Online Supporting Information

Dietary patterns and renal health outcomes in the general population:

a review focusing on prospective studies

Aparna S. Ajjarapu, BA; Stefanie N. Hinkle, PhD; Mengying Li, PhD; Ellen C. Francis, MS; Cuilin Zhang, MD, PhD, MPH

focusing on prospective studies. Online Supporting Information.
Supplemental Table 1. Search strategy and history in PubMed and Embase

#	Query	Items
	PubMed Search	
#1	Search (("Guideline Adherence"[Mesh] AND (diet OR food OR	1203230
	eating OR eat OR dietary OR feeding OR nutrition OR nutrient*))	
	OR (adherence AND (nutrient* OR nutrition OR diet OR dietary OR	
	food OR eat OR eating) AND (guideline* OR guidance OR	
	recommendation*)) OR (dietary score* OR adequacy index* OR	
	kidmed OR Diet Quality Index* OR Food Score* OR Diet Score*	
	OR MedDietScore OR Dietary Pattern Score* OR "healthy eating	
	index") OR ((index*[ti] OR score*[ti] OR indexes OR scoring[ti]	
	AND indices[ti]) AND (dietary[ti] OR nutrient*[ti] OR eating[tiab]	
	OR food[ti] OR food[mh] OR diet[ti] OR diet[mh]) AND (pattern*	
	OR habit* OR profile*))) OR (("diet quality" OR dietary pattern*	
	OR diet pattern* OR eating pattern* OR food pattern* OR eating	
	habit* OR dietary habit* OR food habit* OR dietary profile* OR	
	food profile* OR diet profile* OR eating profile* OR dietary	
	guideline* OR dietary recommendation* OR food intake pattern*	
	OR dietary intake pattern* OR diet pattern* OR eating style*) OR	
	(DASH OR (dietary approaches to stop hypertension) OR "Diet,	
	Mediterranean" [Mesh] OR vegan* OR vegetarian* OR "Diet,	
	vegetarian [Mesn] OR "prudent diet" OR "western diet" OR	
	Disease) OP ((Okinewa* OP "Ethnia Groups"[Mash] OP "plant	
	based" OP Mediterraneen[tich]) AND (diet[mh] OP diet[tich] OP	
	food[mh])))) OR diet[mh] OR (diet[tiab] AND (Baleolithic[tiab]	
	OR vegan[tiab] OR macrobiotic[tiab] OR high-fat[tiab] OR high-	
	protein[tiab] OR low_carbohydrate[tiab] OR fat_restricted[tiab] OR	
	low-fat[tiab] OR ketogenic[tiab] OR atherogenic[tiab] OR fads[tiab]	
	OR fad[tiab] OR "caloric restriction"[tiab]) OR food[mb] OR fast	
	foods[mh] OR "fast food"[tiab] OR diet[mh] OR diet*[tiab] OR	
	edible grain[mh] OR "whole grain"[tiab] OR "whole grains"[tiab]	
	OR fruit[mh] OR vegetables[mh] OR fruit*[tiab] OR	
	vegetable*[tiab] OR legume*[tiab] OR fish[tiab] OR poultry[tiab]	
	OR "dietary pattern"[tiab] OR "dietary patterns"[tiab] OR functional	
	food[mh] OR sov[tiab] OR soy foods[mh] OR nuts[tiab] OR	
	meat[mh] OR dairy products[mh] OR eggs[mh] OR diet,	
	diabetic[mh]	
#2	Search albuminuria[mh] OR albuminuria[tiab] OR	582987
	microalbuminuria[tiab] OR glomerular filtration rate[mh] OR	
	glomerular filtration rate*[tiab] OR GFR[tiab] OR kidney	
	function[tiab] OR "kidney dysfunction"[tiab] OR	
	kidney/physiopathology[mh] OR kidney[ti] OR renal[ti] OR	

	proteinuria[tiab] OR urinary albumin-creatinine[tiab] OR egfr[tiab]	
	OR "kidney disease"[ti] OR "kidney diseases"[ti] OR renal	
	insufficiency, chronic[mh] OR "glomerular filtration rate"[MeSH	
	Terms] OR proteinuria[mh] OR albuminuria[mh] OR renal	
	insufficiency[mh] OR renal outcome*[tiab]	
#3	Search "Clinical Trial" [PT:NoExp] OR "clinical trial, phase i"[pt]	1512638
	OR "clinical trial, phase ii"[pt] OR "clinical trial, phase iii"[pt] OR	
	"clinical trial phase iv"[pt] OR "controlled clinical trial"[pt] OR	
	"multicenter study"[nt] OR "randomized controlled trial"[nt] OR	
	"Clinical Trials as Tonic"[mesh:noevn] OR "clinical trials phase i as	
	tonic"[MeSH Terms:noevn] OR "clinical trials, phase it as	
	topic [MeSH Terms:noexp] OR "clinical trials, phase it as	
	topic [MeSH Terms:noexp] OR "elinical trials, phase in as	
	topic [MeSH Terms:noexp] OR chinear trais, phase is as	
	topic [MeSH Terms:noexp] OR controlled child trials as	
	topic [MeSH Terms:noexp] OR Tandonnized controlled trais as	
	trials"[MeSH Termsunger and DR "multicenter studies as	
	tario"[MaSH Termsunger] OR "Induced enter studies as	
	(rendemined[TIAD] OP rendemined[TIAD]) AND (twist[TIAD] OP	
	((randomised[IIAB] OK randomized[IIAB]) AND (inal[IIAB] OK	
	trials[itab])) OR ((single[ITAB] OR double[ITAB] OR	
	doubled [IIAB] OR Inple[IIAB] OR Inpled [IIAB] OR	
	ITEDIE[ITAB] OK ITEDIE[ITAB]) AND (DIMU*[ITAB] OK	
	mask*[IIAB])) OR ("4 arm"[tiab] OR "four arm"[tiab])OR clinical	
		240(222
#4	Search conort studies[mesh:noexp] OR longitudinal	2406332
	studies[mesn:noexp] OR follow-up studies[mesn:noexp] OR	
	prospective studies[mesh:noexp] OR retrospective	
	studies[mesn:noexp] OR conort[I IAB] OR longitudinal[I IAB] OR	
	prospective[IIAB] OK retrospective[IIAB]	1207700
#5	Search URUSS-SECTIONAL STUDIES[MH] OR CASE-	139//98
	CONTROL STUDIES[MH] OR CROSS-SECTIONAL[TIAB] OR	
	CASE-CONTROL[TIAB]	2((0)
#6	Search #1 AND #2	26696
<i></i>		20017(1
#1	Search #3 OR #4 OR #5	3991761
440		7011
#8	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	/011
#0	Search #6 AND #7 Sort by: PublicationDate Filters: published in the	4135
#9	last 10 years	
	Sourch #6 AND #7 Sort by Dublication Data Eiltons, multiple din the	4024
#10	search #0 AND #7 Sort by: PublicationDate Filters: published in the	4024
#10	last 10 years, Eligiish	
	Embase Search	

