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Abstract: About 40% of the world’s population is overweight or obese and exist at risk of developing type
2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is
well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing
T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal
models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for
their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various
health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from
many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in
preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and
analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic
effects of flavonoids as well as the mechanisms of their actions.
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1. Type 2 Diabetes

Diabetes mellitus is a chronic metabolic disease that is characterized by a relative lack of insulin,
resulting in hyperglycemia. Chronic hyperglycemia can lead to a variety of complications such as
neuropathy, nephropathy, and retinopathy, as well as increased risk of cardiovascular disease [1].
The prevalence of diabetes mellitus is rapidly rising. The International Diabetes Federation (IDF)
estimated that 425 million adults (aged 20–79 years) had diabetes mellitus globally in 2017, and further
estimated that a US $727 billion (12% of global health expenditure) was spent on treating diabetes
mellitus and its related complications [2]. About 1 in 11 adults have diabetes mellitus, with 90% of
these adults having type 2 diabetes mellitus (T2D); Asia is the center of this global T2D epidemic [3].
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It is now well-recognized that T1D is an autoimmune disorder characterized by the destruction
of insulin-producing pancreatic β-cells [4]. However, T2D is characterized by insulin resistance
(IR) and the pancreatic β-cell failure to sufficiently compensate (Figure 1). T2D is an acquired
syndrome characterized by several defects in the regulation of glucose homeostasis, including elevated
blood glucoside levels, increased hepatic glucose production, deficient insulin secretion, IR, and/or
pancreas β-cell dysfunction [1,2]. As reported by the World Health Organization [3], T2D comprises
approximately 90% of all cases of diabetes, and an estimated 15 million people globally have T2D,
a figure that could double by 2025. While the genetic architecture might partially determine an
individual’s response to environmental changes, the main drivers of the global epidemic of T2D are
the rise in obesity, a sedentary lifestyle, energy-dense diets, and population ageing. Therefore, animal
models of T2D tend to include models of IR and/or models of β-cell failure. Many animal models of
T2D are obese, reflecting the human condition where obesity is closely linked to T2D development.
Preclinical animal models have provided considerable valuable information about obesity and
T2D. Despite constant improvements and refinements in cell-based applications, careful metabolic
assessment of compound effects in in vivo models is vital before drugs can be considered for clinical
evaluation and commercialization.
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Figure 1. Pathology of T2D. β cell dysfunction and insulin resistance occurs following insult from several
genetic predisposition and environmental factors. Initially the β-cell compensates by increasing the release
of insulin; however, over time this compensatory mechanism fails and reduction in β-cell mass is evident.
The reduced plasma insulin results in an increase in glucose levels. Glucose-sensitive tissues, including liver,
muscle, and adipocytes, are unable to accommodate the increased glucose concentration. Persistent glucose
release preserves the hyperglycemic environment, leading ultimately to T2D.
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2. Animal Models of T2D

Animal models remain indispensable for discovering, validating, and optimizing novel
therapeutics for their safe use in humans. Different T2D animal models, ranging from non-mammalian
models to nonhuman primates, each have distinct advantages and limitations. Here, we have
summarized the key information on currently available animal models of T2D, offering guidance as
to the usefulness, advantages and limitations of these models depending on the species (Figure 2),
altered pathway, environmental conditions, and genetic background.
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Figure 2. Major advantages and disadvantages of different classes of animal models used in
T2D research.

