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Abstract: Plant-based diets, defined here as including both vegan and lacto-ovo-vegetarian diets, are
growing in popularity throughout the Western world for various reasons, including concerns for
human health and the health of the planet. Plant-based diets are more environmentally sustainable
than meat-based diets and have a reduced environmental impact, including producing lower levels
of greenhouse gas emissions. Dietary guidelines are normally formulated to enhance the health
of society, reduce the risk of chronic diseases, and prevent nutritional deficiencies. We reviewed
the scientific data on plant-based diets to summarize their preventative and therapeutic role in
cardiovascular disease, cancer, diabetes, obesity, and osteoporosis. Consuming plant-based diets is
safe and effective for all stages of the life cycle, from pregnancy and lactation, to childhood, to old
age. Plant-based diets, which are high in fiber and polyphenolics, are also associated with a diverse
gut microbiota, producing metabolites that have anti-inflammatory functions that may help manage
disease processes. Concerns about the adequate intake of a number of nutrients, including vitamin
B12, calcium, vitamin D, iron, zinc, and omega-3 fats, are discussed. The use of fortified foods and/or
supplements as well as appropriate food choices are outlined for each nutrient. Finally, guidelines
are suggested for health professionals working with clients consuming plant-based diets.

Keywords: plant-based diets; vegetarian; vegan; sustainability; microbiome; vitamin B12; CV disease;
diabetes; bone health; life cycle

1. Introduction

Interest in plant-based diets has soared in the past decade for a myriad of reasons [1].
People are concerned about issues such as their health, climate change, the sustainability
of the food production system, and the welfare of animals. A plant-based diet is defined
in various ways. For some it means eating foods mostly, but not entirely, of plant origin,
while for others it means eating only plant-based foods. In this manuscript, we chose to
restrict the term plant-based to include both vegan diets (total plant-based nutrition) and
lacto-ovo-vegetarian diets (this allows for the consumption of dairy products and eggs).
We do not include a discussion of flexitarian, semi-vegetarian, or pesco-vegetarian eating
patterns, as they do not fit into our definition of plant-based diets.

This paper will discuss the environmental issues and the benefits for the planet of
significantly reducing or eliminating meat and dairy foods from our diet. In addition, it
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outlines the therapeutic advantages of a plant-based diet for managing the chronic diseases
of Western society, such as obesity, cardiovascular disease (CVD), cancer, and diabetes.
A plant-based diet is also shown to have a substantial impact upon the composition and
function of the gut microbiome, which in turn influences our overall health. Furthermore,
the safety of following a plant-based diet during all stages of the life-cycle is addressed.
Finally, questions were raised about the adequacy of a plant-based diet with respect to eight
key nutrients. These are discussed in detail, with solutions suggested as to how one can
meet the dietary requirements through food choices and/or supplementation. Some simple
guidelines are given for health professionals to effectively serve the growing population of
those consuming a plant-based diet.

2. Current Trends

Internationally, the prevalence of following a vegetarian diet varies by country, but it
is generally estimated to be less than 10% of the population. The exception is India, where
20% or more of adults are vegetarian [2,3]. In the United States, a nationwide poll in 2020
found that approximately 6% of adults followed a vegetarian diet, with half of them being
vegans [4]. A similar U.S. poll found that approximately 2% of 8- to 17-year-old children
followed a vegan diet, and 3% followed a non-vegan vegetarian diet [5].

Globally, the market for alternatives to dairy products is expected to reach $US
25 billion by 2026 [6]. U.S. retail sales of plant-based foods (plant-based dairy alternatives
and plant-based meats) increased 27% between 2019 and 2020, with a total plant-based
market value estimated at $7 billion [7], suggesting a growing consumer interest in non-
animal products.

The 2020–2025 Dietary Guidelines for Americans endorses a “Healthy Vegetarian
Dietary Pattern” as one of three dietary patterns that can “be tailored to meet cultural and
personal preferences” [8]. There are versions of this plan for ages one year and older. The
Guidelines also encourage all Americans to eat more plant foods, including dried beans,
whole grains, fruits, vegetables, and nuts. Many other countries promote plant-based diets
in their dietary guidelines [9].

With a growing interest in vegetarian eating, establishments such as colleges and
universities, school food services, airlines, restaurants, prisons, employee food services,
nursing homes, and hospitals are increasingly providing vegetarian options [10–12].

3. Environmental Sustainability of Vegetarian Diets

The production of different foods can have very diverse environmental impacts. There
is a large variation in the ecological footprint of animal-based products, with ruminant
meat being especially detrimental for the environment as compared with other products
such as pork, white meat, or eggs [13–15]. An increasing body of data provides evidence
that environmental degradation, through the emissions of greenhouse gas (GHG) and
other pollutants, and the use of earth’s resources, such as water and land, in the production
of plant-based foods are significantly lower than that from animal-based foods [13–15].
Certainly, the effects of the lowest-impact animal products are typically greater than
those of plant-based alternatives, even in the case of highly processed plant-based meat
analogs [14,16]. The production of plant-based products is more efficient regardless of
whether the comparison is made by weight of product, per serving, per calories, or even
protein content [14,15,17,18]. Producing the same amount of protein from tofu (soybeans)
in comparison to beef protein requires 74 times less land and eight times less water, while
the GHG emissions are 25 times lower and the eutrophication (a process driven by the
enrichment of water by nutrients, especially compounds of nitrogen and/or phosphorus,
leading to an increased growth, primary production and biomass of algae; changes in
the balance of organisms; and water quality degradation [19]) potential is reduced by
39 times [14,18]. Even if compared to egg protein, tofu protein requires almost three times
less land and six times less water, while the GHG emissions are only half of that from egg
protein, and the eutrophication potential is five times lower [14,18].
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Likewise, a reduction of animal-based foods in the diet goes hand in hand with a
decrease in the dietary environmental impact [20,21]. Vegetarian diets, both lacto-ovo-
vegetarian and vegan, have been described as more environmentally sustainable than those
diets including meat. A review study concluded that the adoption of lacto-ovo-vegetarian
diets could reduce the dietary GHG emissions by 35%, land use by 42%, and freshwater use
by 28% [20]. Adopting a vegan diet would lead to around one-half of both GHG emissions
and land use of that of current dietary patterns. One should note that there is substantial
variability in the dietary environmental impact of those consuming vegetarian diets. In the
final analysis, any environmental benefits would depend on the quantity and the specific
foods consumed. Overconsumption of calories, a high intake of fruits transported by plane,
or the consumption of large quantities of fatty dairy products, such as cheese or butter,
in lacto-ovo-vegetarian diets could jeopardize any potential benefit from the avoidance
of meat.