#1	((('kidney function'/exp OR 'renal function':ti,ab OR 'kidney function':ti,ab OR albuminuria:ti,ab OR proteinuria:ti,ab OR microalbuminuria:ti,ab OR 'glomerular filtration rate':ti,ab OR gfr:ti,ab OR kidney) AND function:ti,ab OR 'kidney dysfunction':ti,ab OR kidney:ti OR renal:ti OR 'urinary albumin- creatinine':ti,ab OR egfr:ti,ab OR 'renal insufficiency':ti,ab OR 'glomerular filtration rate':ti,ab OR renal) AND outcome:ti,ab OR 'renal outcomes':ti,ab OR 'proteinuria'/exp OR 'glomerulus filtration rate'/exp OR 'urinary albumin creatinine ratio'/exp) AND [2009- 2019]/py AND [english]/lim	152942
#2	('diet quality' OR 'eating habit'/exp OR 'mediterranean diet'/exp OR dash:ab,ti OR 'dietary approaches to stop hypertension':ab,ti OR vegan*:ab,ti OR vegetarian*:ab,ti OR 'vegetarian diet'/exp OR 'vegetarian'/exp OR 'prudent diet':ab,ti OR 'western diet':ab,ti OR omniheart:ab,ti OR omni:ti OR 'plant based diet' OR ((dietary OR eating OR food OR diet) NEAR/2 (pattern? OR habit? OR profile? OR intake? OR recommendation? OR guideline?)) OR (('ethnic, racial and religious groups'/exp OR okinawa*) AND ('diet'/exp OR 'eating'/exp OR 'food intake'/exp))) AND [english]/lim AND [2009- 2019]/py	72611
#3	#1 AND #2	947
#4	'case control study'/exp OR 'observational study'/exp OR 'cohort analysis'/exp OR 'clinical trial'/exp OR 'clinical trial':ti,ab OR cohort:ti,ab OR observational:ti,ab OR retrospective:ti,ab OR prospective:ti,ab OR longitudinal:ti,ab OR 'longitudinal study'/exp OR 'follow-up studies':ti,ab OR 'follow-up study':ti,ab OR 'case- control':ti,ab OR 'case control':ti,ab OR 'cross sectional':ti,ab OR 'randomization'/exp OR randomization:ti,ab OR randomized:ti,ab	4225057
#5	#3 AND #4	440

Supplemental Table 2. Characteristics of cross-sectional studies of dietary patterns and renal outcomes