2.1. Non-Mammalian Models

As a general rule of the laboratory T2D study, roundworm C. elegans [5], fruit fly Drosophila
melanogaster [6], and zebrafish Danio rerio [7] are the non-mammalian models usually established
in laboratory settings. Schlotterer et al. [8] established C. elegans as a model for diabetes research
through the responses of C. elegans to being fed high glucose concentrations; it was shown that their
lifespan is reduced by increased reactive oxygen species (ROS) generation and advanced glycation
end products (AGEs)-modification of proteins. Moreover, the inhibition of the activities of the
DAF-16 and the heat shock factor (HSF-1), which are also both inhibited by insulin signaling, were also
suggested to underlie glucose-induced lifespan reductions [9]. Drosophila melanogaster could emerge as
a powerful system for dissecting the genetics of IR and secretion because the mechanisms of glucose
homeostasis are conserved between flies and humans, and the fruit fly allows for substantial ease of
experimental and genetic manipulation in comparison to rodent models [10]. Park et al. [11] generated
a double-tagged insulin-like peptide 2 (ilp2HF) to monitor its secretion. They found a marked increase
in ilp2HF-circulating levels upon re-feeding after a 24 h fast; it is likely a result of glucose sensing by
glucose transporter type (GLUT) 1 in the insulin-producing cells (IPCs), as IPC-specific knockdown of
Glut1 decreased circulating ilp2HF. Insulin-resistant Drosophila have also been generated by rearing
flies on high-sugar diet (HSD). HSD causes IR with decreasing insulin-like peptides expression; these
flies develop hyperglycemia through the production of a robust suppression of Lst, a negative regulator
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of insulin-like peptides production and secretion [12,13]. Both nutritional and genetic approaches have
also been used to generate T2D models in zebrafish. Several studies suggest that the immersion of
zebrafish in glucose solution is a widely used model to induce diabetic phenotypes, including elevated
blood glucose levels and impaired response to exogenous insulin [14,15]. Chen et al. developed two
transgenic zebrafish models of IR in skeletal muscle and liver, a result achieved through ablation of
the insulin receptors [16,17]. Another type of diabetes, MODY (maturity-onset diabetes of the young),
is a rare, autosomal dominant, noninsulin-dependent, and monogenic form of diabetes resulting from
pancreatic β-cell dysfunction [18]. A zebrafish mutant line, with mutations in hepatocyte nuclear factor
1β, exhibits pancreas hypoplasia and reduced β-cell numbers [19,20]; it closely mimics established
human diseases, such as the MODY form of diabetes. Curado et al. [21] were able to study β-cell
regenerative capacity by the addition of a prodrug metronidazole that induces cell death of the
β-cells in zebrafish transgenic lines. Non-mammalian models have the advantage of low maintenance
cost, short life cycle, and availability of long-term gene-editing tools quantification. However, their
translational value is limited given their physiology difference to mammals.

2.2. Large Animal Models

Dogs and pigs are the large animal models used for translational studies in research on obesity
and diabetes mellitus [22,23]. The canine model is especially powerful in allowing quantification of
liver glucose uptake; researchers can induce diabetes mellitus in dogs with pancreatectomy or with
the use of alloxan and/or streptozotocin (STZ) [24,25]. In these models, metabolic defects are evident
in all of them, including increased visceral, subcutaneous, and total adipose tissue mass, increased
IR and a β-cell defect. The dog model also provides invasive measures and assessments impossible
in humans or rodent models, particularly for studies involving oral administration of compounds
because canine gastrointestinal anatomy and physiology are highly similar to those of human beings.
The pig is another large animal model used for diabetes mellitus; it shares the structure and function
of the gastrointestinal tract, the development and morphology of the pancreas, and overall metabolic
status with humans [26]. Genetic engineering of pigs represents an approach for diabetes mellitus
research, including transgenic pigs expressing a dominant-negative glucose-dependent insulinotropic
polypeptide receptor (GIPR) [27] and ubiquitous expression of a dominant-negative human hepatocyte
nuclear factor 1α (HNF1A) [28]. High fat and cholesterol (HFC) diets with or without STZ have been
adapted for the establishment of pig models for T2D [29,30]. While pigs are increasingly used as
models for obesity and diabetes mellitus research, dogs remain an important model in this field.

2.3. Nonhuman Primate Models

While other animal models provide insights into the mechanisms underlying T2D, they are limited
in their translatability to humans. The nonhuman primate shares more metabolic similarities with the
human, making it an ideal model for the investigation of T2D and use in preclinical trials [31]. A long
history of studying nonhuman primates for translational research in T2D, and the most commonly
used species include rhesus macaques (Macaca mulatta), cynomolgus monkeys (Macaca fascicularis),
baboons (Papio species), African Green Monkeys (Chlorocebus species), and common marmosets (Callithrix
jacchus) [32]. A number of models are in use for the study of T2D in nonhuman primates, including
high fructose-fed nonhuman primate models [33], diet-induced nonhuman primate models [34],
and aged-spontaneous T2D nonhuman primate models [35]. The presence of islet amyloidosis, IR
to β-cell failure, and overt diabetes mellitus characteristic of T2D in humans is also observed in
diabetic monkeys, implicating a similar etiology of islet lesions in monkeys and humans [36,37].
Given the substantial cost of conducting clinical trials with humans, studies in non-human primate
models represent a cost-effective avenue for studying T2D strategy. However, the use of nonhuman
primate models is an expense in biomedical research, and relatively few laboratories are equipped to
accommodate such studies.
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2.4. Rodent Models