Studies suggest that the adoption of nutritionally balanced vegetarian diets, both in
developed and developing countries, could be an effective strategy for reducing GHG
emissions worldwide [22,23]. This dietary transition would be moderately effective in
reducing fertilizer application and would decrease, although to a lesser extent, cropland
and fresh water use [23]. Altogether, embracing a balanced vegetarian diet, especially
in developed countries, could be an effective strategy for reducing the food system’s
environmental degradation and reducing our use of the earth’s resources.

4. Plant-Based Diets and Chronic Diseases
4.1. CVD, including Hyperlipidemia, Ischemic Heart Disease, Hypertension, and Stroke

CVD continues as the most common cause of death and disability in the U.S. and
globally [24,25]. The leading risk factors for CVD include dyslipidemia, excess weight, hy-
pertension, glucometabolic disorders, and diabetes and are attributed to poor diets [26,27].
Compared to omnivorous diets, vegetarian and plant-based diets rich in whole grains,
legumes, vegetables, fruits, nuts, and seeds have been associated with substantial re-
ductions in several modifiable risk factors, including body mass index (BMI) and waist
circumference [28,29], atherogenic lipoprotein concentrations [29,30], blood glucose [28],
inflammation [31], and blood pressure [32].

The results of randomized controlled trials (RCT) of vegan and vegetarian interven-
tions along with systematic reviews and meta-analyses of such studies show improvements
in several intermediate cardiometabolic risk markers, including body weight and blood
lipids [33–37], and cardiometabolic risk profiles [38]. Data from relatively long-term (years)
clinical intervention studies with intensive low-fat vegetarian [39] and vegan diets [40]
show reversals in coronary artery disease in individuals with CVD. Due to lower saturated
fat and cholesterol levels and more optimal plant sterol and fiber content, greater favorable
effects of vegan diets on heart disease risk factors are expected. A vegan diet, compared to
the American Heart Association (Dallas, TX, USA) diet for coronary heart disease (CHD),
resulted in similar reductions in BMI, waist circumference, markers of glycemic control,
blood lipids, and a 32% lower high-sensitivity C-reactive protein (a pro-inflammatory
marker) [31].

In the Adventist Health Study-2 (AHS-2), vegetarians had a 13% and 19% lower risk
of CVD and ischemic heart disease (IHD) mortality, respectively, compared with non-
vegetarians. This difference occurred in spite of the fact that the non-vegetarians in the
cohort consumed less meat than the general population. Blood pressure levels in vegans
and vegetarians were also lower than those of the omnivores. Metabolic syndrome and
type 2 diabetes (T2D) are prime risk conditions for CVD and stroke. A reduced prevalence
of these conditions was observed in vegan and vegetarian participants of AHS-2 [28,41].

The EPIC-Oxford study of vegetarians, vegans, and health-conscious individuals
reported that the risk of incident IHD hospitalizations and deaths caused by circulatory
disease was 32% lower in vegetarians than in non-vegetarians [42]. The 18-year follow-
up showed lower rates of IHD in vegetarians but higher rates of hemorrhagic and total
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stroke [43]. Red meat intake, both processed and unprocessed, was associated with CHD
risk in male health professionals [44]. In the large prospective cohort of men and women of
the US National Institutes of Health—AARP Diet and Health Study, higher plant protein
intake was associated with reduced CVD mortality [45]. In the Atherosclerosis Risk in
Communities study, higher intakes of plant-based diets scored as healthy were associated
with a lower risk of incident CVD and CVD mortality [46].

Pooled data from seven prospective cohort studies showed a reduced CHD incidence
and mortality of 28% and 22%, respectively, associated with vegetarian diets. No association
with CVD or stroke mortality was seen [47]. Similarly, a comprehensive review and
meta-analysis of 10 prospective cohort studies showed a 25% reduced risk of incidence
or mortality from IHD in vegetarian and vegan diets but not of total CVD and stroke
mortality [48]. CVD and stroke mortality outcomes may be influenced by lifestyle factors
other than diet and by access to cardiovascular healthcare.

4.2. Type 2 Diabetes

Observational studies in a variety of populations have consistently shown that com-
pared to non-vegetarians, those following a vegetarian or vegan diet have a significantly
lower risk of T2D [41,49–53]. A 2017 systematic review and meta-analysis of 14 studies
found a pooled odds ratio for diabetes in vegetarians vs. non-vegetarians of 0.73 [54].
A 2020 systematic review similarly found that a vegan diet was associated with lower
prevalence or incidence of T2D, although in some studies it was not possible to determine
if the benefits were due to the vegan diet alone or combined with other healthy lifestyle
habits [55].

A 2018 systematic review of nine RCTs found that, compared to control diets (including
those of several diabetes associations), plant-based diets were associated with significant
improvement in emotional well-being, physical well-being, depression, quality of life,
general health, HbA1c levels (a measure of long-term blood glucose levels), weight, and
total and LDL cholesterol levels [56]. An earlier systematic review and meta-analysis of six
studies found that the consumption of vegetarian diets was associated with a significant
reduction in HbA1c compared to control diets [57]. Similarly, a reduction in HbA1c has been
observed with plant-based diets, including vegetarian, vegan, Mediterranean, and Dietary
Approaches to Stop Hypertension (DASH) diets, compared to control or conventional
diets [58].

There are several possible explanations for the benefits of plant-based diets for diabetes
prevention and management. Compared to most western diets, vegetarian and vegan diets
are generally higher in dietary fiber and are likely to include more whole grains, legumes
and nuts, all of which have been associated with a reduced risk of T2D [59]. There is also
evidence for an inverse association between higher intakes of green leafy vegetables and
fruit and the risk of T2D [60–63].

The absence or limited intake of animal protein and red meat also likely plays a role.
At least 25 studies have been published assessing the relationship between meat intake
and T2D risk, with the majority showing a positive association between red meat and/or
processed meat intakes. A 2013 meta-analysis found an association between higher intakes
of total meat, unprocessed red meat, and processed meat and T2D risk [64]. There is also
consistent evidence for an association between total dietary heme iron intake and heme iron
intake from red meat and risk of T2D, and high serum ferritin levels are associated with
insulin resistance and T2D risk [65]. A 2019 meta-analysis of prospective cohort studies
looking at dietary protein intake and subsequent risk of T2D found high total protein and
animal protein intakes to be associated with an increased risk of T2D, while a moderate
plant protein intake was associated with a decreased risk [66]. An earlier systematic review
and meta-analysis of 13 RCTs in people with diabetes found that replacing animal protein
with plant protein (around 35% of total protein/day) resulted in significant reductions in
HbA1c, fasting glucose, and fasting insulin levels compared to control groups [67].
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Excess weight is a significant contributor to insulin resistance and T2D risk, and
weight loss is a key component of the management of T2D [68]. Following a vegetarian or
vegan diet, one is less likely to be overweight [69].

