SUPPORTING INFORMATION:

Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli sprout and seed extracts with active myrosinase: A pilot study of the effects of proton pump inhibitor administration

Jed W. Fahey^{1,2,3,4,*}, Kristina L. Wade^{1,3}, Katherine K. Stephenson^{1,3}, Anita A. Panjwani^{1,4}, Hua Liu^{1,3}, Grace Cornblatt⁵, Brian S. Cornblatt⁵, Stacy L. Ownby⁵, Edward Fuchs², Walter David Holtzclaw^{1,3}, Lawrence J. Cheskin^{6,‡}

¹ Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA

² Johns Hopkins University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Baltimore, Maryland, USA

³ Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland, USA

⁴ Johns Hopkins University Bloomberg School of Public Health, Department of International Health, Center for Human Nutrition, Baltimore, Maryland, USA

⁵ Nutramax Laboratories Consumer Care, Inc., Edgewood, Maryland, USA

⁶ Johns Hopkins University Bloomberg School of Public Health, Department of Health Behavior and Society, Baltimore, Maryland, USA

‡ Current Address: George Mason University, Department of Nutrition and Food Studies

*Address for correspondence: Dr. Jed W. Fahey, Director, Cullman Chemoprotection Center, Johns Hopkins University, 855 N. Wolfe St, Suite 625, Baltimore, Maryland, USA 21205; <u>jfahey@jhmi.edu</u>

Supplementary Results and Discussion.

An evaluation of any specific gene (e.g. NQO1, which encodes for a prototypical detoxification and cytoprotective enzyme) must be tempered by knowledge that only a single dose was given and gene effects were evaluated a full 24 h later in systemic blood (PBMCs). This would not have permitted us to carefully inspect or query the temporal induction or inhibition events that would be expected to occur within a much shorter time period following the dose.

A most intriguing study appeared while this investigation was underway [1]. These investigators examined a few of the same biomarkers and anthropometric factors that we report upon herein and although not directly comparable (e.g. measured in plasma rather than in PBMCs, and a chronic exposure study) they showed significant reduction in IL-6 and CRP in overweight subjects while consuming BSE with active myrosinase.

Supplementary References

1. López-Chillón, M.T.; Carazo-Díaz, C.; Prieto-Merino, D.; Zafrilla, P.; Moreno, D.A.; Villaño, D. Effect of long term consumption of broccoli sprouts on inflammatory markers in overweight subjects. *Clin. Nutr.* **2019**, 38, 745-752.

Table S1. Pilot Phase demographics and results. BSE supplement dose = 211.2μ mol glucoraphanin. Numbers in *red italics* have been censored from any further treatment of the data (and are not included in column-averages in this table), due to apparent incomplete urine collection.

					Excretion	reported as µmol and (%	of dose))
Participant	Sex	Race	Age	BMI	8 hr	16 hr	Total (8+16)
01	F	Cauc	40	24.0	39.31 (25.6%)	19.19 (3.2%)	58.50 (28.8%)
02	F	Cauc	34	18.1	56.58 (26.8%)	17.80 (8.4%)	74.38 (35.2%)
03	F	AA	27	27.3	25.86 (12.2%)	18.67 (8.8%)	44.53 (21.1%)
04	F	AA	40	24.7	38.53 (18.2%)	10.73 (5.1%)	49.26 (23.3%)
05	Μ	Cauc	56	No Report	64.14 (30.4%)	30.91 (14.6%)	95.05 (45.0%)
06	М	AA	44	No Report	40.33 (19.1%)	19.77 (9.4%)	60.10 (28.5%)
07	Μ	Cauc	49	35.6	13.87 (6.6%)	22.15 (10.5%)	36.02 (17.1%)
08	F	Cauc	69	20.8	25.21 (11.9%)	26.29 (12.4%)	51.50 (24.4%)
09	F	AA	53	29.4	68.43 (32.4%)	19.55 (9.3%)	87.98 (41.7%)
10	Μ	AA	47	37.4	54.09 (25.6%)	6.83 (3.2%)	60.92 (28.8%)
11	F	Cauc	60	23.8	70.95 (33.6%)	26.92 (12.7%)	97.87 (46.3%)
12	F	Cauc	54	25.8	68.11 (32.2%)	*15.76 (7.5%)	83.87 (39.7%)
13	F	AA	32	29.2	53.84 (25.5%)	14.41 (6.8%)	68.25 (32.2%)
14	Μ	Cauc	31	27.4	90.23 (42.7%)	18.12 (8.6%)	108.35 (51.3%)
15	F	AA	42	31.3	76.66 (36.6%)	18.05 (8.5%)	94.71 (44.8%)
16	F	Asian	24	22.0	38.99 (18.5%)	16.11 (7.6%)	55.10 (26.1%)
17	F	Cauc	29	21.8	49.69 (23.5%)	36.17 (17.1%)	85.86 (40.7%)
18	F	Asian	29	20.1	75.19 (35.6%)	21.32 (10.1%)	96.51 (45.7%)
19	F	Asian	33	19.3	52.17 (24.7%)	13.33 (6.3%)	65.50 (31.0%)
20**	М	Asian	38	20.9	38.76 (18.4%)	19.31 (9.1%)	58.07 (27.5%)
Average	70%	45:35:20	41.6	25.5	52.7 ± 19.4	19.6 ± 6.7	72.3 ± 20.5
	F	Ca:AA:As			(25.4% ± 9.1%)	(9.0% ± 3.4%)	(34.3% ± 9.7%)