2.4.1. Monogenic Models

The rodent has proven to be a reliable model for discovering and validating new treatments for
T2D (Table 1) [38]. Compared to non-mammalian species, as mammals, the physiology of mice and
rats is closer to that of humans. We here review commonly used rodent models to study glucose
metabolism which show good translatability to the diagnostic of T2D in humans. While obesity in
humans is rarely caused by a monogenic mutation, monogenic models of obesity are commonly used
in T2D research. The most widely used monogenic models of obesity are defective in leptin signaling.
Leptin induces satiety, and thus, a lack of functional leptin in these animals causes hyperphagia
and subsequent obesity. These models include the Lepob/ob mouse [39–41], which is deficient in
leptin, and the Leprdb/db mouse and Zucker Diabetic Fatty (ZDF) rat, which are deficient in the leptin
receptor [42,43]. These models are also used to test new therapies for T2D.

The Lepob/ob mouse is a model of severe obesity derived from a spontaneous mutation on
chromosome 6 discovered in an outbred colony at Jackson Laboratory in 1949 [44]. The phenotype was
bred into C57BL/6J mouse, but it was not until 1994 that the mutated protein was identified as leptin [45].
The obesity was observed at 2 weeks of age, and the mice develop hyperinsulinemia. By 7–12 weeks,
hyperglycemia is apparent; at this point, pancreatic β-cell compensation occurs, and increased insulin
levels bring glucose homeostasis under control, after which they fall as the mouse ages. In addition, other
metabolic aberrations include hyperlipidemia; hepatic fatty acid synthesis was increased 6-fold per total
liver and 2.2-fold per total small intestine [46]. The severity of the diabetes in Lepob/ob mouse is strongly
dependent upon the strain’s genetic background. With the C57BL/KsJ background, Lepob/ob mouse
develops more severe hyperglycemia and diabetes, accompanied by increasing insulin levels, followed
by β-cell failure, and often dies by 6 months of age [47]. Other different background strains have been
studied, including the BALB/cJ background [48] at 27 weeks of age have a 35-40% reduction in weight gain
with elevations in fed insulin and plasma triglycerides levels. The Leprdb/db mouse originated from the
Jackson Laboratory, and are deficient in the leptin receptor [49]. The Leprdb/db resembles Lepob/ob mouse
in terms of a rapid development of obesity, but the diabetes syndrome is more severe. Depending upon
their genetic background, the Leprdb/db mouse in the C57BL/6J inbred strain is a rapid development of
obesity at 3–4 weeks, blood glucose level at 7 weeks of age and hyperglycemia developing at 4-8 weeks.
The Leprdb/db mouse with the C57BL/KsJ background develops more severe diabetes and has a relatively
short lifespan [50].

The Zucker Fatty (ZF) rats were discovered in 1961 after a cross of Merck M-strain and Sherman
rats. They harbor a missense mutation (fatty, fa) in the leptin receptor gene (Lepr) and become obese at
around 4 weeks of age [51]. These rats are also hyperinsulinemic, hyperlipidemic, and hypertensive.
ZDF rats derived from a mutation in the ZF rat strains exhibit less obesity than the ZF rats but have
more severe IR, which they are unable to compensate for due to increased apoptosis levels in β-cells;
they are widely used for research on T2D [52]. They are characterized by initial hyperinsulinemia
at 8 weeks of age followed by decreased insulin levels and signs of diabetic complications usually
develop at 10 weeks [50,53].

Those findings underline the fact that although the monogenetic models are indeed a valuable
and useful animal model of T2D and do have a role in terms of teasing out the mechanism and mode
of action of these diseases, but the human obesity phenotype is caused by the interplay between a
long list of genes and the environment. Notably, few cases of human obesity can be accounted for
mutations in leptin or the leptin receptor. Thus, it does not reflect the complete background of T2D in
humans based on its monogenic cause of obesity or T2D and will therefore not always be predictive of
the effects of pharmaceutical treatments in humans.
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2.4.2. Polygenic Models