First author,	Population,	Age, years	Outcome	Diet-	Outcome	Dietary	Association	Covariates in fully
publication	sample size		ascertainment	assessment	(definition)	Pattern	measures with renal	adjusted model
year,	(sex)			method		identified	outcomes	
country				(no. of		(method	$(RR, OR, HR, \beta, and 05% CD)$	
Mazidi et	NHANES	Mean age of	-Serum and	24-hr diet	1 Prevalent	1	Provalent CKD	Age gender BMI
al. (2018)	21.649	study sample	urine creatinine	recall.	CKD	Saturated-	(OR):	race, hypertension.
[1] USA	(both)	(95% CI): 45.9	measured via	Dietary	(eGFR <60	MUFA	1.Saturated-MUFA	diabetes,
, 0511	× /	(45.2, 46.3)	Jaffe Method	pattern	ml/min/1.7	(PCA)	pattern	triglycerides, high
			using samples	calculated	3m ²)	2.	Q1: 1.00 (ref.)	density lipoprotein
			collected during	via diet		Minerals	Q2: 1.05 (0.82, 1.35)	
			2005-12 NHANES	during 2005		and Vitamins	$Q_{3}^{(0)}(0.80, (0.64, 1.01))$	
			cycles.	12 NHANES		(PCA)	2. Minerals and	
			-Urine albumin	cycles.		3.	Vitamins pattern	
			measured via	5		Cholestero	Q1: 1.00 (ref.)	
			solid phase			1-PUFA	Q2: 0.65 (0.53, 0.80)	
			florescent			(PCA)	Q3: 0.66 (0.53, 0.81)	
			immunoassay				Q4: 0.50 (0.40, 0.62) 3 Cholesterol-PUEA	
			collected during				pattern	
			2005-12				Q1:1.00 (ref.)	
			NHANES				Q2: 0.85 (0.72, 1.00)	
			cycles.				Q3: 0.96 (0.79, 1.18)	
			-eGFK				Q4: 0.85 (0.67, 1.00)	
			CKD-EPI					
			equation					
C1 · / 1	CIDIC	3.6	~					
Shi et al.	CHNS,	Mean age of	-Serum	24-hr diet	1.Prevalent	1.	Prevalent CKD	Age, gender, energy
$(2016)^{[2]},$	8,429	Mean age of study sample:	-Serum creatinine	24-hr diet recall.	1.Prevalent CKD	1. Traditional	Prevalent CKD (OR):	Age, gender, energy intake, education,
Shi et al. (2016) ^[2] , China	CHNS, 8,429 (both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via	24-hr diet recall. Dietary	1.Prevalent CKD (eGFR <60 ml/min/1 7	1. Traditional southern	Prevalent CKD (OR): Traditional Southern:	Age, gender, energy intake, education, income, urbanization level
Shi et al. (2016) ^[2] , China	(both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from	24-hr diet recall. Dietary pattern calculated	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis)	Prevalent CKD (OR): Traditional Southern: O1:1.00 (ref.)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol
Shi et al. (2016) ^[2] , China	(both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples	24-hr diet recall. Dietary pattern calculated from diet	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical
(2016) ^[2] , China	(both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in	24-hr diet recall. Dietary pattern calculated from diet info	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity,
(2016) ^[2] , China	(both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009	24-hr diet recall. Dietary pattern calculated from diet info measured in	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor analysis)	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity,
Shi et al. (2016) ^[2] , China	(both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor analysis)	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and
Shi et al. (2016) ^[2] , China	CHINS, 8,429 (both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDP D	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor analysis)	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes
Shi et al. (2016) ^[2] , China	CHINS, 8,429 (both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor analysis)	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.) O2: 0.74 (0.57, 0.97)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes
Shi et al. (2016) ^[2] , China	CHINS, 8,429 (both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor analysis)	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.) Q2: 0.74 (0.57, 0.97) Q3: 0.53 (0.39, 0.72)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes
Shi et al. (2016) ^[2] , China	CHINS, 8,429 (both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor analysis)	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.) Q2: 0.74 (0.57, 0.97) Q3: 0.53 (0.39, 0.72) Q4: 0.50 (0.36, 0.71)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes
Shi et al. (2016) ^[2] , China	CHINS, 8,429 (both)	Mean age of study sample: 51 (SD: 15)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. Traditional southern (factor analysis) 2. Modern (factor analysis)	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes
Paterson et	NES, 1033	Mean age of study sample: 51 (SD: 15) Mean age of study sample:	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.) Q2: 0.74 (0.57, 0.97) Q3: 0.53 (0.39, 0.72) Q4: 0.50 (0.36, 0.71) P for trend: 0.001 Prevalent CKD (OP):	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes
Paterson et al. (2018) [3] Iroland	CHINS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) 2. 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.) Q2: 0.74 (0.57, 0.97) Q3: 0.53 (0.39, 0.72) Q4: 0.50 (0.36, 0.71) P for trend: 0.001 Prevalent CKD (OR): Healthy	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes
Paterson et al. (2018) al. (2018) [3], Ireland	INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern	1.Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.) Q2: 0.74 (0.57, 0.97) Q3: 0.53 (0.39, 0.72) Q4: 0.50 (0.36, 0.71) P for trend: 0.001 Prevalent CKD (OR): Healthy Q1: 1.00 (ref.)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever
Paterson et al. (2018) al. (2018) al. (2018) al. (2018) al. (2018)	EHNS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine values using	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern calculated	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001 Modern: Q1: 1.00 (ref.) Q2: 0.74 (0.57, 0.97) Q3: 0.53 (0.39, 0.72) Q4: 0.50 (0.36, 0.71) P for trend: 0.001 Prevalent CKD (OR): Healthy Q1: 1.00 (ref.) Q2: 0.69 (0.43, 1.09)	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever smoking,
Paterson et al. (2018) al. (2018) al. (2018) al. (2018) al. (2018)	EHNS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine values using CKD-EPI	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern calculated using FFQ	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever smoking, presence/history of
Paterson et al. (2018) al. (2018) al. (2018) al. (2018) al. (2018)	EHNS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine values using CKD-EPI equation from	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern calculated using FFQ administered batware	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever smoking, presence/history of ischemic heart
Paterson et al. (2018) al. (2018) al. (2018) al. (2018) al. (2018)	EHNS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine values using CKD-EPI equation from blood samples collected	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern calculated using FFQ administered between 2007-09	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever smoking, presence/history of ischemic heart disease, presence/history of
Paterson et al. (2018) al. (2018) al. (2018) al. (2018) black al. (2018) black al. (2018)	EHNS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine values using CKD-EPI equation from blood samples collected between 2007-	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern calculated using FFQ administered between 2007-09.	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever smoking, presence/history of ischemic heart disease, presence/history of
Paterson et al. (2018) al. (2018) al. (2018) al. (2018) black al. (2018)	EHNS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine values using CKD-EPI equation from blood samples collected between 2007- 09	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern calculated using FFQ administered between 2007-09.	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever smoking, presence/history of ischemic heart disease, presence/history of cerebrovascular accident and ever
Paterson et al. (2018) [^{3]} , Ireland	EHNS, 8,429 (both) INES, 1033 (women)	Mean age of study sample: 51 (SD: 15) Mean age of study sample: 76 (SD: 8)	-Serum creatinine measured via Jaffe kinetic method from samples collected in 2009 -eGFR calculated via MDRD equation -eGFR calculated via serum creatinine values using CKD-EPI equation from blood samples collected between 2007- 09	24-hr diet recall. Dietary pattern calculated from diet info measured in 2009 FFQ (170). Dietary pattern calculated using FFQ administered between 2007-09.	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²) 1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	 Traditional southern (factor analysis) Modern (factor analysis) Healthy (PCA) Unhealthy (PCA) 	Prevalent CKD (OR): Traditional Southern: Q1:1.00 (ref.) Q2: 2.43 (1.70, 3.47) Q3: 4.92 (3.49, 6.93) Q4: 4.56 (3.18, 6.56) P for trend: <0.001	Age, gender, energy intake, education, income, urbanization level, smoking, alcohol drinking, physical activity, overweight/obesity, hypertension, and diabetes Age, BMI, presence of diabetes, presence of hypertension, ever smoking, presence/history of ischemic heart disease, presence/history of cerebrovascular accident and ever alcohol

