] and portioned
appropriately to dose. The low-cholesterol lunch consumed at hour 5 provided 526 kcal, 23 g protein,
100 g carbohydrates, 4 g fat, and 19 mg of cholesterol. All menus were developed by a registered
dietitian using Pronutra software version 3.3 (Viocare, Inc. Princeton, NJ, USA) and all foods were
prepared, portioned, and provided to the subjects by research staff in the Department of Nutrition
Science Metabolic Kitchen at Purdue University.

2.5. Study 2: Subjects

Seventeen women from the greater Lafayette, IN, region completed the study (Figure 1).
Inclusion criteria included weight stability (±3 kg in the past 3 months); no vigorous exercising over the
past 3 months; no intestinal disorders including fat mal-absorption or lactose intolerance; normal liver
and kidney functions; blood 25-hydroxyvitamin D ≥20 nmol/L; fasting blood glucose <110 mg/dL;
no smoking; not drinking more than 2 alcoholic beverages per day; not taking estrogen-based birth
control or osteoporosis prevention or treatment medications in the past 3 months; and not taking
lipid-lowering medications or dietary supplements affecting plasma cholesterol concentration.
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2.6. Study 2: Study Design

For this investigator-blinded, randomized, crossover-design study SAS 9.2 software (SAS Institute
Inc., Cary, NC, USA) was used to randomize the trial orders and all subjects completed the two trials.
Prior to each testing day, subjects consumed a prescribed low carotenoid and low-vitamin D diet for
7-day. On each of the two testing days, a catheter was placed into an antecubital vein and after a
baseline blood sample was collected, subjects consumed a test meal. After the test meal was consumed,
blood samples were collected hourly for 10 h and lunch was consumed after blood was collected at
hour 5. Three-week dietary washout periods were scheduled between the 2 prescribed diet and testing
periods since menstrual cycle phase may affect lipid and lipoprotein metabolism [23,24].

2.7. Study 2: Test Meal

On each of the two testing days, subjects consumed sautéed vegetables (0 mg dietary cholesterol)
including carrots, spinach, pepper, tomato salsa, and vitamin D enriched Portobello mushroom and
3 g canola oil with no egg or with 100 g CWE. The served sautéed vegetables with 3 g canola oil
provided 92 kcal, 3 g protein, 12 g carbohydrate, 4 g fat, and 0 mg of cholesterol. The no egg and
100 g CWE included 0 mg and 373 mg of total dietary cholesterol, respectively. The low cholesterol
lunch consumed at hour 5 provided 443 kcal, 15 g protein, 88 g carbohydrates, 3 g fat, and 14 mg of
cholesterol. A registered dietitian developed all menus, as described above.

2.8. Studies 1 and 2: Sample Collection and Analyses

2.8.1. Baseline Blood Sample Collection and Lipid-Lipoprotein Analysis

Fasting state bloods were collected into serum separator tubes and tubes were held at room
temperature for 30 min and centrifuged at 4000× g at 4 ◦C for 15 min. Serum tubes were
sent to MidAmerica Clinical Laboratories (Indianapolis, IN, USA) and lipid-lipoprotein profiles
(triacylglycerol, total cholesterol, and high density lipoprotein (HDL) cholesterol) were measured
using photometric assays (Chemistry Immuno Analyzer AU5700; Olympus, Center Valley, PA, USA)
and low density lipoprotein (LDL) cholesterol was calculated using the Friedewald equation [25].

2.8.2. Blood Sample Collection and Plasma and Triacylglycerol-Rich Lipoprotein Fraction Isolation

On each testing day, bloods were collected into EDTA tubes and portions of collected blood
samples were centrifuged (3000× g, 15 min, 4 ◦C) to obtain plasma and aliquots of plasma were stored
at −80 ◦C until thawed for analyses. Ten mL of fresh plasma were also processed to isolate the TRL
fractions as previously reported [21,22]. The isolated TRL fractions were pipetted into cryo-storage
tubes, which were flushed with nitrogen gas and stored at −80 ◦C until thawed for analysis.