Polygenic models of obesity may provide a more accurate model of the human condition [54].
A variety of different polygenic mouse models of obesity, glucose intolerance and diabetes exist,
allowing a variety of genotypes and susceptibilities to be studied. However, unlike the monogenic
models, there are no wild-type controls. Since the obesity is induced by environmental manipulation
rather than genes, it is thought to model the human situation more accurately than monogenic models.
The diet-induced obesity (DIO) model has considerable direct validity with human obesity, and is
a widely used paradigm to study the interaction of diet and genes in manifest obesity and IR [55].
The inbred C57BL/6J mouse strain, first described in 1988, is a polygenic obesity-prone mouse strain
widely used as a model for DIO [56] because it is prone to develop obesity and glucose intolerance
and moderate IR, making them especially intriguing models to study human obesity resistance.
However, a report [57] on the effects of a drug on overt diabetes end points, suggests that the C57BL/6J
model for DIO is not the ideal choice because this strain rarely develops frank hyperglycemia and/or
islet atrophy when fed an obesogenic diet. In contrast, the rather closely related but distinct C57BL/6N
strain develops hepatosteatosis, hyperglycaemia and hyperinsulinaemia following 3 weeks on an
HFD [58,59]. It means that they have considerable genetic variation, which investigators should take
into account when determining sample size. The DIO rat and mouse offer more human-like models,
where the obesity is based on several factors, including an excess intake of calories.

The New Zealand Obese (NZO) mouse is another inbred polygenic strain created by selective breeding
that develops obesity and T2D. Adiposity in the NZO mouse is driven by a moderate hyperphagia, which
may be a consequence of leptin resistance as these mice are hyperleptinemic at 9–12 weeks of age, and causes
disturbances related to both pancreatic and hepatic defects [60]. When fed a carbohydrate-containing
diet, there is a dramatic effect on the pancreatic islets including a loss of serine/threonine-protein kinase
(AKT) activation, decreased expression of GLUT2 essential for insulin synthesis and β-cell integrity [61].
Similar to what occurs in humans, the onset of T2D in NZO mice decidedly depends on the degree of
hepatosteatosis early in life [62]. TALLYHO/Jng mice are another emerging, polygenic model for moderate
obesity and diabetes [63]. TALLYHO/Jng mice were inbred from two Theiler Original outbred mice
that showed polyuria and glucosuria [64], selecting for mice at each generation that demonstrated β-cell
hypertrophy, hyperplasia with hyperinsulinemia, severe dyslipidemia, and hyperglycemia. IR in white
adipose tissue is associated with reduced GLUT4 cycling and increased insulin receptor substrate 1 (IRS-1)
degradation [65]. Both male and female TALLYHO/Jng mice become moderately obese; hyperglycaemia
is limited to male mice, and develops as early as at 10–14 weeks of age [66]. In 1952, Kondo et al. [67]
established many mouse strains, and then Nakamura et al. found that the KK mouse among these inbred
strains spontaneously develops diabetic characteristics, including obesity, hyperinsulinemia, and IR in both
muscle and adipose tissue [68]. This mouse strain also shows signs of diabetic nephropathy [69]. Due to
the relatively mild diabetes and obesity in KK mouse, a derivative of this strain is the KK-Ay mouse, which
was created by transferring the yellow obese gene (Ay) into KK mouse by crossing yellow obese mice with
KK mice [70].

2.5. Chemical-Induced Model of T2D

T2D is increasing in prevalence worldwide, and is strongly associated with obesity and IR,
as well as defects in pancreatic β-cell function and mass, thus precipitating a disease characterized
by impeding the critical regulatory influence of insulin on glucose, lipid and protein metabolism [71].
Characterized and clinically relevant T2D animal models are required to create and achieve the aim of
testing new therapeutics. An example of a chemical-induced animal model of diabetes is the high-fat
diet/streptozotocin-treated (HFD/STZ) animal model. This model involves a combination of an HFD
to bring about hyperinsulinemia, IR, and/or glucose intolerance followed by subsequent injection
of a low dose (~30–40 mg/kg intraperitoneally) STZ, which results in severe reduction in functional
β-cell mass [72]. Together, these two stressors are designed to mimic the pathology of T2D, though on
a shorter timescale than found in the human condition. The key advantage of this non genetic model is
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that researchers can customize it to resemble the slow pathogenesis of T2D that occurs in most humans,
encompassing the slow development from adult-onset DIO to glucose intolerance, IR, the resulting
compensatory insulin release, and finally STZ-induced partial β-cell death. Despite its limitations and
the wide variety of both the high-fat fed regimen [73] and the STZ treatment [74], the HFD/STZ is a
reasonable animal model of T2D mainly representing the later stage of the disease, depending on the
amount of residual β-cell mass.

Table 1. List of selected rodent models potentially useful in type 2 diabetes research.