							Q4: 1.87 (1.19, 2.95)	
							Q5: 2.62 (1.65, 4.15) P for trend: <0.001	
Nettleton et al., (2008) [⁴]. USA	MESA, 5042 (both)	Age range of study sample: 45-85	-Urine albumin was measured by a protein analyzer and urine creatinine was measured by rate reflectance spectrophotome try using a urine sample collected at baseline.	FFQ. (120) Dietary pattern calculated using FFQ administered at baseline. FFQ measured diet during the past year.	1. Microalbu minuria (UACR: 25-249 mg/g) 2. UACR	1.Fats and processed meats (PCA) 2.Vegetabl es and fish (PCA) 3.Beans, tomatoes, and refined grains 4. Whole grains and fruit	P for trend: <0.001 Microalbuminuria (OR: Fats and processed meats: Q1: 1.00 (ref.) Q2: 0.88 (0.63, 1.23) Q3: 1.25 (0.88, 1.76) Q4: 1.27 (0.87, 1.85) Q5: 1.29 (0.81, 2.04) P for trend: 0.19 Vegetables and fish: Q1: 1.00 (ref.) Q2: 1.45 (1.04, 2.02) Q3: 1.16 (0.82, 1.65) Q4: 1.30 (0.91, 1.86) Q5: 1.12 (0.74, 1.72) P for trend: 0.94 Beans, tomatoes, and refined grains: Q1: 1.00 (ref.) Q2: 1.70 (1.23, 2.36) Q3: 1.18 (0.83, 1.67) Q4: 1.53 (1.07, 2.19) Q5: 1.24 (0.81, 1.91) P for trend: 0.46 Whole grains and fruit: Q1: 0.00 (ref.) Q2: 0.81 (0.59, 1.11) Q3: 0.56 (0.40, 0.80) Q4: 0.54 (0.37, 0.77) Q5: 0.65 (0.45, 0.95) P for trend: 0.04 UACR (β): Fats and processed meats: 0.019 (SD: 0.02) Vegetables and fish: 0.008 (SD:0.02) Beans, tomatoes, and refined grai	Age, gender, energy intake, race/ethnicity, education, active leisure-time physical activity, inactive leisure-time physical activity, current smoking status, smoking duration, current supplement use, and study center.
Crews et al. (2014) ^[5] , USA	NIA- HANDLS, 2085 (both)	Mean age of study sample: 48	-Serum creatinine measured via modified kinetic Jaffe method and isotope dilution mass spectrometry -microalbumin measured via immunoturbime tric assay using blood samples collected between 2004- 08. -eGFR calculated via	24-hr diet recall. Dietary pattern calculated from two 24- hr diet recalls administered 7-10 days apart between 2004-08.	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1. DASH (diet score)	CKD (OR): Poverty T1: 3.20 (1.72, 5.96) T2: 2.85 (1.23, 6.63) T3: 1.00 (ref.) P for trend: 0.001 Non-Poverty T1: 0.91 (0.45, 1.85) T2: 0.98 (0.40, 2.37) T3: 1.00 (ref.) P for trend: 0.801	Age, gender, and race

			CKD-EPI					
			equation					
Lee et al. (2017) ^[6] , Korea	KNHANES, 2408 (both)	Mean age of study sample: 72.4 (SD: 5.1)	-Serum creatinine measured via isotope dilution mass spectrometry and enzymatic colorimetric method using samples collected between 2011- 12 -eGFR calculated via CKD-EPI equation -Urine albumin measured via turbidimetric assay using sample collected between 2011- 12	Qualitative FFQ and 24- hr diet recall. Dietary pattern calculated via diet info collected from FFQ and 24-hr recall between 2011-12	1.Prevalenc t CKD (eGFR <60 ml/min/1.7 3m ² or UACR ≥30mg/g)	1. U.S. DASH (diet score) 2. Korean DASH (diet score)	CKD (OR): DASH-US Low score: 0.0 (ref.) High score: 0.78 (0.65, 0.94) DASH-Korea Low score: 0.0 (ref.) High score: 0.95 (0.91, 0.99)	Age, gender, BMI, diabetes, hypertension, hyperlipidemia, active smoking, physical activity, myocardial infarction, and stroke history
Gopinath et al. (2013) [7] ,Australia	Blue Mountain Eye Study, 2686 (both)	Age of study sample: ≥ 49	-Serum creatinine measured via isotope dilution mass spectrometry from samples collected between 1992- 94. -eGFR calculated via MDRD equation	FFQ (145). Diet score calculated via FFQ administered at baseline between 1992-94	1. Prevalent CKD (eGFR <60 ml/min/1.7 3m ²)	1.TDS (diet score)	CKD: (OR) Q1:1.0 (ref.) Q2:0.68 (0.48, 0.97) Q3:0.51 (0.35, 0.74) Q4:0.59 (0.41, 0.85) P for trend: 0.005	BMI, receipt of pension, smoking, serum total cholesterol, serum triglycerides, hypertension, and history of diagnosed diabetes
Xu et al. (2015) ^[8] ,Sweden	USLAM and PIVUS, 1942 (both)	Age range of study sample: 71-72	-Serum creatinine measured via spectrophotome try using Jaffe reaction using samples collected between 1991- 95 for USLAM And 2001-04 for PIVUS. -Serum cystatin calculated via latex enhanced reagent using samples collected between 1991- 95 for USLAM And 2001-2004 for PIVUS. -eGFR calculated via serum creatinine and cystatin values CKD-EPI	7- day dietary records (~1500). Diet score calculated from diet records during a study visit between 1991-95 for USLAM and 2001-04 for PIVUS.	1. eGFR	1.ADII (diet score)	eGFR (β): -0.018 (-0.027, - 0.009); p-value: <0.001	Age, gender, BMI energy intake, smoking status, physical activity, hypertension, diabetes, use of lipid-lowering medication, and whether the participants were from the USLAM or PIVUS study cohorts

