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Figure S1. Representative Oil red O stained image of longissimus dorsi muscle showing increased 

extramyocellular lipid in juvenile Iberian pigs fed a high-fructose, high-fat diet [100X total magni-

fication]. CON-N--control diet without probiotic supplementation; CON-P--control diet with pro-

biotic supplementation; HFF-N--high-fructose, high-fat diet without probiotic supplementation; 

HFF--P-high-fructose, high-fat diet with probiotic supplementation. 
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Table S1. Research studies investigating the effects of a Western-style diet on skeletal muscle in 

juvenile animal models. 

Author Subjects 
Age 

Start 

Age 

End 
Feeding Outcome 

Hua et 

al. 2017 

[35] 

C57 

BLK/6J 

mice 

(male) 

4 wks 10 wks 

Ad libitum:  

HF (60% kcal 

fat)  

HF: Increased BW, TG, EMCL, slightly 

increased IMCL, Increase ratio of 

EMCL:IMCL, type I -> II shift (type I 

lumbar muscles) 

Baena et 

al. 2016 

[72] 

Sprague-

Dawley 

rats 

(female) 

8 wks 16 wks 

Ad libitum: 

CON (solid feed; 

4502±229 kcal/d) 

HFr (CON+10% 

w/v Fru liquid; 

7277±735 kcal/d) 

HGlu 

(CON+10% w/v 

Glu liquid; 

7489±354 kcal/d) 

HFr and HGlu: Increased liquid 

consumption and reduced solid food 

consumption. Non-sig changes in BW. 

Higher plasma TG and 

hyperinsulinemia. 

HFr: Less reduction in plasma NEFA 

following insulin administration. 

HFr and HGlu on SkM (gastroc):  

Unimpaired p-AKT and total AS160 

following insulin administration. NC in 

fusion capability of GLUT4 vesicles to 

plasma membrane. 

HGlu on SkM (gastroc): Increased 

expression of GLUT4 in plasma 

membrane. 

HFr SkM (gastroc): Reduced expression 

of GLUT4 in plasma membrane. 

Crescenz

o et al. 

2013 [73] 

Sprague-

Dawley 

rats (male) 

 

 

90 d  

(12.9 

wks) 

146 d 

(20.9 

wks) 

CON (4.11 

kcal/g, 60.4% 

kcal CHO [0% 

Fru, 45.3% 

starch, 15.1% 

sugars], 10.6% 

kcal fat) 

HFr (4.11 kcal/g, 

60.4% kcal CHO 

[30% Fru, 22.8% 

starch, 7.6% 

sugars], 10.6% 

kcal fat) 

HFr: Increased plasma NEFA. Higher 

body energy w/ similar energy intakes, 

indicative of increased efficiency of 

metabolism. Hyperinsulinemia with no 

sig difference in plasma glu. Lower 

RMR values by wk 4. 

HFr on SkM (hind leg muscle): 

Increased total lipids, TG, and ceramide. 

NC in p-AKT:AKT ratio, but lower p-

AKT when normalized to plasma 

insulin levels. Higher cytochrome 

c:actin ratio and increased state 3 mito 

respiration. Increased mito mass and 

coupling. 

Crescenz

o et al. 

2015 [29] 

Sprague-

Dawley 

rats (male) 

 

90 d  

(12.9 

wks) 

104 d  

(14.8 

wks) 

LF (59.8 kcal/d, 

67.9% kcal CHO 

[67.9% starch], 

11.3% kcal fat)   

HF (59.8 kcal/d, 

36.6% kcal CHO 

[36.6% starch], 

42.5% kcal fat) 

HFF (59.8 

kcal/d, 36.6% 

kcal CHO [25% 

kcal Fru, 11.6% 

starch], 42.5% 

kcal fat) 

HF and HFF: Higher body energy, 

lipids, and energetic efficiency. 

Decreased net energy expenditure.  

HF: Higher plasma NEFA vs. CON. 

HFF: Higher plasma TG and NEFA vs. 

CON and HF. Increased HOMA index. 

Increased glu and insulin response.  

HF and HFF on SKM (hind leg 

muscles): Lowered oligomycin state 4 

respiration. Increased mito coupling. 

Decreased ANT and increased UCP3. 

HF on SKM (hind leg muscles): Higher 

total lipids, TG, and ceramide vs. CON.  