4.3. Cancer

Each of the plant food-groups has shown that they possess chemo-protective proper-
ties. Systematic reviews and meta-analyses have shown that an increased nut consumption
was associated with both a decreased risk of all cancers combined [70] and decreased cancer
mortality [71]. In the same manner, an increased intake of fruits and vegetables and of
whole grains was shown to decrease the risk of total cancer incidence [72] and total cancer
mortality [73], respectively. Furthermore, a higher intake of legumes (beans and lentils)
was associated with a decrease in the risk of gastro-intestinal cancers and all cancer sites
combined [74]. Many plant foods are rich in health-promoting phytochemicals, some of
which have been shown to be useful in the treatment of human cancer [75,76].

On the other hand, the consumption of 100–120 g/day of red meat significantly
increased the risk of many cancers (compared to eating no meat): 11% for breast cancer,
17% for colorectal cancer, and 19% for advanced prostate cancer [77]. For the consumption
of 50 g/day of processed meat, the risk was increased 4% for total prostate cancer, 9%
for breast cancer, 18% for colorectal cancer, 19% for pancreatic cancer, and 8% for cancer
mortality [77]. In the French NutriNet-Santé cohort study, red meat intake was associated
with increased risk of overall cancers (HR 1.31) and breast cancer (HR 1.83), but not prostate
cancer [78]. In the National Institutes of Health (Rockville, MD, USA)—AARP Diet and
Health Study cohort of half a million people, aged 50 to 71 years at baseline, higher red
and processed meat intakes were associated with modest increases in total and cancer
mortality [79].

With the elimination of meat and a greater use of protective plant foods, vegetarians
may have a reduced risk of cancer. Epidemiologic cohort studies in the U.S. and UK have
provided high-quality evidence regarding the association of vegetarian dietary patterns
with cancer risk. In the US-based AHS–2, vegans had lower overall cancer risk compared
to non-vegetarians (HR 0.84); overall cancer risk for lacto-ovo vegetarians was not sig-
nificantly different from non-vegetarians [80]. Vegans showed a lower risk of prostate
cancer (HR 0.65) [81] and a lower (but not statistically significantly lower) risk of breast
cancer [82]. Neither lacto-ovo-vegetarians or vegans had a significantly lower risk of
colorectal cancer [83].

In the UK-based EPIC-Oxford study, compared with meat eaters, vegans (HR 0.82) and
lacto-ovo vegetarians (HR 0.90) had lower risk of all cancers combined [84]. For prostate
cancer, while vegans (HR 0.61) and vegetarians (HR 0.86) had lower risk, they were not
significantly different from meat eaters [84]. For colorectal cancer and female breast cancer,
risk for the vegetarian groups again did not significantly differ from meat eaters [84]. In
the UK Women’s Cohort Study, compared with red meat eaters, the risk of breast cancer
for vegetarians was not significantly lower (HR 0.85) [85].

Taken as a whole, such results seem to support the idea that vegetarians (including
vegans and lacto-ovo vegetarians) have a modest but potentially important reduced overall
cancer risk compared to their non-vegetarian counterparts. Findings for common individ-
ual cancers (colorectal, prostate, breast) are less consistent and warrant further study.

4.4. Overweight and Obesity

Over 70% of adults in the U.S. are overweight or obese [86], and trends show that
overweight and obesity are increasing worldwide [87]. Observational studies show that
vegans and vegetarians typically have a lower BMI than omnivores [88,89], and vegetar-
ian diets or plant-based type dietary patterns are protective against adult weight gain
and/or the risk of overweight or obesity [90,91]. Vegans typically have the lowest BMI
or lowest prevalence of overweight or obesity in studies that compare multiple dietary
patterns, including vegetarians and omnivores [88,92]. Gogga et al. noted differences in
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percent body fat between vegans, lacto-ovo-vegetarians, and omnivores, even though all
group BMI values were within the normal range [93]. Interventions using vegan [94–99],
vegetarian [97,100], or whole-food plant-based dietary [101] treatments have been found to
lower BMI, weight, or fat-mass compared to subjects on a meat-based diet. A 4.8% weight
loss was reported for overweight and obese subjects randomized to a vegan or vegetarian
diet for 2 months, compared to a 2.2% loss seen in those consuming an omnivorous diet [97].
Weight loss of 3 to 5% is clinically meaningful and may contribute to chronic disease risk
factor reduction [102].

The quality of the plant-based diet is also an important consideration. Subjects who
adhere to a healthy plant-based diet are reported to have a lower BMI, waist circumfer-
ence, and visceral fat than those who adhere to ‘unhealthy’ plant-based diets [103,104].
Researchers have noted that diet quality may be more important than dietary patterns
when comparing vegans, vegetarians, and omnivores, as the adiposity values did not differ
significantly between these groups [105]. The weight loss experienced on a hypocaloric
lacto-ovo-vegetarian diet was similar to that observed with a hypocaloric Mediterranean
diet [106].

Mechanisms that explain the weight management benefits of plant-based diets in-
clude relatively higher fiber, fruit, and vegetable consumption compared to omnivo-
rous diets [88,107]. This food pattern may lead to beneficial alterations to appetite hor-
mones [93,108] and the gut microbiota [109], both of which may have an impact on
body weight.

4.5. Bone Health

Healthy bones require a variety of essential nutrients and healthy lifestyle practices to
maximize peak bone mass during growth and minimize bone loss later in life [110]. While
calcium and vitamin D are well recognized as important contributors to bone health, other
nutrients, including magnesium, potassium, vitamin K, vitamin C, and zinc, as well as
bioactive compounds found in fruits and vegetables, have been suggested as contributing to
bone health and/or reduced risk of fracture [111–114]. Some have reported greater benefit
from vegetables, especially cruciferous and allium vegetables, than from fruit [115,116].

The relationship of protein intake to bone status is complex. Earlier studies showed
high intakes cause a loss of calcium, while a recent review found “no adverse effects
of higher protein intakes” and some positive trends at most bone sites [117]. A recent
review and meta-analysis found no difference between soy and animal protein on bone
mineral density (BMD) and certain markers of bone turnover [118]. Others suggest the low
acid load of vegetarian diets, partly due to the potassium and magnesium content from
an increased fruit and vegetable intake, is beneficial to bone health [119]. Some elderly
vegetarians and a few vegans may not consume sufficient protein for maintaining optimal
bone health [114,120,121].

The impact of a vegetarian diet on bone health has many dimensions. Reports can
vary considerably in study design, populations, and conclusions. Some find significantly
lower BMD in vegetarians, especially vegans, which could increase fracture risk [122],
while others see no difference in bone health, provided that calcium and vitamin D is
adequate [123], and conclude that vegetarian food can provide a solid foundation for
healthy bones and preventing fractures [124].

A large prospective UK study found that fish eaters and vegetarians had a higher risk
of hip fractures compared to meat eaters, while vegans had a greater risk of total, hip, leg,
and vertebral fractures [125]. Some of the differences may have been partly due to lower
BMI and possibly lower intake of calcium and protein in the vegans.