			cystatin and creatinine equation					
Chrysohoou et al.(2010) ^[9] , Greece	ATICCA, 1975 (both)	Age of study sample: >18	-Serum creatinine measured via colorimetric method using samples collected between 2001- 02. -Creatinine clearance rate calculated via Cockcroft- Gault Formula	FFQ (not reported). Dietary pattern calculated from FFQ administered at study visit between 2001-02.	1.Creatinin e Clearance Rate	1.MDS (diet score)	Creatinine Clearance Rate (β) 0.003 (SE: <u>+</u> 0.001); p-value: 0.06	Not indicated
Lin et al. (2010), ^[10] , Taiwan	Study participants were Buddhist nuns in Taichung City, Taiwan, 102 (female)	Mean age of study sample: 46.6	-Serum creatine and albumin measured via Olympus AU- 2700 and the SYSMEX XE- 2100 from samples collected between 2006- 07 -eGFR calculated via serum creatinine values using MDRD equation	-Not reported. Diet information collected between 2006-07	1. eGFR	1. Duration of diet intake by vegetarian diet	eGFR (β): -0.07 (CI not reported); p-value: 0.67	Not indicated
Liu et al. (2019) ^[11] , Taiwan	Individuals who received health paid exams at health checkup center in Taipei Chi Hospital, 55, 113 (both)	Age of study sample: ≥ 40	-Serum creatinine measured via Jaffe method using samples collected between 2005- 16 -eGFR calculated via CKD-EPI equation -Urine protein measured via automated urine analyzer using samples collected between 2005- 16	-Food questionnaire (not reported). Dietary pattern calculated via diet info collected during study visit between 2005-16	1.Prevalnet CKD (eGFR ≤60mL/min / 1.73 m ² or proteinuria)	1. Vegan (only consumes plant- based foods) 2. Ovo- lacto (consumes eggs or dairy or both but no other animal products) 3. Omnivor e (consumes both plant and animal- based foods)	CKD (OR) Omnivore: 1.0 (ref.) Vegan: 0.86 (0.75, 0.97) Ovo-lacto vegetarian: 0.82 (0.77, 0.88)	Age, gender diabetes, hypertension, abdominal obesity, systolic BP, low HDL, and high TG

Abbreviation of research studies: HR=Hazard ratio; RR=Relative risk ratio; OR=Odd's ratio; β =beta correlation coefficient; SD=standard deviation; SE= standard error; FFQ=Food frequency questionnaire; UACR=urinary albumin-to-creatinine ratio; eGFR=estimated glomerular filtration rate; BMI= body mass index; PCA=Principle component factor analysis; T= Tertial; Q= Quartile or quintile based on designation; NHANES= US National Health and Nutrition Examination Surveys; CHNS=China Health and Nutrition Survey; INES= Irish Nun Eye Study; CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; NIA-HANDLS=National Institute on Aging, Healthy Aging in Neighborhoods of Diversity across the Life Span; KNHANES=Korean National Health and Nutrition Examination Survey; ULSAM=Uppsala Longitudinal Study of Adult Men; PIVUS=Prospective Investigation of Vasculature in Uppsala Seniors; MESA=Multiethnic Study of Atherosclerosis; DASH=Dietary Approaches to Stop Hypertension; TDS=Total Diet Score; MDS=Mediterranean Diet Score; ADII=Adapted Dietary Inflammatory Index; MDRD= Modification in Diet and Renal Disease.

Dietary Pattern: Study (First	Components of diet score	Diet score calculation
Author, Year of Publication)	-	
Dietary Approaches to Stop	High intake of:	Component score range: 1-5
Hypertension:	1. Vegetables	based on levels of intake.
Smyth et al., 2016	2. Fruit	Total Score: sum of
Asghari et al., 2017	3. Whole grains	component scores with range
Lin et al., 2011	4. Low-fat dairy	of 8-40.
Taylor et al., 2009	products	Higher scores indicate greater
Ferraro et al., 2017	5. Nuts & legumes	adherence.
Rebholz et al., 2016	Low intake of:	
	6. Sugar sweetened	
	beverages	
	7. Red/processed meat	
	8. Sodium (mg/day)	
Dietary Approaches to Stop	High intake of:	Component score range: 1-4
Hypertension:	1. Vegetables	based on quartile of intake.
Chang et al., 2013	2. Fruit	Total score: sum of
	3. Whole grains	component scores with range
	4. Low-fat dairy	of 8-32.
	products	Higher scores indicate greater
	5. Nuts & legumes	adherence.
	Low intake of:	
	6. Sugar sweetened	
	beverages	
	7. Red/processed meat	
	8. Sodium (mg/day)	
Dietary Approaches to Stop	1. Total fat	Component score range: 0-1
Hypertension:	2. Saturated fat	based on meeting a target
Liu et al, 2017	3. Protein	intake.
Crews et al., 2017	4. Fiber	Total score: sum of
	5. Cholesterol	component scores with range
	6. Calcium	of 0-9.
	7. Magnesium	Higher scores indicate greater
	8. Potassium	adherence.
	9. Sodium	
Dietary Approaches to Stop	1. Protein	Component score range: 0-1
Hypertension-US and Dietary	2. Fiber	based on meeting a target
Approaches to Stop	3. Calcium	intake for DASH-US and 1-4
Hypertension-KQ:	4. Potassium	based on quartile of intake for
Lee et al., 2017	5. Total Fat	DASH-KQ.