2.8.3. Total Cholesterol and Triacylglycerol Analyses

Total cholesterol and triacylglycerol concentrations within the TRL fractions and plasma were
assessed in duplicate using a Cobas MIRAS Plus chemistry analyzer (Roche Analytical Instruments,
Nutley, NJ, USA). Postprandial total cholesterol and triacylglycerol concentrations within the TRL
fractions and plasma were baseline corrected by subtracting fasting concentrations from each time point.
The 0–10 h positive incremental areas under the curve (AUC) of total cholesterol and triacylglycerol
concentrations in TRL fractions were then calculated.

2.9. Studies 1 and 2: Power Calculation and Statistical Analysis

Since the assessment of whole egg consumption on cholesterol absorption is a secondary objective
of both studies, subject sample size estimates were not done based on this outcome of interest.
Retrospectively, we conducted effect-size calculations before implementing the data analysis. For these
within-subject, crossover-designed studies, an a priori power calculation was completed for two
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dependent means (no egg vs. 150 g CWE for study 1 and no egg vs. 100 g CWE for study 2,
correlation = 0.5) to detect a difference equal to 1 SD between treatments (a = 0.05; 90% power; 2 tailed).
The effect size was one and the total number of participants needed for each study was estimated to be
13, which is less than the 16 subjects tested for Study 1 and 17 subjects tested for Study 2.

Age and BMI adjusted repeated-measures ANOVA with post hoc Tukey’s test was performed to
determine differences of baseline corrected total cholesterol and triacylglycerol concentrations at each
time point. Age and BMI adjusted one-factor ANOVA with post hoc Tukey’s test was also applied
to assess the differences in baseline-corrected positive incremental AUC0–10h of total cholesterol and
triacylglycerol in TRLs and plasma. All of the analyses were performed using SAS 9.2 (SAS Institute
Inc., Cary, NC, USA) and data are presented as least-squares means (lsmeans) ± standard error (SE) of
the lsmean unless otherwise noted. Statistical significance was accepted at p < 0.05 (2-tailed).

3. Results

3.1. Subject Baseline Characteristics

3.1.1. Study 1

The mean ± SE age and BMI of the 16 men were 24 ± 1 year and 24 ± 1 kg/m2, respectively.
Blood lipid and lipoprotein concentrations were 99 ± 14 (triacylglycerol), 171 ± 8 (total cholesterol),
52 ± 3 (HDL cholesterol), and 100 ± 7 (LDL cholesterol) mg/dL.

3.1.2. Study 2

Among the 17 women, mean ± SE age was 45 ± 4 year and BMI was 25 ± 2 kg/m2. Blood lipid
and lipoprotein concentrations were as follows: triacylglycerol, 90 ± 12; total cholesterol, 183 ± 11;
HDL cholesterol, 56 ± 3; and LDL cholesterol, 109 ± 10 mg/dL.

3.2. Total Cholesterol and Triacylglycerol Concentrations in TRL Fractions

3.2.1. Study 1

Total cholesterol concentrations within TRL fractions at each time point were not different among
trials during the 10 h of testing (Supplemental Figure S1 A). The total cholesterol AUC0–10h within
TRL fractions also were not different among 150 g CWE vs. 75 g CWE vs. no egg (lsmean ± SE;
5.3 ± 1.2 vs. 4.2 ± 1.2 vs. 1.7 ± 1.2 mg·dL−1·10 h, p = 0.10) (Figure 2). In contrast, from hours 3 to
6, the 150 g CWE presented greater triacylglycerol concentrations within TRL fractions than did no
egg (Supplemental Figure S1B). The triacylglycerol AUC0–10h within TRL fractions was greater for
150 g CWE vs. 75 g CWE and no egg (80 ± 12b vs. 21 ± 12a vs. 13 ± 12a mg·dL−1·10 h, p = 0.0006)
(Figure 2).