*incomplete 16 hour urine collection, but values included in further calculations.

**high baseline invalidates data.

***45% Cauc, 35% AA, 20% Asian

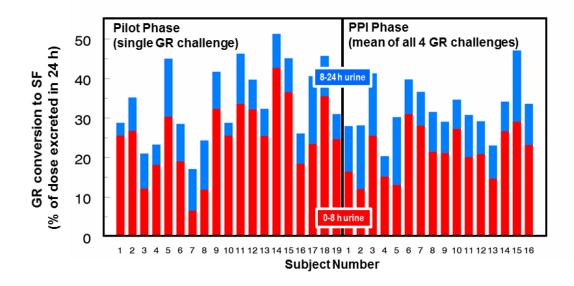
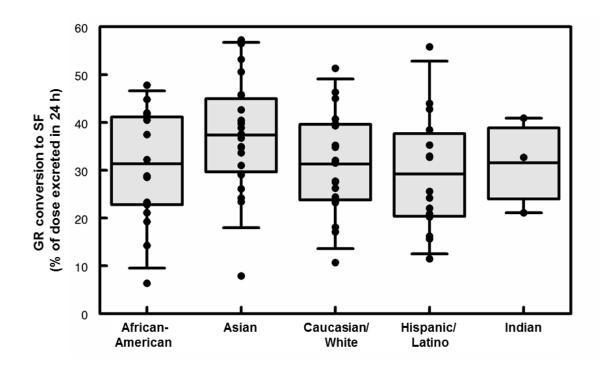
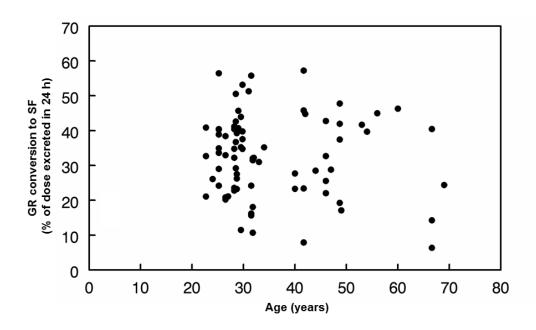
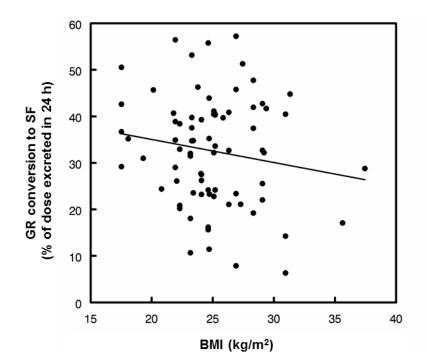