Supplemental Table 3. Description of *a priori* dietary patterns

	6. Sodium	Total score: sum of component scores with range of 0-6 for DASH-US and 6- 24 for DASH-KQ. Higher scores indicate greater adherence.
Mediterranean Diet: Khatri et al., 2014 Smyth et al., 2016 Leone et al., 2017	 High intake of: 1. Legumes 2. Vegetables 3. Fruit 4. Cereals 5. Legumes 6. Fish Moderate to high intake: 7. MUFA to SFA Moderate intake: 8. Alcohol Low intake of: 9. Dairy and Meat 	Component score range: 0-1 based on levels of intake. Total score: sum of component scores with range of 0-9. Higher scores indicate greater adherence.
Mediterranean Diet: Asghari et al., 2017	 High intake of: 1. Legumes 2. Vegetables 3. Nuts and fruits 4. Cereals 5. MUFA to SFA Moderate to high intake of: 6. Fish Low to moderate intake of: 7. Dairy products Low intake of: 8. Meat and poultry 	Component score range: 0-1 based on levels of intake Total Score: sum of component scores with range of 0-8. Higher scores indicate greater adherence.
Mediterranean Diet: Chrysohoou et al., 2010	High intake of:1. Non-refined cereals2. Fruits3. Vegetables4. Legumes5. Olive oil6. Fish7. PotatoesLow intake of:8. Red meat and products9. Poultry10. Full fat dairy products11. Alcohol	Component score range: 0-5 based on levels of intake. Total score: sum of component scores with range of 0-55. Higher scores indicate greater adherence.

Alternative Healthy Eating	High intake of:	Component score range: 0-10
Index-2010:	1. Vegetables	based on levels of intake.
Smyth et al., 2016	2. Fruit	Total score: sum of
	3. Whole Grains	component scores with range
	4. Nuts, legumes and	of 0-110.
	vegetable protein	Higher scores indicate greater
	5. Long-chain (n-3) fats	adherence.
	(EPA+DHA)	
	6. PUFA	
	Moderate intake of:	
	7. Alcohol	
	Low intake of:	
	8. Sugar-sweetened	
	beverages	
	9. Red meat and	
	processed meats	
	10. <i>Trans</i> fat	
	11. Sodium	
Healthy Eating Index-2010:	High intake of:	Component score range: 1-10
Smyth et al., 2016	1. Total vegetables	(whole grains, dairy, fatty
	2. Greens & beans	acids, refined grains, and
	3. Total fruit	sodium), 0-20 (empty
	4. Whole fruit	calories), 0-5 (rest of
	5. Whole grains	components) based on levels
	6. Dairy	of intake.
	7. Total protein	Total score: sum of
	8. Seafood and plant	components scores with range
	proteins	of 0-100.
	9. Fatty acids	Higher scores indicate greater
	Low intake of:	adherence.
	10. Refined grains	
	11. Sodium	
	12. Empty calories	
	(calories from solid	
	fats, alcohol, and	
	added sugars)	
Recommended Food Score:	High intake of:	Component score range: 0-1
Smyth et al., 2016	1-9.Vegetable items	based on levels of intake.
	10-15. Fruit items	Total score: sum of
	16-20.Whole grains	component scores with range
	21-22. Poultry Items	of 0-23.
	23. Fish item	Higher score indicate greater
		adherence.

Dietary Guidelines	1) Dark green vegetables	Component score range: 0-1
Adherence Index:	2) Orange vegetables	based on level of intake.
Foster et al., 2015	3) Legumes	Total score: sum of
	4) Starchy vegetables	component scores with range
	5) Other vegetables	of 0-20.
	6) Fruits	Higher scores indicate greater
	7) Variety of fruits and	adherence.
	vegetables	
	8) Meats and legumes	
	9) Milk and milk	
	products	
	10) Grains	
	11) Discretionary energy	
	(added sugar intake)	
	12) Whole grains	
	13) Fiber	
	14) Low-fat choices	
	15) Total fat	
	16) Saturated fat	
	17) Trans fat	
	18) Cholesterol	
	19) Alcohol	
	20) Sodium	
American Heart	High intake of:	Component score range: 0-1.
American Heart Association's Healthy Diet	High intake of: 1. Fruits and Vegetables	Component score range: 0-1. Total score: sum of
American Heart Association's Healthy Diet Score:	High intake of: 1. Fruits and Vegetables 2. Fish 2. Fish	Component score range: 0-1. Total score: sum of component scores with range
American Heart Association's Healthy Diet Score: Rebholz et al., 2015	 High intake of: 1. Fruits and Vegetables 2. Fish 3. Fiber-rich whole grains 	Component score range: 0-1. Total score: sum of component scores with range of 0-5.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015	 High intake of: 1. Fruits and Vegetables 2. Fish 3. Fiber-rich whole grains Low intake of: 4. Sodium 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater
American Heart Association's Healthy Diet Score: Rebholz et al., 2015	 High intake of: 1. Fruits and Vegetables 2. Fish 3. Fiber-rich whole grains Low intake of: 4. Sodium 5. Sugar guartened 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015	 High intake of: 1. Fruits and Vegetables 2. Fish 3. Fiber-rich whole grains Low intake of: 4. Sodium 5. Sugar-sweetened beverages 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015	 High intake of: 1. Fruits and Vegetables 2. Fish 3. Fiber-rich whole grains Low intake of: 4. Sodium 5. Sugar-sweetened beverages 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Goninath et al. 2013	 High intake of: 1. Fruits and Vegetables 2. Fish 3. Fiber-rich whole grains Low intake of: 4. Sodium 5. Sugar-sweetened beverages 1. Eat plenty of vegetables legumes 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: 1. Fruits and Vegetables 2. Fish 3. Fiber-rich whole grains Low intake of: 4. Sodium 5. Sugar-sweetened beverages 1. Eat plenty of vegetables, legumes and fruit 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats. 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats, fish, poultry and/or 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened Sugar-sweetened Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats, fish, poultry and/or alternatives 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats, fish, poultry and/or alternatives Include milk, 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats, fish, poultry and/or alternatives Include milk, yoghurts, cheese, 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats, fish, poultry and/or alternatives Include milk, yoghurts, cheese, and/or alternatives 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats, fish, poultry and/or alternatives Include milk, yoghurts, cheese, and/or alternatives Limit saturated fat and 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater adherence.
American Heart Association's Healthy Diet Score: Rebholz et al., 2015 Total Diet Score: Gopinath et al., 2013	 High intake of: Fruits and Vegetables Fish Fiber-rich whole grains Low intake of: Sodium Sugar-sweetened beverages Eat plenty of vegetables, legumes and fruit Eat plenty of cereals, preferably wholegrain/meal Include lean meats, fish, poultry and/or alternatives Include milk, yoghurts, cheese, and/or alternatives Limit saturated fat and moderate total fat 	Component score range: 0-1. Total score: sum of component scores with range of 0-5. Higher scores indicate greater adherence. Component score range: 0-2 based on meeting an intake recommendation. Total score: sum of component scores with range of 0-20. Higher scores indicate greater adherence.