HFF on SkM (hind leg muscles): Higher 

total lipids, TG, and ceramide vs. CON 

and HF. Decreased insulin sensitivity. 

Decreased p-AKT following insulin 

administration. NC in state 3, state 4, 

RCR or cytochrome c:actin ratio of mito.  
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Higashiu

ra et al. 

1999 [74] 

Sprague-

Dawley 

rats (male) 

6 wk 12 wk 

Ad libitum:  

HFr (60% kcal 

Fru) 

HFr: Insulin resistance, lower BW, 

higher BP, decreased type I, increased 

type IIa, non-sig increased type IIb (sol) 

(Myosin ATPase stain) 

Thomas 

et al. 

2014 [75] 

C57 

BLK/6J 

mice 

(male) 

4 wk 7 wk 

Ad libitum:  

HF (60% kcal 

fat) 

HF: Insulin resistance, higher BW, type 

IIb -> IIa/x shift (TA). Non-sig. increased 

type IIa, NC type I, IIx (sol), increased 

SDH density in type I and IIa fibers 

(sol), NC SDH density (TA), lower 

capillary density, NC in IMCL, 

palmitate oxidation, oxidative 

phosphorylation proteins, exercise 

capacity, FAT/CD36 

Olver et 

al. 2018 

[30] 

Ossabaw 

miniature 

pigs (male 

and 

female) 

3.5 mo 6 mo 

CON (3.03 

kcal/g, 71% kcal 

CHO, 10.5% kcal 

fat) 

HFFC (4.14 

kcal/g, 40.8% 

kcal CHO 

[17.8% Fru], 43% 

kcal fat, 2% kcal 

C) 

HFFC: Increased BW and induced 

obesity at wk 6. Increased plasma NEFA 

w/ NC in plasma TG. Increased plasma 

glu w/ NC in plasma insulin or HOMA-

IR. Decreased physical activity.  

HFFC on SkM (triceps): Non-sig 

increase p-AKT:AKT ratio following 

insulin administration. Increased total 

lipids and SFAs, w/ trend towards 

increased MUFA. Lowered ratio of 

n3:n6 fatty acids. 

Ozkan & 

Yakan 

2019 [76] 

Wistar 

albino rats 

(male) 

12 wks 

(3 mo) 

24 wks  

(6 mo) 

Ad libitum:  

CON (2600 kcal, 

54.7% kcal CHO, 

3.15% kcal fat)  

HF (3600 kcal, 

39.7% kcal CHO, 

13.5% kcal fat) 

HFr (2600 kcal, 

54.7% kcal CHO 

[27% Fru], 3.15% 

kcal fat)   

HSuc (2600 kcal, 

54.7% kcal CHO 

[27% Suc], 3.15% 

kcal fat) 

All Diets on SkM (gluteus maximus): 

NC in PPARɑ and ChREBP gene 

expression. NC in PPARɑ protein 

content.  

HFr: Higher BW as of wk 3 and average 

higher intake of kcals/wk. Higher 

plasma TG and glucose. 

HSuc: Lowest plasma glucose. 

HFr on SkM (left gluteus maximus): 

Increased LXRɑ and SREBP-1c gene 

expression. Increased SREBP-1c and 

ChREBP protein content. 

Overall: SREBP-1c levels were found to 

be correlated with plasma glucose and 

TG levels. LXRa levels were found to be 

correlated with plasma glucose levels. 

Cabot et 

al. 2012 

[77] 

Wistar 

rats (male) 
8 wks 12 wks 

Ad libitum:  

HF (similar to a 

cafeteria diet) 

HF: Increased IMCL, mitochondria (sol) 

Wang et 

al. 2019 

[78] 

Wistar 

rats (male) 
6 wks 

10, 14, 

18,  

22, and 

26 wks 

Ad libitum:  

CON (81% kcal 

CHO [10% Suc, 

0% Fru], 4% kcal 

fat [17.4% SFA]) 

HFF (47% kcal 

CHO [0% Suc, 

25% Fru], 35% 

kcal fat [44.2% 

SFA]) 

HFF: Lower dietary intakes at wk 4 and 

higher intakes at wks 12 and 16. 

Increased BW. Glu intolerance. NC in 

serum TG and decreased serum FFAs. 

HFF on SkM (sol, tib, EDL): Slightly 

lower but sig. muscle weight. 