Strain or Method Species Obesity Hyperpagia Hyperglycaemia Insulin Resistence Hyperinsulinaemia T2D

Monogenic
Lepob/ob Mouse ++ + + ++ ++ -
Leprdb/db Mouse ++ + + ++ ++ +

ZDF Rat - - + ++ + +

Polygenic
C57BL/6J Mouse + + - + - -
C57BL/6N Mouse - - + ++ - -

KK-Ay Mouse + + + ++ + +
NZO Mouse ++ ++ + ++ + +

TALLYO/Jng Mouse + + + ++ + +
KK-Ay Mouse - - + ++ + +

Chemical-induced
HFD/STZ Mouse, Rat + + + + + +

-, absent; +, mild; ++, severe; DIO, diet-induced obesity; HFD, high-fat diet. SD, standard diet; T2DM, type 2 diabetes
mellitus; VMH, ventromedial hypothalamus.

3. Flavonoids and Their Effects on T2D

Flavonoids belong to a large group of polyphenols; they mainly accumulate in the edible parts
of plants, particularly in fruits, vegetables, herbs, chocolate, tea, seeds, flowers, and red wine [75].
More than 9000 flavonoids have been identified from plant sources [76], and their daily intake varies
between 20 mg and 500 mg, mainly from dietary supplements including tea, red wine, apples, onions,
and tomatoes [77]. The basic chemical structural of flavonoids consists two benzene rings (A and B)
linked by a three-carbon chains, forming an oxygenated heterocycle (ring C); they provide attractive
color pigments such as yellow, red, blue, and purple in plants. Flavonoids are classified according
to their chemical structure. These medicinal herbs have been traditionally used for the treatment
of T2D; among the phytochemical compounds, flavonoids, and their derivatives are more under
attention due to their hypoglycemic activity [78]. Flavonoids are classified subclasses based on
chemical structures, six of which are: Anthocyanidins, flavan-3-ols, flavonols, flavones, flavanones,
and isoflavones (Table 2). Flavonoids have antioxidative properties that protect the body against the
deleterious effects of hyperglycemia in T2D, by acting on biological targets such as α-glucosidase,
glucose co-transporter, or aldose reductase. These antioxidants have been proposed as potential
anti-diabetic drugs by acting as biological targets involved in T2D development. In current years,
various approaches have been made to utilize the flavonoids in vivo rodent models by incorporating a
few novel methods to improve its antidiabetic activity. They are categorized in Table 3.
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Table 2. Major subclasses of flavonoids with examples and some of the major dietary sources.