	6 Choose foods low in	
	salt	
	7 Limit alcohol intake if	
	you choose to drink	
	8 Consume only	
	moderate amounts of	
	sugars and foods with	
	added sugars	
	9 Extra foods not	
	essential to provide	
	nutrients and may be	
	high in self, fet or	
	sugar	
	10 Prevent weight gain:	
	be physically active	
	and eat according to	
	energy needs	
Adapted Dietary	1 Protein	Total score: product of the
Inflammatory Index:	2 Total fat	dietary inflammatory weights
$X_{\rm H}$ et al. 2015	3 Saturated fatty acid	of 26 individual components
Au et al., 2015	4 MIJFAs	of 20 mervieual components.
	5 n-3 PUAS	
	6 Cholesterol	
	7 Carbohydrate	
	8 Fiber	
	9 Ethanol	
	10 Caffeine	
	11 Vitamin A	
	12 Beta-carotene	
	13 Thiamin	
	14 Riboflavin	
	15. Niacin	
	16. Vitamin B6	
	17. Folate	
	18. Vitamin B12	
	19. Vitamin C	
	20. Vitamin D	
	21. Vitamin E	
	22. Iron	
	23. Magnesium	
	24. Selenium	
	25. Zinc	
	26. Tea	
Vegetarian:	Does not eat meat or fish	Categorized as vegetarian if
Turney et al., 2014		didn't eat meat or fish as
		indicated on questionnaire.

Omnivore, Vegan, Ovo-lacto	Omnivore: consumes both	Dietary patterns were
Vegetarian:	plant and animal-based foods	determined by responses to
Liu et al., 2019	Vegan: only consumes plant-	validated food questionnaire.
	based foods	
	Ovo-lacto vegetarian:	
	consumes eggs or dairy	
	products or both but no other	
	animal products.	

Dietary pattern: Study (First	Dietary pattern description	How dietary pattern was
Author, Year of Publication)		derived in study
Prudent Pattern:	High intake of fruits,	Principle component
Lin et al., 2011	vegetables, legumes, fish,	procedure identifies diet
	poultry, and whole grains.	patterns based on correlations
		between 38 food groups
		classified from FFQ.
Western Pattern:	High intake of red and	Principle component
Lin et al., 2011	processed meats, saturated	procedure identifies diet
	fats, and sweets.	patterns based on correlations
		between 38 food groups
		classified from FFQ.
Lacto-vegetarian:	High intake of fresh fruit,	Principal component factor
Asghari et al., 2018	dried fruit and fruit juice,	analysis identified dietary
	dark-yellow, and leafy	patterns from response from
	vegetables, tomato, date, low-	the food frequency
	fat dairy, and olive oil.	questionnaire.
Traditional Iranian:	High intake of legumes	Principal component factor
Asghari et al., 2018	processed and red meat,	analysis identified dietary
	potato, egg, refined grain,	patterns from response from
	sugar, French fries, and tea.	the food frequency
		questionnaire .
High fat, high sugar:	High intake of mayonnaise,	Principal component factor
Asghari et al., 2018	coffee, sweet and salty snack,	analysis identified dietary
	soda, high-fat dairy, pizza,	patterns from response from
	butter, salt, solid oil, poultry,	the food frequency
	and corn and peas.	questionnaire.
Saturated-MUFA:	Defined by saturated fatty	Principle component analysis
Mazidi et al., 2018	acids, mono-unsaturated fatty	was used to generate dietary
	acids, total fat, and	patterns from responses form
	carbohydrate	the food frequency
		questionnaire.
Minerals and Vitamins:	Defined by vitamins,	Factor analysis with
Mazidi et al., 2018	minerals, and dietary fiber	orthogonal transformation
		was used to derive nutrient
		patterns based on nutrients
		and bloactive compounds
		recalls
Cholesterol-PUFA	Defined by cholesterol	Factor analysis with
Mazidi et al., 2018	polyunsaturated fatty acids.	orthogonal transformation
	and protein	was used to derive nutrient