3.2.2. Study 2

Similar to study 1, total cholesterol concentrations within TRL fraction during the 10 h of testing
(Supplemental Figure S2A) and the total cholesterol AUC0–10h within TRL fractions were not different
between 100 g CWE vs. no egg (5.2 ± 1.0 vs. 3.8 ± 1.0 mg·dL−1·10 h, p = 0.30) (Figure 3). At hours 3
and 4, the 100 g CWE treatment presented a greater triacylglycerol concentrations within TRL fractions
than no egg (Supplemental Figure S2B) and the triacylglycerol AUC0–10h within TRL fractions was
greater for 100 g CWE vs. no egg (31 ± 3b vs. 11 ± 3a mg·dL−1·10 h, p < 0.0001) (Figure 3).
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Figure 2. Total cholesterol and triacylglycerol AUC0–10h within TRL fractions in study 1. Values are
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not significant; TRL, triacylglycerol-rich lipoprotein.
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Figure 3. Total cholesterol and triacylglycerol AUC0–10h within TRL fractions in study 2. Values are
lsmean ± SE and different superscript letters (a, b) indicate statistical differences between no egg and
100 g CWE (p < 0.0001). AUC, areas under the curve; CWE, cooked whole egg; N/S, not significant;
TRL, triacylglycerol-rich lipoprotein.

3.3. Total Cholesterol and Triacylglycerol Concentrations in Plasma

3.3.1. Study 1

Plasma total cholesterol concentrations during the 10 h of testing (Supplemental Figure S3) and
the plasma total cholesterol AUC0–10h were not different among 150 g CWE vs. 75 g CWE vs. no egg
(lsmean ± SE; 32 ± 14 vs. 20 ± 14 vs. 22 ± 14 mg·dL−1·10 h, p = 0.83) (Figure 4). From hours 3 to
6, the 150 g CWE treatment presented a greater plasma triacylglycerol concentrations than did 75 g
CWE and no egg (Supplemental Figure S3) and the plasma triacylglycerol AUC0–10h was greater for
150 g CWE vs. 75 g CWE and no egg (207 ± 36b vs. 66 ± 36a vs. 66 ± 36a mg·dL−1·10 h, p = 0.0099)
(Figure 4).
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Figure 4. Total cholesterol and triacylglycerol AUC0–10h within plasma in study 1. Values are lsmean
± SE and different superscript letters (a, b) indicate statistical differences among no egg, 75 g CWE,
and 150 g CWE treatments (p = 0.0099). AUC, areas under the curve; CWE, cooked whole egg; N/S,
not significant.

3.3.2. Study 2

Similarly, plasma total cholesterol concentrations during the 10 h of testing (Supplemental Figure S4)
and the plasma total cholesterol AUC0–10h were not different between 100 g CWE vs. no egg (50 ± 11 vs.
43 ± 11 mg·dL−1·10 h, p = 0.66) (Figure 5). From hours 3 to 6, the 100 g CWE presented greater plasma
triacylglycerol concentrations than no egg (Supplemental Figure S4) and the plasma triacylglycerol
AUC0–10h was greater for 100 g CWE vs. no egg (125 ± 23b vs. 50 ± 23a mg·dL−1·10 h, p = 0.0281)
(Figure 5).
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and different superscript letters (a, b) indicate statistical differences between no egg and 100 g CWE
treatments (p = 0.0281). AUC, areas under the curve; CWE, cooked whole egg; N/S, not significant.

4. Discussion

Historically, consumers were discouraged from consuming whole egg due to the relatively high
content of dietary cholesterol in egg yolk. Yet, previous studies showed no relation between the
whole egg intake and blood cholesterol concentration [26–28]. Several scientific researchers suggest
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a reconsideration of recommendations to limit dietary cholesterol and egg cholesterol consumption
due to conflicting evidence [29,30]. The findings from the current two studies indicate that the dietary
cholesterol found in whole eggs may not be well absorbed and does not acutely affect plasma total
cholesterol concentration.