A systematic review of some 20 studies involving 37,134 subjects found vegetarians
and vegans had lower BMD at the femoral neck and lumbar spine compared to omni-
vores [126]. The effect was greater in vegans who also had higher fracture rates [127,128].
Another review concluded that the balance between protective factors in vegetarian and
vegan diets and potential nutrient shortfalls may leave vegetarians, and especially vegans,
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at increased risk of bone loss and fractures [129]. Potential nutrient shortfalls can be reme-
died by appropriate food selections (including fortified foods) containing critical nutrients
or by taking supplements. More research data on the bone health of vegans are needed
before definitive recommendations can be made.

5. Eating Disorders

Previous use of a vegetarian or vegan diet apparently does not increase the risk of
developing any eating disorder, such as anorexia nervosa, bulimia nervosa, and binge
eating disorder [130,131]. Those with preexisting disordered eating tendencies may select
vegetarian or partially vegetarian diets as a way to limit food intake in a socially accept-
able fashion [130,132]. Semi-vegetarians appear to be at higher risk for developing eating
disorders than vegetarians and vegans [130,133]. Those vegetarians whose motivation is
weight control report more symptoms of disordered eating than do those with other moti-
vations [134]. Commonly used assessment tools may incorrectly assess dietary restraint or
eating disorder psychopathology in vegetarians [130].

6. Plant-Based Diets and the Gut Microbiome

The human gut microbiota is a highly complex community of some 1014 microorgan-
isms. Diet has a significant impact upon the microbiota composition and function [135,136].
The microbiome has a profound impact on one’s personal health and wellbeing [137].
Manipulating the gut microbiota has been viewed as a way to modulate the risk of chronic
diseases such as obesity, T2D, cancer, and CVD [135,137].

Gut microbiota have a major role in the fermentation of nondigestible carbohydrates,
namely resistant starch, soluble/insoluble dietary fiber, including plant wall polysaccha-
rides and oligosaccharides. Fermentation of these nondigestible carbohydrates is associ-
ated with a higher abundance of microbes that produce butyrate and other short-chain
fatty acids, which have an anti-inflammatory function, strengthen the intestinal barrier
function, and improve overall gut health [138–141]. For example, the consumption of
fiber-rich foods such as barley, wheat bran, brown rice, and other whole grains, as well as
fructo-oligosaccharides and other prebiotics, are reported to increase butyrate-producing
microbes [137,142–146]. Vegetarians would be expected to have an increased abundance of
these microbes, as their fiber-rich diets are typically high in whole grains, fruits, vegetables,
nuts, and legumes [107].

These plant foods also contain polyphenols—lignans, isoflavones, anthocyanins, and
flavonols—in addition to other phytochemicals such as carotenoids and phytosterols [147–149].
These are metabolized into bioactive compounds by various microbes [150], some with
health benefits and anti-inflammatory or antioxidant activity. Phytochemicals increase ben-
eficial bacteria, including Lactobacillus and Bifidobacterium, which are the primary species
present in probiotic supplements that are taken to improve gut health [151], in addition to
some butyrate producers [150]. Among fiber-rich plant foods, nuts in particular (walnuts,
almonds, pistachios) have been found to have prebiotic effects and are associated with
increases in butyrate-producing microbes and other beneficial microbes [152]. Hence, the
gut microbial composition is greatly influenced by dietary fiber as well as by polyphenols
and other phytochemicals and their metabolites, all of which are more highly consumed
by vegetarians.

Studies have supported the value of two so-called enterotypes, or clusters of microbes
driven by distinct genera, in distinguishing dietary patterns. Accordingly, Bacteroides
are associated with animal fat and high-protein diets [153–157], and Prevotella are asso-
ciated with fiber-rich foods and carbohydrates, typical of a plant-based diet [158–160].
Higher abundance of Prevotella and other polysaccharide-degrading or potential butyrate-
producing microbes has been seen particularly in agrarian cultures such as those in Tanza-
nia, the Peruvian Amazon, and Burkina Faso, compared to U.S. or Western populations,
reflecting the higher consumption of fiber-rich plant foods by these societies [160–162].
Hence, enterotypes may have some utility in distinguishing plant- and animal-based
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diets. Plant-based and high-fiber diets are also associated with increases in the Bac-
teroidetes phylum [160,162], or the Bacteroidetes/Firmicutes ratio, as well as microbial
richness/diversity [142,155,160,162–164], in contrast to diets high in fat [165–169]. This is
relevant in that various microbes from the Bacteroidetes phylum encode carbohydrate-
active enzymes (CAZymes) necessary for degrading indigestible carbohydrates [139], and
the Bacteroidetes:Firmicutes ratio may have implications for obesity and metabolic diseases,
although the relationship is not clear as findings have been inconsistent [170,171].

Differences in gut microbial composition are not always observed in cross-sectional
studies comparing vegans or other vegetarians with non-vegetarians [172]. In the AHS-2 co-
hort, only subtle differences were noted in the microbiome [173]. However, vast differences
were discovered in the plasma metabolome, with vegans showing higher abundance of anti-
inflammatory plant/polyphenol or microbial-related metabolites [174]. Non-vegetarians
on the other hand may have higher abundance of amino acids and lipids conceivably asso-
ciated with cardiometabolic phenotypes [174–176]. Intestinal microbiota convert choline
and L-carnitine, derived from meat, fish, dairy, and eggs, into trimethylamine, which is
oxidized by the liver to trimethylamine N-oxide (TMAO), a pro-inflammatory compound
that has been associated with increased cardiometabolic risk [177–180]. Thus, it may be
that microbial function is more relevant than composition, with metabolic profiles showing
much greater differences, reflecting phenotypic changes.

There are physiological consequences of diet-induced shifts in the microbiome. Low
consumption of plant-based foods may lead to increased penetration of the intestinal
barrier, as a low-fiber diet triggers a shift from fiber-degrading to mucus-degrading bacte-
ria [181]. This in turn could promote a hyperactive immune response, conceivably with the
production of pro-inflammatory metabolites that fuel disease processes [182]. However,
much remains to be understood about how vegetarian and plant-based dietary patterns
impact the microbiome and associated metabolic responses to influence disease processes.

7. Plant-Based Diets and the Life Cycle

Vegetarian, including vegan, diets can satisfy the nutritional requirements of all stages
of the life cycle. They can promote normal growth and development in infancy, childhood,
and adolescence and meet the needs for energy and nutrients of these life cycle stages as
well as those of pregnancy, lactation, and older adulthood.