Flavonoid Subclasses Color Compounds Dietary Sources

Flavanones
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3.1. Flavonol

Flavonols are the most abundant flavonoids in the plant kingdom. The main dietetic flavonols
include quercetin, rutin, kaempferol, isorhamnetin, and myricetin [79,80], while the most ubiquitous
compounds are glycosylated derivatives of quercetin and kaempferol; in nature, these two molecules
have respectively about 280~350 different glycosidic combinations. Quercetin is ubiquitously present in
fruits and vegetables and considered a strong antioxidant, anti-inflammation against proinflammatory
cytokines production [81,82], platelet aggregation prevention, and anti-diabetes effects [83,84].
Recently, quercetin has been shown to enhance insulin secretion via Ca2+ and ERK1/2 signaling
pathway [85], acts as partial agonists of PPARγ [86], and potentiates ERK1/2 phosphorylation [87]
in vitro. Studies have been conducted on the effects of quercetin in animals with T2D, quercetin
ameliorates hyperglycemia (lower glucose plasma levels) and dyslipidemia (an increase in plasma
adiponectin and HDL-cholesterol, decreases in plasma total cholesterol and plasma triacylglycerols)
and improves the antioxidant status in type 2 diabetic Leprdb/db mouse [88]. A study showed that
transforming the growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) has an
essential impact on diabetic nephropathy. A report showed that HFD/STZ-induced rats treated with
quercetin saw a reduction in their weight ratio of kidney and body, and attenuated expressions of
CTGF and TGF-β1 in the renal tissues [89,90]. A recent report indicates that diets rich in flavonoids are
associated with a lower incidence of T2D [91]. Among the flavonol subclass, quercetin, and myricetin
intake was associated with a lower incidence of T2D in European populations [92]. Another report
suggests that daily intakes of quercetin from apple and orange is inversely related to the prevalence
of T2D: 8.35% in men and 4.68% in women in a Chinese population [78]. Rutin can be broadly
extracted from natural plant sources such as buckwheat, citrus fruits, grapes, lemons, and berries,
and was also reported to have anti-obesity and anti-diabetic functions [93]. Rutin potentiates insulin
receptor kinase to enhance insulin-dependent GLUT4 translocation through the enhancement of
insulin receptor kinase activity, thereby activating the insulin signaling pathway, causing increased
GLUT4 translocation and increased glucose uptake [94]. Rutin was also found to activate liver
enzymes linked with the gluconeogenic and lipid metabolic processes. It reduced the alanine
aminotransferase, aspartate aminotransferase activities and advanced glycation end products level
in serum. It also potentiated the phosphorylation of phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K), Akt, glycogen synthase kinase-3 beta protein in the liver tissue of Leprdb/db mouse [95],
and was shown to influence glucose uptake in the rat soleus muscle [96]. Rutin was also reported to
reduce the levels of plasma glucose, glycosylated hemoglobin (HbA1c), a glycated (beta-N-1-deoxy
fructosyl) hemoglobin, and proinflammatory cytokines, and improved antioxidant and plasma
lipid profiles in HFD/STZ-induced diabetic rats fed with 100 mg/kg rutin in their diet [97,98].
Particularly, rutin can meliorate metabolic abnormalities, oxidative stress, inflammation, and cellular
apoptosis pathways in an STZ-induced diabetic rat model [99]. Kaempferol is an important flavonoid
in herbal foods, and is reported to effectively inhibit inflammation and ameliorate insulin resistance
by the beneficial regulation of the IRS-1 function [100]. Kaempferol exhibits anti-diabetic effect in
multiple mechanisms, including anti-oxidative, anti-inflammatory, antihyperlipidemic, and pancreatic
β-cell protection [101–103]. Recent studies show that HFD/STZ-induced diabetic rats ameliorate
blood lipids and insulin with the treatment of kaempferol orally ingested for 10 weeks, and effectively
restored IR induced alteration of glucose disposal through the inhibition of the phosphorylation of
IRS-1, IKK/NF-κB signal and further proinflammatory cytokines tumor necrosis factor-α (TNF-α) and
interleukin-6 (IL-6) levels [104,105]. Troxerutin is a flavonol, a type of flavonoid, derived from rutin,
which can be used to treat thrombosis, cerebrovascular diseases, and edemas. However, troxerutin
administration significantly reduced heart rate, blood pressure, blood glucose, and plasma triglyceride
levels, as well as significantly reduced reactive oxygen species, NF-κB levels, and suppressed the
phosphorylated forms of AKT, c-Jun N-terminal kinase (JNK) and IRS-1 in a rat model of T2D [106].
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3.2. Isoflavone

Isoflavones are reported to have beneficial antioxidant and estrogenic effects in the treatment
of cardiovascular diseases and may lower the risk of several cancers [107,108]. Isoflavones are
predominantly found in soy beans and other leguminous plants, and are known to be the richest
sources of the active isoflavones, including genistein and daidzein [109]. Genistein has the ability
to increase insulin secretion in the pancreatic islets of adult mice through a reduced intracellular
calcium concentration effect [110]. Genistein also induces cAMP, stimulates protein kinase A in
pancreatic islet’s cell linings (PC12) [111], and regulates the insulin-induced glucose passage because
of the conformational changes of the GLUT4, without affecting the translocation of GLUT4 in
adipocytes [112]. Further studies showed that genistein acts as a direct inhibitor of the insulin-induced
glucose passage in 3T3-L1 adipocytes [113]. In vivo experiments showed that dietary intake of genistein
(250 mg·kg−1 diet) improved hyperglycemia, glucose tolerance, and blood insulin level, and increased
the number of insulin-positive β-cell in islets, promoted islet β-cell survival, and preserved islet mass
in HFD/STZ-induced diabetic mice [114]. In the ZDF rat model, genistein showed an increased
GLUT4 expression level and larger soleus muscle fiber areas as well as regulation of estrogen
receptor signaling pathways [115]. In the ovariectomized diabetic rat model, genistein has shown
anti-diabetic and anti-inflammatory effects to markedly increase SIRT1 protein, and decreased IL-1β
and NF-κB proteins levels compared to control groups [116]. SIRT1, a deacetylase, is expressed in
the endocrine cells of the Langerhans islets and has been reported to inhibit NF-κB by deacetylating
p65 and protect β-cells from cytokines [117]. In Lepob/ob mouse model, the genistein-fed group
increases plasma levels of triiodothyronine (T3) and decreases in the protein expression of renal
11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), suggesting a thermogenic effect on energy
expenditure, T3 production, and corticosterone status [118]. Daidzein belongs to the isoflavone
subclass of flavonoids, and is present predominantly in the form of glucosides in various plants,
including red clover, alfalfa, soybean, and some legumes [119]. Previous studies suggest that daidzein
exerts anti-diabetic effects by improving glucose and lipid metabolism, and downregulating blood
glucose, total cholesterol levels, and improving glucose uptake via GLUT4 translocation, as well as
AMP-activated protein kinase (AMPK) activation [120–123]. In in vivo studies, Cheong et al. [124]
demonstrated that 0.1% daidzein in the diet for 4 weeks suppressed the rise in fasting glucose, lipid
levels, and IR and AMPK activation in gastrocnemius muscle compared to the diabetic (Leprdb/db