HFF on SKM (sol): Increased total DAG 

at 4 wks (positively correlated with glu 

intolerance). Increased total ceramides 

at 4 and 12 wks (not correlated with glu 

intolerance). Increased gene expression 

of CD36, PLIN2, and ATGL at wk 16. 

HFF on SkM (gastroc): Lower muscle 

weight. Increased TG and FFA at 12 

wks (positively correlated with glu 



Nutrients 2021, 13, 4195 4 of 12 
 

 

intolerance). NC in total phospholipids 

or cardiolipin. Increased total SFA and 

MUFA and decreased PUFA. Decreased 

unsaturation index of FAs and SCD1 

gene expression. NC in protein 

expression of FATCD36, FATP1, 

ACSL1, PPARɑ, PPAR𝛾, SREBP-1c, 

mCPT-1, PGC-1a, or ACC. Increased 

gene expression of FABP3. Decreased 

FAS protein content. NC in mito 

membrane potential, respiration, or 

fluidity. NC in citrate synthase or β-

HAD. NC in gene expression of CDS1. 

Decrease in gene expression of CLS, but 

NC in protein content. 

DeNies 

et al. 

2014 [79] 

C57 

BLK/6J 

mice 

(male and 

female) 

3 wk 55 wk 

Ad libitum:  

HF (60% kcal 

fat) 

HF: Higher BW, lower type I, non-sig 

higher I/IIa hybrids (only in male), NC 

MHCI (sol) 

De 

Stefanis 

et al. 

2017 [80] 

C57 

BLK/6J 

mice 

(male) 

5 wk 33 wk 

Ad libitum:  

HFr (15% kcal 

Fru in water) 

HGlu (15% kcal 

Glu in water) 

HFr: Insulin resistance, increased BW, 

TG (muscle), IMCL, CSA, LC3B-II, non-

sig beclin-1, IL-6 (muscle), NC in 

ox/glyc fibers, (SDH) (gastroc), PAX7, 

myogenin, p63, fibrinogen, SOCS3 

HGlu: Insulin resistance, increased BW, 

TG (muscle), non-sig IMCL, CSA, 

beclin-1, LC3B-II, IL-6 (muscle and 

plasma), NC in ox/glyc fibers, (SDH) 

(gastroc), PAX7, myogenin, p63, 

fibrinogen, SOCS3 

Roseno 

et al. 

2015 [81] 

C57 

BLK/6J 

mice 

(male) 

8 wk 20 wk 

Ad libitum:  

HF (60% kcal 

fat), for 3 wks or 

12 wks 

HF - 3 wks: Higher BW, non-sig insulin, 

NC glucose (plasma), myostatin 

HF - 12 wks: Higher BW, insulin, NC 

glucose (plasma), higher myostatin 

Ferrer-

Martínez 

et al. 

2006 

[82] 

Wistar 

rats (male) 

~10-15 

wk (200-

225g) 

~14-19 

wk (4 

wk) 

Ad libitum:  

HSuc (50% kcal 

Suc) 

HF (33.9% kcal 

fat) 

HSuc: Insulin resistance, NC BW, higher 

fed TAG (plasma), non-sig lower FAT, 

FATP1, GLUT1 (sol), GLUT4, LPL (sol), 

PDK4, HK2 (sol), non-sig higher ACC1, 

GFAT1 (sol), LPL (gastroc), HK2 

(gastroc), higher GLUT1 (gastroc), 

GFAT1 (gastroc), NC GK, GP 

HF: Insulin resistance,higher BW, fed 

TAG (plasma), non-sig lower FAT, 

FATP1, GLUT4 (sol), LPL, PDK4 

(gastroc), non-sig higher GLUT1 (sol), 

GFAT1 (sol), HK2 (sol), PDK4 (sol), 

GLUT4 (gastroc), ACC1 (gastroc), 

higher ACC1 (sol), GLUT1 (gastroc), 

GFAT1 (gastroc), HK2 (gastroc), NC 

GK, GP 

Vaisy et 

al. 2010 

[83] 

Wistar 

rats (male) 

~10-15 

wk (200-

225g) 

~22-27 

wk (12 

wk) 

Ad libitum:  

HSuc (48% kcal 

Suc) 

HSuc: Insulin resistance, higher BW, 

IMCL, NC UCP3 

Lee et al. 

2016 [84] 

Sprague-

Dawley 

rats (male) 

~ 4-5 

wks (95-

~12-13 

wks  
Ad libitum:  

HF/Sat and HF/PUFA: NC in BW. 