Participant	Sex	Race	Age (yrs)	Weight (kg)	Height (m)	BMI
1	m	Latino	31.5	78.00	1.78	24.62
2	m	White/Hispanic	26.5	65.77	1.72	22.29
3	f	Asian	29.8	52.16	1.50	23.28
4	f	African American	66.6	86.18	1.67	30.95
5	m	Hispanic	29.5	77.11	1.77	24.70
6	f	Asian	28.5	42.64	1.56	17.52
7	f	African American	48.7	69.85	1.57	28.32
8	f	Indian	22.7	58.97	1.50	26.31
9	m	Caucasian	28.7	79.38	1.82	24.07
10	f	Caucasian/Asian	25.2	62.14	1.57	25.19
11	f	Hispanic	46.0	73.94	1.60	29.06
12	m	Caucasian	28.2	73.30	1.77	23.40
13	m	Caucasian	31.8	70.31	1.74	23.16
14	m	African American	28.2	79.38	1.78	25.08
15	f	Asian	25.2	55.79	1.60	21.93
16	m	Asian	41.7	81.65	1.74	26.90

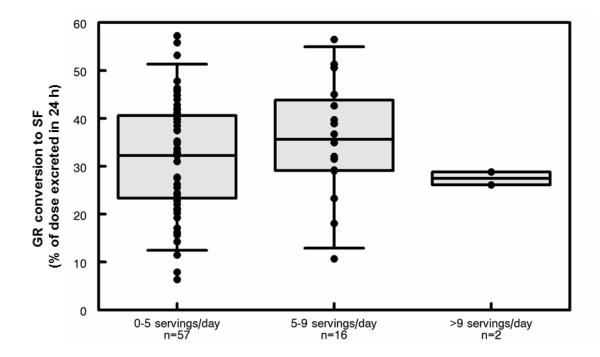
Table S2. PPI Phase demographics. BSE supplement dose \approx 370 µmol glucoraphanin.

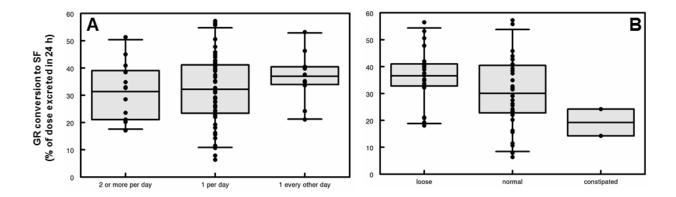

Table S3. Gene expression loadings by component after averaging triplicate determinations made at the first and second post-intervention blood draws, compared to those made at baseline. Bolded data represent gene expressions that load negatively (<0.30) or positively (>0.30) on a component. Total variability explained by three components = 70%. An anti-inflammatory gene's contributions (IL-10) group strongly in two components. The contributions of four genes (HSP27, NQ01, GCLC, s1c7a11) were unexplained by these components.

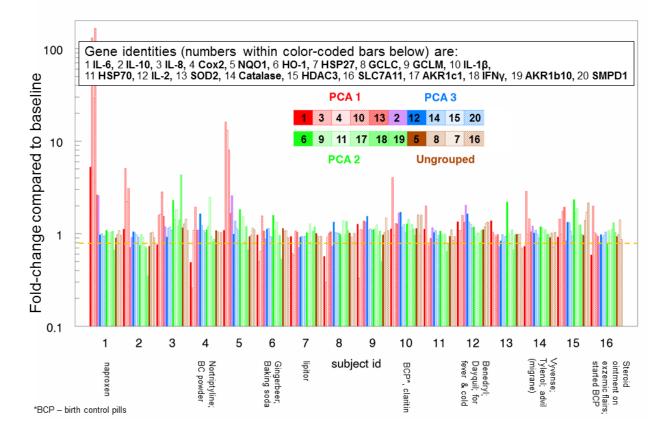
	Principal com			
Gene	¹ Component 1	² Component 2	³ Component 3	Unexplained
% variability explained	32%	26%	12%	•
IL-6	0.4139	-0.0433	-0.0273	0.08294
IL-8	0.4317	-0.006	-0.0586	0.02140
IL-10	0.3049	-0.1431	0.3213	0.12980
Cox2	0.4291	-0.0331	-0.0034	0.03108
NQO1	-0.0795	0.1842	0.1329	0.62480
HO-1	0.0058	0.3666	-0.0841	0.45530
GCLC	-0.065	0.2273	0.2157	0.33720
GCLM	-0.0341	0.4158	-0.0565	0.23880
IL-1β	0.4279	0.0064	-0.0728	0.03920
HSP70	-0.03	0.3384	0.0343	0.39280
HSP27	0.0536	0.1658	0.1779	0.61820
IL-2	-0.0774	-0.104	0.4555	0.25350
SOD2	0.387	0.1905	0.0745	0.04851
Catalase	-0.0085	0.0299	0.3865	0.33330
HDAC3	-0.0166	0.0371	0.4417	0.12200
SLC7A11	-0.0027	0.2161	0.2353	0.35240
AKR1c1	0.0403	0.3313	-0.0046	0.49010
IFNγ	0.0926	0.3282	0.0017	0.47260
AKR1b10	-0.0156	0.355	-0.1193	0.50130
SMPD1	0.0042	-0.0455	0.391	0.42730