7.1. Pregnancy and Lactation

Vegetarian diets can effectively meet energy and nutrient needs in pregnancy and
lactation [183,184]. Several reviews, while noting the limited amount of information about
vegetarian, including vegan, diets in pregnancy, have concluded that, with adequate nu-
trient intake, these diets are safe in pregnancy [183,185]. When food access is satisfactory,
infant birth weights and the duration of gestation are similar in vegetarian and nonvege-
tarian pregnancy [186,187]. Some studies report that vegetarians are more likely to have
infants who are small for their gestational age [188–190]. This finding may be due to lower
mean pre-pregnancy BMI, lower weight gain, or inadequate weight gain in pregnancy.
Well-nourished vegetarians produce nutritionally adequate breast milk that supports infant
growth and development [191].

Health benefits of vegetarian diets in pregnancy include a lower risk of excessive
weight gain and higher fiber and folate intakes [188,192,193]. Dietary patterns that are
high in plant foods are associated with a reduced risk of gestational diabetes mellitus,
hypertensive disorders of pregnancy, and preterm birth [194].

Nutrient requirements in vegetarian pregnancy and lactation generally do not differ
from those for nonvegetarians [195]. Vegetarians may especially benefit from guidance
on sources of iron, zinc, vitamin B12, iodine, and docosahexaenoic acid (DHA). Although
iron absorption increases in pregnancy [196], iron needs are high, so iron-rich foods and
low-dose iron supplements are recommended for all women [197,198]. The increased
need for zinc can be met through a combination of increased intake and absorption [199].
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Phytate’s inhibitory effect on zinc absorption is markedly reduced in late pregnancy and
early lactation [200]. In addition to the use of iodized salt, a 150 µg/d iodine supplement is
recommended for all pregnant and lactating women [201].

During pregnancy, blood DHA concentrations are often lower in vegetarians than in
nonvegetarians [202]; cord blood DHA is lower in infants of vegetarians [202]. Breast milk
DHA concentrations of vegetarians and vegans are lower than worldwide averages [203].
DHA or omega-3 supplementation is associated with greater gestational duration and
a reduced risk of preterm birth [204,205]. Supplemental DHA derived from microalgae
should be used in vegetarian pregnancy and lactation [195].

Adequate vitamin B12 intake is especially important during periods of growth such
as pregnancy and breastfeeding. Infants born to long-term vegan mothers and who are
breastfed are at risk of B12 deficiency. This is especially true when the mother’s diet is not
well-supplemented. Symptoms of B12 deficiency in breastfed infants and small children
fed a vegan diet include developmental delay or psychomotor regression, lethargy, anemia,
neurological issues, and failure to thrive [206]. Pregnant and lactating vegetarians should
consume reliable sources of vitamin B12, such as supplements and/or fortified foods, on a
daily basis [195].

7.2. Infants, Children, and Adolescents

Vegetarian, including vegan, diets that are nutritionally adequate are appropriate
for use in infancy, childhood, and adolescence and support normal growth [184,207,208].
Health benefits of vegetarian diets in childhood and adolescence include the potential
for exposure to a wide variety of plant foods, lower risk for childhood obesity [209], and
higher consumption of fruits and vegetables [210,211]. Vegan children appear to have lower
intakes of total and saturated fat and cholesterol compared to non-vegan children [211].
A low-fat vegan diet has effectively treated children with obesity and elevated blood
pressure [212].

Exclusive breastfeeding is recommended for infants for the first 6 months after birth,
with breastfeeding continuing until at least 12 months of age [213]. If breastfeeding or
exclusive breastfeeding is not possible, commercial infant formula should be used as the
primary beverage for the first year. Plant milks, unmodified cow’s milk, other milks, and
homemade formulas should not be used to replace breast milk or formula during the
first year. Standard practices should be used when introducing complementary foods to
vegetarian infants. Vegetable proteins, such as pureed beans or tofu, are used in place of
pureed meats. After the first year, if toddlers are growing normally and eating a variety of
foods, fortified soy or pea protein milk or dairy milk can be started [195].

Several nutrients require special attention in the planning of nutritionally adequate
diets for young vegetarians, including iron, zinc, iodine, and vitamin B12; calcium and vita-
min D may also require attention, depending on dietary choices and other factors. Protein
recommendations for vegan children may be somewhat higher than standard recommen-
dations because of factors including protein digestibility and amino acid composition [195].
Protein needs of vegetarian or vegan children and adolescents are generally met when their
diets contain adequate energy and a variety of plant protein sources. Deficiencies of iron
and zinc are rarely seen in vegetarian children eating varied diets [207]. Zinc supplementa-
tion may be needed when complementary foods are introduced, if foods are mainly those
with low zinc bioavailability [214]. Iron and zinc status in infants, children, and adolescents
should be monitored, and fortified foods and/or supplements used as needed. Iodized
salt is a reliable source of iodine for children and teens. If maternal vitamin B12 intake or
status are inadequate, breastfed infants should be given supplemental vitamin B12 [206].
Vegetarian children and adolescents should use vitamin B12-fortified foods or supplements
to supply adequate vitamin B12. Calcium sources for children and adolescents include
fortified plant-based milks, green leafy vegetables, and dairy products.
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7.3. Older Adults

Older adults generally have decreased energy requirements, although nutrient re-
quirements are often similar to, or higher than, those of younger adults. The selection of
nutrient-dense diets is especially important for older adults. Limited research indicates that
nutrient intakes of older vegetarians are comparable to those of older non-vegetarians [195].

Recommendations for calcium, vitamin B6, and vitamin D are higher for older
adults [215,216]. There is some evidence that protein needs increase as well [217]. Higher
protein foods such as soy products (including tofu, soy beverage, soy yogurt alternative,
etc.), legumes, nuts and seeds, and meat analogs should be used two to three times a day
by older vegetarians. Vitamin B6 recommendations for all older adults are higher due
to decreased absorption and alterations in metabolism [216]. Vegetarians generally have
adequate intakes of vitamin B6. Sources include potatoes, bananas, fortified breakfast
cereals, and spinach. Several factors increase older adults’ risk for vitamin D insufficiency,
including reduced dermal and renal synthesis [218,219], inadequate dietary intake, and
limited sun exposure. Fortified foods and/or supplements may be needed for older adults
to meet recommendations for calcium and vitamin D.

The main cause of vitamin B12 deficiency in older adults is impaired absorption of
vitamin B12 from foods [220]. Absorption of purified vitamin B12 from fortified foods and
supplements is not typically impaired, so recommendations call for older adults to use
fortified foods and supplements as their primary sources of vitamin B12 [216].

8. Athletic Performance

Vegetarian diets can meet the needs of athletes at all levels, from recreational to elite
athletes [221,222], and have been followed by athletes throughout history [223]. While a nu-
tritionally adequate plant-based diet is thought to help optimize training and performance,
due in part to its high carbohydrate [223–225] and high phytochemical content [225], lim-
ited evidence from well-controlled studies suggests that vegetarian diets neither enhance
nor impair performance [225]. Additional research is needed to determine whether such
diets enhance recovery and attenuate the oxidative damage and inflammation that occur
with heavy training.