mouse) control group. In addition, daidzein also reduced blood glucose and urinary glucose excretion
in KK-Ay mice [124]. Using Leprdb/db mouse, another study by Park et al. [120] also demonstrated
that daidzein (0.2 g/kg diet, 6 weeks) supplementation improved glucose and lipid metabolism and
regulated hepatic glucose (GK, G6Pase, and PEPCK) and lipid- (FAS, CPT, and β-oxidation) regulating
enzyme activities compared to those seen in diabetic control group.

3.3. Flavanones

Naringenin and hesperidin, the two major flavanones that are abundant in citrus fruits (such as
grapefruit, orange and tomato) have been reported to possess antioxidant, anti-diabetic, lipid-lowering,
anti-atherogenic, and anti-inflammatory activities [125,126]. Oral treatment of naringenin (25 mg/kg)
exerts significant inhibition of intestinal α-glucosidase activity in vivo [127], thereby delaying the
absorption of carbohydrates in HFD/STZ-induced diabetic rats, thus resulting in significant lowering of
postprandial blood glucose levels. In the livers of Leprdb/db mouse, naringin improves hyperlipidemia
and hyperglycemia by partly regulating the fatty acid and cholesterol metabolism, and affecting the
gene expression of glucose-regulating enzymes. Furthermore, naringin may upregulate hepatic and
adipocyte PPARγ and GLUT4 to regulate the expression of hepatic enzymes involved in glycolysis
and gluconeogenesis, thereby improving hyperglycemia [128]. Oral treatment of naringenin in the
HFD/STZ-induced diabetic rat model involves enhancement of reverse cholesterol transport and
paraoxonase activity [129], and decreases levels of glucose, HbA1c, MDA, NO, TNF-α, and IL-6 in
HFD/STZ-induced diabetic rats [130]. Neohesperidin, a flavanone glycoside found in citrus fruits, is the
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7-O-neohesperidose derivative of hesperetin. Neohesperidin significantly decreases serum triglycerides,
total cholesterol and liver index, inhibits lipid accumulation in the liver, and decreases the size of epididymal
adipocyte in the KK-Ay mice. Gene expression of stearoyl-CoA desaturase 1 (SCD-1) and fatty acid synthase
(FAS) are significantly inhibited, and elevated level of phosphorylation of hepatic AMPK is observed in
neohesperidin-treated mice. Therefore, the activation of the AMPK pathway and regulation of its target
genes, including SCD-1, FAS, and ACOX, may play important roles in the hypoglycemic and hypolipidemic
effects [131]. Hesperidin and naringenin, were reported to be beneficial for lowering blood glucose levels
by upregulating hepatic glucokinase, PPARγ, and adipocyte GLUT4 in the Leprdb/db mouse model [128].

3.4. Flavan-3-ols (Flavanols)

Drinking green tea has long been found to have an anti-diabetes effect [132]. Kim et al. [133]
found that green tea catechins can protect the pancreas from oxidative damage, and green tea extract
can enhance GLUT4 expression, increase glucose tolerance, promote glucose uptake, and decrease
oxidative stress in diabetic rats [134]. Jingqi et al. [135] found that catechins exact anti-IR effect,
significantly decrease glucose levels and increase glucose tolerance in KK-Ay animals by reducing
ROS content and JNK phosphorylation and promoting GLUT4 translocation.