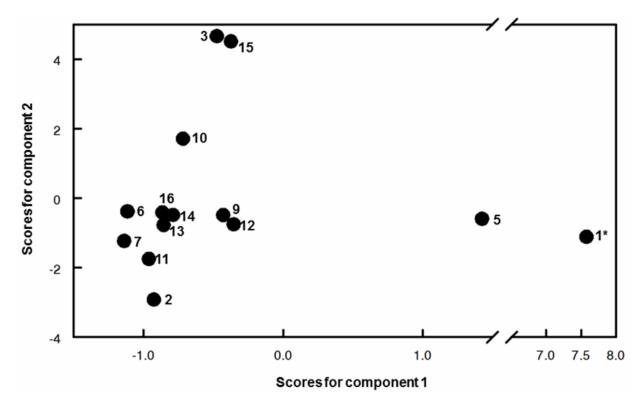

¹Component 1: IL-6, IL-8, (IL-10), Cox2, IL-1β, SOD2 ²Component 2: H0-1, GCLM, AKR1c1, IFNγ, AKR1b10, HSP70 ³Component 3: (IL-10), IL-2, Catalase, HDAC3, SMPD1 **Figure S1.** Twenty-four hour SF metabolite excretion following a single oral dose of BSE containing active myrosinase: The first 8 h. (**■**), and the next 16 h. (**■**).


Figure S2. Relationship between self-identified ethnicity and bioavailability. Excretion of sulforaphane (SF) metabolites following a single oral dose of BSE containing glucoraphanin (GR) and active myrosinase.


Figure S3. Relationship between age and bioavailability. Excretion of sulforaphane (SF) metabolites following a single oral dose of BSE containing glucoraphanin (GR) and active myrosinase.


Figure S4. Relationship between body mass index (BMI) and bioavailability. Excretion of sulforaphane (SF) metabolites following a single oral dose of BSE containing glucoraphanin (GR) and active myrosinase.


Figure S5. Effect of prior self-reported vegetable consumption on 24h. excretion of sulforaphane (SF) metabolites following a single oral dose of BSE containing glucoraphanin (GR) and active myrosinase.


Figure S6. Relationship between self-reported (**A**) bowel movement frequency and (**B**) bowel movement quality (PPI Phase, only), on 24 h excretion of sulforaphane (SF) metabolites following a single oral dose of BSE containing glucoraphanin (GR) and active myrosinase.

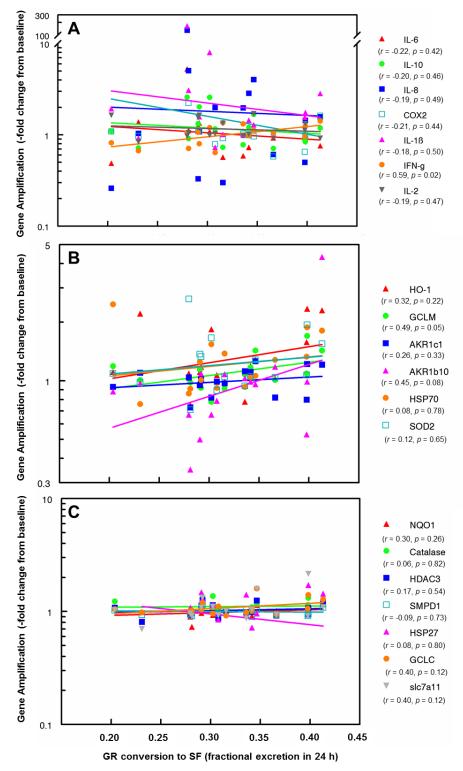

Figure S7. Mean gene amplification: 20 genes for each of 16 subjects (with their medication/supplementation status), grouped according to PCA results.