Nutrition recommendations for athletes should consider each athlete’s training vol-
ume (intensity and frequency), sport, season, performance goals, and food preferences.
Vegetarian diets that meet energy needs and contain a variety of plant-based protein
sources, including soy foods, dried legumes, nuts, seeds, quinoa, and other grains, can
provide adequate protein to support most training needs. There is some evidence that
plant-derived proteins result in lower post-prandial muscle protein synthesis responses
compared with equivalent amounts of animal-derived proteins [226]; this response may
be improved by consuming blends of different plant-derived proteins [226]. Milk and
eggs [227–229] can supplement plant-based sources for vegetarian athletes.

Depending on food preferences, athletes need to ensure they consume adequate
amounts of the nutrients that are either found less abundantly in vegetarian foods or
are less well absorbed from plants compared to animal sources. These nutrients include
calcium, iron, zinc, iodine and vitamin B12. For example, female athletes and endurance
athletes should ensure sufficient consumption of iron-rich plant foods along with dietary
factors that enhance rather than inhibit iron absorption [230–232]. Female athletes with
restricted intake and amenorrhea (i.e., low energy availability) [233] may require additional
calcium (1500 mg/day along with 1500–2000 IU vitamin D) to optimize bone health [234].
Maintaining adequate vitamin D status is important for athletes due to its role in immune
function, inflammatory modulation, physical performance, and overall health [235–238].
Vegetarian athletes may have lower blood and muscle creatinine and carnitine concentra-
tions [239–242] compared to omnivores due to lower dietary intake. Athletes participating
in resistance training and bouts of high-intensity exercise may benefit from creatine supple-
mentation [243], but there is no recognized benefit to carnitine supplementation. Vegetarian
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athletes, like most others, may benefit from education about food choices to optimize health
and peak performance [244].

9. Nutrients of Concern in a Plant-Based Diet
9.1. Calcium

In addition to its role in bone mineralization, calcium is required for blood clotting,
muscle function, nerve transmission, hormone release, intracellular signaling, and reg-
ulating key enzymes [245]. Typically, vegans consume substantially less calcium than
other vegetarians and omnivores [192,246]. When calcium intakes are low, the body can
compensate somewhat by increasing the fractional calcium absorption [247] and decreas-
ing urinary calcium excretion [215]. However, anyone, including all types of vegetarians,
with inadequate calcium intake needs to consistently use calcium-fortified foods, such
as fortified breakfast cereals, fortified fruit juices, and fortified plant-based beverages, or
take a calcium supplement, to meet their calcium needs. Vegan diets in the UK have been
associated with a clinically significant increased risk of fracture when the calcium intake
was inadequate [248].

Phytic and oxalic acids in plant foods are both inhibitors of calcium absorption. The
calcium absorption from oxalate-rich vegetables (spinach, Swiss chard) may be as low 5%;
from beans, almonds, tahini, and figs 20–25%; from dairy products 32%; from soy products
(tofu, fortified soy beverages), it is similar to dairy milk; and from low-oxalate vegetables
(kale, Chinese cabbage, broccoli, bok choy, etc.) 50–60% [249–251]. Boiling can reduce
oxalate content in green leafy vegetables [252]. A vegetarian diet, with its high intake of
fruit and vegetables, is rich in anti-inflammatory phytonutrients, specifically carotenoids
and flavonoids, and potassium and magnesium. Carotenoids and flavonoids are associated
with an improved BMD and lower bone fractures [253–256].

Compared to a vegetarian diet, consuming an animal protein diet is associated with
an increased loss of urinary calcium [257].

9.2. Iron

In addition to its ability to transfer oxygen by means of hemoglobin and myoglobin,
iron functions as a co-factor for many important enzymes (such as myeloperoxidase,
important for immune function) and has a role in thyroid hormone synthesis and amino
acid metabolism [245]. Since heme iron is generally better absorbed (15–30%) than non-
heme iron (typically 5–10%), omnivores are assumed to have better iron status. However,
vegetarians who eat a varied and well-balanced diet do not appear to be at any greater
risk of iron-deficiency anemia than omnivores [258,259]. Hemoglobin levels of the two
dietary groups normally show no significant differences [259,260]. Additional studies of
iron deficiency in vegetarians are needed before definitive conclusions can be reached. A
varied diet that is rich in wholegrains, legumes, nuts, seeds, dried fruits, iron-fortified
cereal products, and green leafy vegetables provides an adequate iron intake. Vegetarian
diets generally contain as much or more iron than omnivore diets [92,195].

Non-heme iron absorption is significantly affected by several dietary components [261,
262]. Vitamin C, other organic acids (citric, malic, lactic, tartaric acids), and erythorbic acid
(an antioxidant used in processed food) all enhance absorption [196,230,259,263,264]. Plant
ferritin, found in soy and other legumes, is an easily absorbed source of iron (22–34%).
While phytates (found in legumes, nuts, and whole grains) can inhibit non-heme iron
absorption, their inhibitory effect is diminished by baking, soaking, leavening, and germi-
nation [184,265]. Furthermore, the overall long-term effect of enhancers and inhibitors of
iron may be less important than once thought when the foods are eaten as part of a whole
diet [266,267].

Absorption of non-heme iron is also inversely related to the body’s iron status [196].
When stores are low and the need for iron increases, compensatory mechanisms facilitate
greater absorption of iron. Absorption can be as low as 2–3% in people with good iron
stores but as high as 14–23% in people with low iron stores [268].
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Humans have a limited ability to excrete excess stored iron [258], so consuming large
amounts of heme iron may be unhealthy due to its pro-oxidant nature. Consumption of
heme iron has been associated with an increased risk of chronic diseases such as diabetes,
metabolic syndrome, and colorectal cancer [269–272]. Vegetarians typically have lower iron
stores (as reflected in lower serum ferritin levels), which may be an advantage as lower
serum ferritin levels may be associated with improved insulin sensitivity and reduced risk
of T2D [258,273].

Iron absorption from an omnivorous diet is claimed to be about 18%, whereas for a
plant-based diet it is said to be about 10% [196]. Hence, the current Dietary Reference Intake
(DRI) for iron for vegetarians has been set 1.8 times higher than that for non-vegetarians.
This increased requirement is based on limited research, which has been unable to accu-
rately measure adaptive absorption rates of non-heme iron in vegetarians [267,274]. Further
research is needed to reassess the iron requirement recommended for vegetarians [232].