While fasting state lipid and lipoprotein concentrations mainly reflect body homeostasis,
their post-prandial responses reflect the capacity to handle an acute dietary fat and cholesterol
load [31]. Experimentally, more accurate assessments of dietary cholesterol absorption may be made
by measuring changes in cholesterol concentrations in TRL fractions versus plasma because changes
in cholesterol in TRL fractions may represent newly absorbed dietary cholesterol [4,19,20]. Using the
TRL technique, our results of limited dietary cholesterol absorption from whole eggs in apparently
healthy young men (Study 1) and young and middle-aged women (Study 2) are consistent with results
from healthy men who consumed different amounts of dietary cholesterol (0, 142, 284, and 710 mg)
from cooked egg yolk [19]. The presence of phosphatidylcholine and sphingomyelin in egg yolk
may partially explain these observations. Ingestion of these phospholipids influence intestinal lipid
metabolism [32] and decreased lymphatic absorption of cholesterol [33,34]. Egg white protein may also
help reduce cholesterol absorption by inhibiting micellar solubility of cholesterol in the intestine [35].
Along with a limited dietary cholesterol absorption, plasma total cholesterol concentration was not
affected by increasing whole egg intake in this study and previous study also found no effect of whole
egg consumption (0-, 1-, 2-, and 4-whole egg diet) on postprandial total cholesterol concentration in
healthy young men [36]. In contrast, healthy men who consumed increasing amount of dietary
cholesterol from egg yolk presented greater postprandial plasma cholesterol concentration [19].
Research with rats showed that a whole egg-enriched diet lowered plasma LDL concentration and
increased fecal bile acid content, compared to a high-cholesterol diet and egg yolk-enriched diet
(dietary cholesterol content matched) [37]. The rats fed the whole egg-enriched diet had higher mRNA
levels of LDL-receptor and cholesterol 7a hydroxylase, consistent with whole egg activating LDL
receptor–mediated catabolism, bile acid synthesis, and the excretion of fecal cholesterol. Egg white
protein is suspected to have a favorable effect on blood lipoprotein profiles [38] and limited research in
humans observed that egg white protein ingestion reduced serum cholesterol in young women [39].
In the current study, phosphatidylcholine and sphingomyelin from egg yolk and egg white protein
may have contributed to limiting cholesterol absorption after subjects consumed whole eggs.

While results from both study 1 and study 2 indicate that consuming cholesterol-rich whole
eggs did not acutely increase cholesterol absorption or plasma total cholesterol concentrations,
higher triacylglycerol concentrations within the TRL fractions and plasma were observed. These results
are consistent with research showing that higher dietary fat intake (0 g vs. 45 g) caused greater
triacylglycerol within TRL fractions and plasma [19], and that progressively higher dietary fat content
of meals increased postprandial plasma triacylglycerol responses [31]. Another previous human
intervention study also assessed the impact of amount (3, 8, and 20 g) and source (canola oil,
soybean oil, or butter) of dietary fat on postprandial triacylglycerol responses and regardless of
source, consuming higher amount of dietary fat induced greater triacylglycerol content within
TRL fractions [40]. This greater absorption of triacylglycerol may explain the greater absorption
of carotenoids and vitamin E from the mixed vegetable meals consumed by our participants [21,22]
since those nutrients are fat-soluble and co-consuming dietary fat enhances their absorption [40–42].
Collectively, although cholesterol absorption may be limited with whole egg intake, they may not
affect the absorption of triacylglycerol and fat-soluble nutrients.

Strengths of this research include using data from two investigator-blinded, randomized,
crossover, diet-controlled studies and assessing cholesterol and triacylglycerol absorption based
on results from TRL fractions versus plasma. Although assessments of cholesterol and triacylglycerol
responses in TRL fractions were secondary measurements, retrospective power calculations support
both studies having adequate sample size. It is important to note that these results come from
acute feeding trials and postprandial changes in total cholesterol content in TRL fractions includes
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both dietary and biliary cholesterol. Estimates indicate that biliary cholesterol contributes about
75–85% of intestinal cholesterol content [4]. The experimental design and methods we used preclude
distinguishing between dietary and biliary cholesterol in TRL fractions and the greater quantity of
biliary cholesterol in the intestinal lumen may affect the accuracy of dietary cholesterol absorption
assessments. A priori, we chose to use the AUC results as the foundation for interpreting the study.
The AUC-based result that cholesterol from whole eggs is not well absorbed is also shown at each
postprandial time point.

5. Conclusions

In conclusion, results from these two randomized controlled acute feeding studies indicate that
dietary cholesterol contained in whole egg is not well absorbed and does not increase plasma total
cholesterol concentration. These findings provide a mechanism to help explain why dietary cholesterol
intake may not affect long-term plasma total cholesterol control.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/10/9/1272/
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Baseline-corrected total cholesterol (A) and triacylglycerol (B) content in plasma in study 2.
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