Figure S8. Principle components analysis (PCA) on combined PBMC data (computed on mean following single pre- and post-omeprazole delivery of an oral BSE dose containing GR and active myrosinase). Components 1 and 2 explain 58% of variability: Component 1: IL-6, IL-8, IL-10, COX2, IL-1B, SOD2; Component 2: HO-1, GCLM, AKR1c1, IFN γ , AKR1b10; HSP70. *Note that Subject 1 had extraordinarily high IL-1 β , IL-8, and COX2 gene expression at both time periods that went into the average values used to create eigenvalues. These 3 genes were all in Component 1 in the PCA analysis.

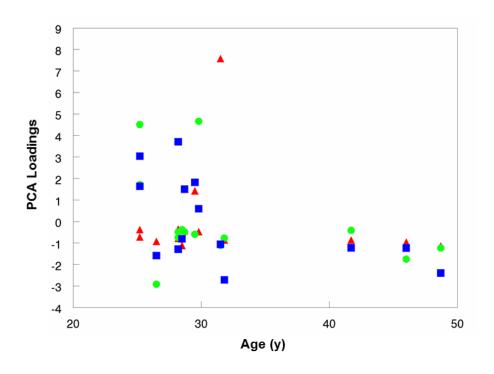
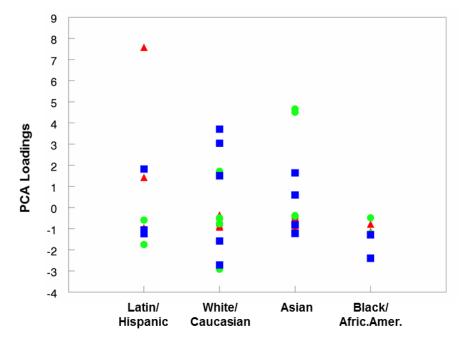
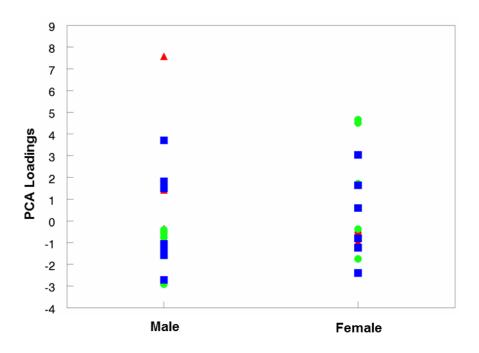


Figure S9. Gene amplification and sulforaphane bioavailability. Mean excretion of sulforaphane (SF) metabolites following single pre- to post-omeprazole delivery of an oral dose of BSE containing GR and active myrosinase. Based on individual linear regressions, '*r*' and '*p*' values for correlation between conversion and fold-amplification are provided immediately below the descriptor of each gene. (A) Inflammation- & immune-related; (B) cytoprotective, detoxifying & antioxidant; (C) minor or non-explanatory.



11


Figure S10. PCA loadings and sulforaphane bioavailability by age of subject. $PC1(\blacktriangle)$, $PC2(\bullet)$, $PC3(\blacksquare)$. Loadings for a 67 and a 23 year old subject were not calculated due to missing data.

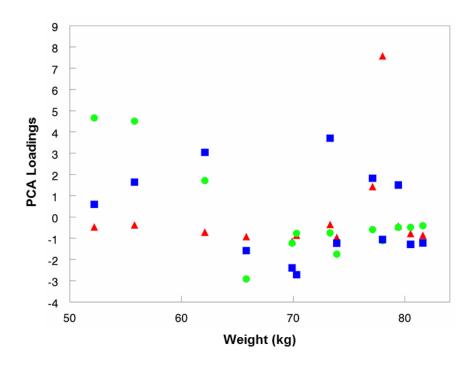

Figure S11. PCA loadings and sulforaphane bioavailability by self-identified ethnicity of subject. PC1(▲), PC2 (●), PC3(■). Loadings for one African American and one Indian subject were not calculated due to missing data.

Figure S12. PCA loadings and sulforaphane bioavailability by sex of subject. PC1(▲), PC2 (●), PC3(■).

Figure S13. PCA loadings and sulforaphane bioavailability by self-identified body mass of subject. $PC1(\blacktriangle)$, $PC2(\bullet)$, $PC3(\blacksquare)$. Loadings for an 86 and a 59 kg subject were not calculated due to missing data.