9.3. Zinc

Zinc acts as a coenzyme for multiple enzymes involved with growth, immunity, cog-
nitive function, bone function, and regulation of gene expression [275,276]. Zinc deficiency
causes stunted growth, poor appetite, dermatitis, alopecia, endocrine dysfunction, and im-
paired immunity [276]. Zinc deficiency is not any more commonly seen in vegetarians than
in non-vegetarians [277]. Zinc intake and serum levels for adolescent and adult vegetarians
in developed countries are the same or slightly lower than for omnivores, but within the
normal range [214,231,275,278,279]. In developing countries, vegans and vegetarians are
more likely to show marginal zinc status [278].

The bioavailability of zinc from plant foods may be reduced. However, zinc absorption
and retention can be regulated by homeostatic mechanisms, adapting to lower intakes
by reducing losses and increasing absorption [275]. During periods of high demand
(pregnancy, infancy), absorption becomes more efficient [280].

Phytates in cereals and legumes lower absorption of zinc, but leavening, soaking,
fermenting, or sprouting reduces the phytate levels and makes zinc more bioavailable [281].
Sulfur-containing amino acids and organic acids in a variety of plant foods will also enhance
zinc absorption [279,282].

Vegetarian food sources for zinc include nuts, seeds, wholegrains, legumes, tofu,
tempeh, and dairy products [283]. The use of supplements and fortified foods (such as
fortified breakfast cereals) may be necessary for very restricted vegan diets [214,246].

9.4. Iodine

Iodine is essential for thyroid hormones, which regulate metabolic activity. Iodine
is especially important in pregnancy for fetal development and during early childhood.
Iodine deficiency in childhood can prevent children from attaining their full physical
potential and intellectual capacity [284].

Major dietary sources of iodine include iodized salt, seafood, and dairy products [284].
The iodine content of seaweeds and dairy products can vary widely [195,285]. Sea salt,
Himalayan salt, and the salt used in processed foods typically do not contain iodine [195].
Although foods such as soybeans, cruciferous vegetables, and sweet potatoes contain
natural substances that interfere with iodine uptake by the thyroid, these foods have not
been associated with thyroid dysfunction in healthy people, provided iodine intake is
adequate [196,286].

Vegans who do not use iodized salt and/or sea vegetables may have low iodine
intakes and may be at risk for iodine deficiency [287,288].

9.5. Vitamin B12

Vitamin B12 is required for red blood cell formation, DNA synthesis, homocysteine
metabolism, and the myelination and function of the central nervous system [289]. Vitamin
B12 deficiency is not uncommon among the elderly and unsupplemented vegans. It can
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manifest itself with consequential hematological and neurological changes. Typically, the
mean dietary intake of vitamin B12 of vegans falls well below the DRI, while that of lacto-
ovo-vegetarians may be marginal, depending on the use of dairy products [246,290,291].
Vegans must obtain their vitamin B12 either from regular use of vitamin B12-fortified foods,
such as fortified plant-based beverages, fortified breakfast cereals, fortified vegetarian
meat analogs, or from a regular vitamin B12 supplement. Unfortified plant foods such as
fermented soy foods, leafy vegetables, seaweeds, mushrooms, and algae (including spir-
ulina) do not contain significant amounts of active vitamin B12 to provide daily needs [292].
Furthermore, a number of medications can impair the absorption or utilization of B12.
Vitamin B12 appears to be a cofactor involved in the production of nitric oxide [293], which
would have important implications for vascular and immune health.

About 50% of dietary B12 is normally absorbed via ileal receptors, mediated by the
intrinsic factor, a glycoprotein from the stomach. The ileal receptors become saturated
with 1.5 to 2 µg of B12, limiting further absorption [216]. When ingesting large doses
of supplemental B12, about 1% of the dose is absorbed by passive diffusion across the
intestinal tract [216]. Daily needs can be adequately met in non-pregnant, non-lactating
people by consuming a 500 µg B12 supplement at least three times a week. Vitamin B12
is well absorbed from either sub-lingual or chewable tablets. While the methylcobalamin
supplement is touted as the more effective form of B12, its bioavailability is not superior to
that of cyanocobalamin, which is the more stable and most commonly used form of B12 in
fortified foods and many supplements [294,295].

A deficiency of vitamin B12 may take years to develop in adults, as most of the B12
secreted into the gut via the bile gets reabsorbed, thus conserving the body stores [216].
Therefore, a regular consumption of adequate B12 is important to avoid a sub-clinical
deficiency that can go undetected for years. An elevated serum methylmalonic acid
(MMA) level is a reliable indicator of B12 deficiency [216], while the serum B12 level is an
insensitive indicator of B12 status. While serum B12 levels between 148 and 221 pmol/L
(200–300 pg/mL) are considered borderline B12 deficiency [296], some individuals with
B12 values in this range manifest neuropsychiatric problems and memory loss [297]. As a
good preventative measure, all vegans should annually check their B12 status.

9.6. Vitamin D

Vitamin D facilitates calcium absorption from the gut, regulates bone mineralization,
cell growth, and differentiation. Its other roles include reduction of inflammation and
modulation of neuromuscular and immune function [298]. Because cutaneous production
of vitamin D from sunlight exposure is not adequate (especially in the elderly, dark-skinned
individuals, and heavy sunscreen users) to meet nutrition needs in populations living
in high latitudes, especially during the winter months, regular food and supplement
sources are necessary. Foods contain limited amounts of vitamin D, so supplements are
often needed to meet needs. Depending upon one’s age, geographical location, dietary
preferences, and body weight, a daily supplemental dose of 10–50 µg (400 to 2000 IU)
of vitamin D may be needed to achieve optimal serum levels of 25-hydroxyvitamin D
(25(OH)D) year-round [299].

One study found no significant difference in serum 25(OH)D levels between vege-
tarians and non-vegetarians. Factors such as vitamin D supplementation, degree of skin
pigmentation, and amount of sun exposure had a greater influence on serum 25(OH)D
levels than did diet [300]. By contrast, in the large EPIC-Oxford study, plasma 25(OH)D
levels in British vegetarians were 14.3% lower, and in vegans 27.5% lower, than in meat
eaters [301].

Vitamin D intake by vegans tends to be substantially below that of lacto-ovo-vegetarians
and omnivores [195]. Low serum 25(OH) D levels and reduced bone mass have been
reported in vegans living in high latitudes who were not using vitamin D-fortified foods or
supplements [302,303].
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Fortified plant-based beverages, fortified orange juice, ready-to-eat breakfast cereals,
and fortified margarines provide vitamin D for vegetarians. Modest levels of vitamin
D are also obtained from mushrooms that have been exposed to ultraviolet light under
controlled conditions [304]. Lacto-ovo-vegetarians also obtain vitamin D from fortified
dairy products and eggs. Depending on sunlight exposure and dietary intake, supplements
may be needed. For low daily doses, vitamin D2 appears to be as effective as vitamin D3
in maintaining circulating levels of serum 25(OH) D [305]. When given as a single large
dose, vitamin D2 appears to be less effective than vitamin D3 for improving the vitamin D
status [306].