Supplemental Table 4. Description of *a posteriori* dietary patterns

		patterns based on nutrients and bioactive compounds from responses from dietary recalls.
Traditional Southern: Shi et al., 2016	Defined by rice, pork, and vegetable	Factor analysis was used to generate dietary patterns from food frequency questionnaire responses.
Modern: Shi et al., 2016	Defined by fruit, soy milk, eggs, milk, deep fried products, fast food and cakes	Factor analysis was used to generate dietary patterns from food frequency questionnaire responses.
Healthy: Paterson et al., 2018	Defined by lutein/zeaxanthin- rich vegetables, green leafy vegetables, alliums, vegetables, fruit, tomatoes, legumes, nuts, oily fish, low fat dairy products, pizza, dressings/sauces/condiments, wholegrain breakfast cereal and red meat.	Principle component analysis was used to generate dietary patterns from responses form the food frequency questionnaire.
Unhealthy: Paterson et al., 2018	Defined by crisps, chips, alcohol, high fat dairy products, soups, desserts, sugars and sweets, wholegrains, dressings/sauces/condiments, processed meat, potatoes, eggs, refined grains, refined breakfast cereal, chocolate vegetables, red meat, white fish and shell fish.	Principle component analysis was used to generate dietary patterns from responses of food frequency questionnaire.
Fats and processed meats: Nettleton et al., 2008	Described as added fats, processed meat, fried potatoes, and desserts.	Principle component analysis was used to generate dietary patterns from responses of food frequency questionnaire.
Vegetables and fish: Nettleton et al., 2008	Vegetables, fish, soups, and Chinese dishes.	Principle component analysis was used to generate dietary patterns from responses of food frequency questionnaire.
Beans, tomatoes, and refined grains: Nettleton et al., 2008	Beans, tomatoes, refined grains, high-fat dairy foods, red meat, and poultry.	Principle component analysis was used to generate dietary patterns from responses of food frequency questionnaire.

Whole grains and fruit:	Whole grains, fruit, nuts and	Principle component analysis
Nettleton et al., 2008	seeds, green leafy vegetables,	was used to generate dietary
	and low-fat dairy foods.	patterns from responses of
		food frequency questionnaire.

REFERENCES

- 1. Mazidi, M.; Gao, H.-k.; Kengne, A.P. Food Patterns are Associated with Likelihood of CKD in US Adults. *Scientific Reports* **2018**, *8*, 10696, doi:10.1038/s41598-018-27365-6.
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. *Clin Nutr* 2018, *37*, 276-284, doi:10.1016/j.clnu.2016.12.025.
- 3. Paterson, E.N.; Neville, C.E.; Silvestri, G.; Montgomery, S.; Moore, E.; Silvestri, V.; Cardwell, C.R.; MacGillivray, T.J.; Maxwell, A.P.; Woodside, J.V., et al. Dietary patterns and chronic kidney disease: a cross-sectional association in the Irish Nun Eye Study. *Scientific reports* **2018**, *8*, 6654, doi:10.1038/s41598-018-25067-7.
- 4. Nettleton, J.A.; Steffen, L.M.; Palmas, W.; Burke, G.L.; Jacobs, D.R., Jr. Associations between microalbuminuria and animal foods, plant foods, and dietary patterns in the Multiethnic Study of Atherosclerosis. *The American journal of clinical nutrition* **2008**, *87*, 1825-1836, doi:10.1093/ajcn/87.6.1825.
- 5. Crews, D.C.; Kuczmarski, M.F.; Miller, E.R., 3rd; Zonderman, A.B.; Evans, M.K.; Powe, N.R. Dietary habits, poverty, and chronic kidney disease in an urban population. *Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation* **2015**, *25*, 103-110, doi:10.1053/j.jrn.2014.07.008.
- 6. Lee, H.S.; Lee, K.B.; Hyun, Y.Y.; Chang, Y.; Ryu, S.; Choi, Y. DASH dietary pattern and chronic kidney disease in elderly Korean adults. *European journal of clinical nutrition* **2017**, *71*, 755-761, doi:10.1038/ejcn.2016.240.
- 7. Gopinath, B.; Harris, D.C.; Flood, V.M.; Burlutsky, G.; Mitchell, P. A better diet quality is associated with a reduced likelihood of CKD in older adults. *Nutrition, metabolism, and cardiovascular diseases : NMCD* **2013**, *23*, 937-943, doi:10.1016/j.numecd.2012.07.003.
- 8. Xu, H.; Sjogren, P.; Arnlov, J.; Banerjee, T.; Cederholm, T.; Riserus, U.; Lindholm, B.; Lind, L.; Carrero, J.J. A proinflammatory diet is associated with systemic inflammation and reduced kidney function in elderly adults. *The Journal of nutrition* **2015**, *145*, 729-735, doi:10.3945/jn.114.205187.
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Skoumas, J.; Toutouza, M.; Papaioannou, I.; Stefanadis, C. Renal function, cardiovascular disease risk factors' prevalence and 5-year disease incidence; the role of diet, exercise, lipids and inflammation markers: the ATTICA study. *QJM : monthly journal of the Association of Physicians* 2010, *103*, 413-422, doi:10.1093/qjmed/hcq045.
- Lin, C.K.; Lin, D.J.; Yen, C.H.; Chen, S.C.; Chen, C.C.; Wang, T.Y.; Chou, M.C.; Chang, H.R.; Lee, M.C. Comparison of renal function and other health outcomes in vegetarians versus omnivores in Taiwan. *Journal of health, population, and nutrition* 2010, 28, 470-475.
- 11. Liu, H.W.; Tsai, W.H.; Liu, J.S.; Kuo, K.L. Association of Vegetarian Diet with Chronic Kidney Disease. *Nutrients* **2019**, *11*, doi:10.3390/nu11020279.