3.5. Flavones

Flavones differ from other flavonoids in that they have a double bond between C2 and C3 in
the flavonoid skeleton, there is no substitution at the C3 position, and they are oxidized at the
C4 position. Flavones from plants are typically conjugated as 7-O-glycosides; they contain apigenin,
such as passionflower and chamomile, and have been used as traditional medicines for hundreds of
years to treat a variety of diseases. In T2D studies, apigenin was intragastrically administered at 50 or
100 mg/kg once a day for 6 weeks in the HFD/STZ-induced diabetic rat model to investigate the effect of
diabetes mellitus. Compared with the diabetic control group, apigenin significantly decreased the levels
of blood glucose, serum lipid, malonaldehyde, ICAM-1 and IR index, and improved impaired glucose
tolerance [136]. Another report investigated the role of apigenin in controlling damaged vital tissues in
HFD/STZ-induced diabetic rats. Enhanced GLUT4 translocation and downregulated CD38 expression by
apigenin were observed. Apigenin was also found to control blood glucose level, along with the protection
of vital organs eventually damaged during diabetes. Baicalein is a flavonoid originally isolated from the
traditional herbal remedy known as Chinese skullcap, which exhibits strong free radical scavenging [137].
Using the HFD/STZ-induced diabetic mouse model, and the administered 250 or 500 mg baicalein/kg
diet, Fu et al. [138] found that baicalein treatment significantly improved hyperglycemia, glucose tolerance,
insulin levels, and preserved islet mass by inhibiting apoptosis.

3.6. Anthocyanidins

Anthocyanidins are another class of flavonoids widely distributed in the human diet in apples,
berries, red grapes, eggplant, red cabbage and radishes. Dietary consumption of anthocyanins
is high compared to other flavonoids, owing to their wide distribution in plant materials.
Considerable attention has been given to anthocyanins because of their potential health benefits,
including anti-inflammatory, antioxidant, anti-obesity, and anti-diabetic effects. Cyanidin and its
glycosides belong to anthocyanins and have been demonstrated to inhibit intestinal α-glucosidase and
pancreatic α-amylase in vitro [139]. Cyanidin-3-glucoside, one of the most prevalent anthocyanins
existing in our diet, ameliorates hyperglycemia and insulin sensitivity via the activation of AMPK in
KK-Ay mouse [140], and this activation is accompanied by the up-regulation of GLUT4 in skeletal
muscle and the downregulation of gluconeogenesis in the liver. Guo et al. [141] also showed that
dietary cyanidin-3-glucoside significantly lowers fasting glucose levels and markedly improves the
insulin sensitivity, macrophage infiltration, and the mRNA levels of MCP-1, TNF-α and IL-6 in adipose
tissue, and modulates the JNK/forkhead box O1 signaling pathway in liver and adipose tissues of the
HFD and Leprdb/db mouse model.
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Table 3. Important anti-diabetic potential and the underlying mechanism of dietary flavonoids in selected rodent T2D models.

Flavonoids Structural Formula Sources Pathways/Target Molecules Experimental Model References

Flavonols

Quercetin Edgeworthia gardneri ↑Intracellular Ca2+, ↑the ratio of Bcl-2/BAX,
↑mitochondria membrane potential. Leprdb/db mouse [85,88]
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Table 3. Cont.

Flavonoids Structural Formula Sources Pathways/Target Molecules Experimental Model References

Flavanones

Naringin Citrus fruits and
Grapefrui ↓α-glucosidase activity Leprdb/db mouse [125,127]
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Table 3. Cont.

Flavonoids Structural Formula Sources Pathways/Target Molecules Experimental Model References

Anthocyanidins

Cyanidin 3-glucoside Fruits, vegetables, berries,
and red wine

↓ Blood glucose levels, ↑ insulinsensitivity,
↑AMPK activation, ↑GLUT-4, KK-Ay mouse [140]
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4. Conclusions

Diabetes mellitus is now a major global public health problem. The existing animal therapeutic
approaches and models to treat diabetes mellitus and obesity cannot replace clinical human disease
studies. However, animal models of targeted T2D diseases offer useful complementary models
for selected scientific questions, such as the study food intake, nutrient portioning, body fat
distribution, systemic glucose metabolism, and many other key aspects of metabolic health and disease.
Flavonoids are a potential alternative treatment strategy for the development of effective and safe
anti-obesity and anti-diabetes drugs. Currently, there are no recommendations regarding the optimal
content of flavonoids and their subclasses in a diet. However, the results of the presented studies prove
a potential beneficial role of flavonoids in the prevention and treatment of T2D. This review suggests
the important role of flavonoids in enhancing insulin secretion, reducing apoptosis and promoting
the proliferation of pancreatic β-cells, reducing IR, inflammation, and oxidative stress in muscle and
promoting translocation of GLUT4 via PI3K/AKT and AMPK pathways. Choosing the right models
and using appropriate animal models provide successful discovery and development of safer and
more potent therapeutics with the potential to stop the obesity and T2D pandemics.
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