With appropriate food and supplement choices, a vegetarian diet can be consistent
with having an adequate vitamin D status and supporting a healthy BMD (bone mineral
density) [129].

9.7. Omega-3 Fatty Acids

Omega-3 fatty acids (n-3) are associated with favorable cardiometabolic status [307].
The source of omega-3 for vegetarians is predominantly α-linolenic acid (ALA) [308]. Nor-
mally, only small amounts of ALA are converted to the longer-chain eicosapentaenoic acid
(EPA), and to a less degree DHA, particularly if linoleic acid intake is high [308,309]. Conver-
sion of ALA is also affected by health status, age, dietary composition, and gender [310].
Results from the EPIC-Norfolk cohort study revealed that omega-3 status differences were
much smaller than dietary differences, with vegans and vegetarians showing a more effi-
cient conversion of ALA to EPA and DHA [311]. Most studies indicate that plasma, serum,
erythrocytes, adipose, and platelet levels of EPA and DHA are lower in vegetarians than
omnivores [309], yet there is no evidence of adverse effects on heart health or cognitive
function in vegetarians [312,313].

EPA has antithrombotic properties and confers cardiovascular protection [308,314],
while DHA has been linked to eye and brain development and is important for ongoing
visual, cognitive, cardiovascular health [308,315]. Omega-3 fatty acids may also help regulate
gut microbiota and immunity and reduce the risk of inflammatory diseases [316–318]. ALA,
EPA, and DHA intakes are all associated with a reduced risk of CVD [319].

The richest sources of ALA include flaxseed, hemp seed, walnuts, chia seeds, and their
oils, with smaller amounts present in canola and soy oils, and green leafy vegetables [310].
Currently the National Academy of Medicine (Washington, DC, USA) has not established
recommendations for EPA and DHA, while the European Food Safety Authority has
recommended an intake of 250 mg/day for EPA and DHA [320]. To date, an adequate
intake of ALA has been specified as 1.6 g for men and 1.1 g for women [321]. The ideal
omega-6/omega-3 ratio for optimal health has not been defined, although various authors
have debated the issue [321]. Improving the DHA status of an individual is generally
regarded as desirable. For the vegetarian, a regular use of an algal DHA supplement would
be an effective way to increase serum DHA levels [309,322].

The critical period of pregnancy and lactation requires a higher n-3 status (particularly
DHA) [308,323,324]. Pregnant and breastfeeding women, and those at greater risk for
poor ALA conversion, such as people with diabetes, older people, and premature infants,
are most likely to benefit from DHA supplements derived from micro-algae [319,325].
Omega-3-rich eggs and DHA-fortified foods are also food sources of DHA for vegetarians.

9.8. Protein

Individuals following vegetarian diets generally consume more than adequate pro-
tein, particularly in western countries, although intakes are typically lower than those of
omnivores [120]. Furthermore, as long as a variety of protein-rich foods are consumed,
vegetarian diets are able to provide all of the indispensable amino acids [120,326]. While
there is no need for different protein foods to be combined in one meal, a variety of plant
foods should be included each day [326]. Most plant foods contain some protein, with the



Nutrients 2021, 13, 4144 15 of 29

best sources being legumes, soy foods (including fortified soy milk, tofu, and tempeh),
nuts, and seeds. Grains and vegetables also contain protein but in smaller amounts.

While the lower protein intake and quality of protein in a vegetarian diet is often
cited as a concern, there is increasing evidence for the health benefits of consuming protein
from plant sources rather than animal sources, and this may be one of the reasons why
vegetarians have a lower risk of obesity and chronic diseases [327].

Those consuming omnivorous diets in western countries tend to get 1.5 to 2 times the
recommended protein intake, and such high protein intakes can have a variety of deleterious
effects, such as increased calcium excretion and reduced insulin sensitivity [328,329].

10. Guidelines for Health Professionals

Significant health benefits are associated with vegetarian, including vegan, diets. Plant-
based diets, even if not completely vegetarian, also offer significant health benefits. Health
professionals should discuss the benefits of vegetarian and near-vegetarian diets with their
clients and provide supportive, reliable, evidence-based information and resources. If the
practitioner is unfamiliar with vegetarian nutrition, clients should be referred to other
health professionals with expertise in this area, such as registered dietitians.

Health professionals are ethically obligated to respect vegetarian dietary patterns
and to provide information so that clients are aware of their nutritional needs, sources of
nutrients, and any dietary modifications needed to meet their individual situation. The
client’s food preferences should be determined and respected. This may include religious
or cultural factors that influence one’s food choices.

Health professionals who work with vegetarians and those interested in vegetarian
diets should be familiar with current research on vegetarian nutrition as well as with
vegetarian foods and food preparation. There are a number of excellent books and other
resources available for health professionals to acquaint themselves with evidence-based
data [195,222,330,331]. Individualized counseling materials should be developed that
feature vegetarian foods.

Some traditional cultures have plant-based traditions. When working with clients
from these cultures, professionals should focus on the retention of healthy traditional
practices, with modification of other practices to promote more healthful diets instead of
promoting the eating patterns of the dominant culture [332].

It is incumbent on any health professional providing counsel regarding dietary choices
to remember it is not what a diet is called, but what foods an individual consumes on a
regular basis that determines the adequacy of a diet.

11. Conclusions

Plant-based diets continue to grow in popularity. Currently, there is a vibrant interest
in the sustainability of diets and a growing awareness of the need to focus on both human
health and the health of the planet in formulating dietary guidelines. Plant-based diets
are more sustainable than diets based on animal products, since they use fewer natural
resources and produce fewer GHG emissions. Vegetarian and vegan diets provide protec-
tion against a number of common chronic diseases, such as CVD, obesity, T2D, and certain
types of cancer. The consumption of a plant-based diet rich in fiber and phytochemicals
not only provides disease-preventing benefits but also has a substantial impact on the
composition and function of the gut microbiome, which in turn influences overall health.

Both a vegetarian and vegan diet are appropriate for all stages of the life cycle, includ-
ing pregnancy and lactation, all stages of childhood, the elderly, and for athletes. When
appropriately planned, a plant-based diet (consisting substantially of minimally processed
foods) can be nutritionally adequate. Vegetarians and especially vegans should consume
a well-balanced diet and regularly use fortified foods and/or supplements. Special at-
tention should be paid to calcium, iron, vitamin D, and vitamin B12. A deficiency may
be exacerbated when supplements are not utilized and when food choices are limited
or self-restricting.
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Health professionals who work with vegetarians and those interested in vegetarian
diets should be familiar with current research on vegetarian nutrition and be able to provide
information so that clients are aware of their nutritional needs, sources of nutrients, and any
dietary modifications needed to meet their individual situation. The health professional
should be sensitive to the client’s food preferences and respect any religious or cultural
factors that influence their food choices.
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