Increased plasma FFA 



Nutrients 2021, 13, 4195 5 of 12 
 

 

100 g 

BW) 

CON (61.8% 

kcal CHO, 15.7% 

kcal fat) 

HF/Sat (24.3% 

kcal CHO, 52.8% 

kcal fat 

[primarily SFA]) 

HF/PUFA 

(24.3% kcal 

CHO, 52.8% kcal 

fat [primarily 

PUFA]) 

HF/Sat: Increased fasting plasma insulin 

and HOMA-IR. 

HF/PUFA: Decreased fasting plasma 

insulin and HOMA-IR. 

HF/Sat and HF/PUFA on SkM (vastus 

lateralis): Increased TG and DAG. NC in 

ceramide content. 

HF/Sat on SkM (vastus lateralis): 

Increased SFA in total TG. Increased 

SDC1 protein expression and enzyme 

activity. 

HF/PUFA on SkM (vastus lateralis): 

Increased unsaturated FA and 

decreased SFA in total TG. 

Rosholt 

et al. 

1994 [85] 

Sprague-

Dawley 

rats (male) 

~ 5 wks 

(100-125 

g) 

~ 8 wks 

Ad libitum:  

HC (1910±51 

kcal, 68% kcal 

CHO, 10% kcal 

fat) 

HF (1700±37 

kcal, 20% kcal 

CHO, 60% kcal 

fat) 

Then treated 

with insulin, 

exercise, or 

nothing 

(control) before 

termination. 

HF: Lower overall energy intake. 

Higher plasma FFA. NC in plasma glu 

or insulin.  

HF on SkM (gastroc): NC in muscle 

glycogen content and non-responsive to 

insulin treatment. Higher TG, not 

affected by insulin or exercise. NC in 

KpNPPase enzyme activity. NC in glu 

uptake/Vmax w/ insulin and exercise 

treatments. Increased GLUT4 protein 

content w/ insulin or exercise treatment 

only. 

HC on SkM (gastroc): NC in muscle 

glycogen content but increased w/ 

insulin treatment. NC in KpNPPase 

enzyme activity. Increased glu 

uptake/Vmax w/ insulin and exercise 

treatments. Increased GLUT4 protein 

content w/ insulin or exercise treatment 

only. 

Li et al. 

2008 [86] 

Wistar 

rats (male) 

4 wks 

(80-100 

g) 

10 wks 

Ad libitum:  

CON (59% kcal 

CHO, 12% kcal 

fat) 

HFr (60% kcal 

CHO [?% Fru], 

12% kcal fat) 

HFr: NC in BW or fasting blood glu. 

Higher fasting plasma insulin. 

Decreased GIR and MCR. 

HFr on SkM (hind limb): NC in total 

AKT or PKC𝛾 protein content but 

decreases in both p-AKT and p-PKC𝛾. 

NC in total GLUT4 content but 

decreased plasma membrane GLUT4. 

Benetti 

et al. 

2018 [87] 

C57 

BLK/6J 

mice 

(male) 

5 wks 21 wks 

Ad libitum:  

HFGluFr (45% 

kcal fat, 19.24% 

kcal Fru, 15.75% 

kcal Glu) 

HFGluFr: Increased BW, HOMA-IR, 

lower glucose tolerance, higher LDL-c, 

NC TC, TG (plasma), higher p-IRS-1, 

lower p-Akt, increased nuclear p65, 

TNFα, IMCL (unquantified), SCAP 

expression, active SREBP1c, RAGE 

Freitas et 

al. 2009 

[88] 

Wistar 

rats (male) 
13 wk 23 wk 

Ad libitum:  

HFSuc (32% kcal 

fat, 48% kcal 

CHO) 

HFSuc: Higher BW, NC oxidative vs. 

glycolytic fibers, capillary density  

Marotta 

et al. 

2004 [89] 

Wistar 

rats (male) 

~11-16 

wk (200-

225g) 

~15-20 

wk (4 

wk) 

Ad libitum:  

HFL (33.9% kcal 

by weight lard)   

HFO (33.9% kcal 

by weight high 

HFL: Insulin resistance, higher BW, 

epididymal fat, fed TG, fed FFA, FATP-

1 

HFO: Insulin resistance, higher BW, 

epididymal fat, fed TG, fed FFA, FATP-

1 
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oleic sunflower 

oil) 

HFS (33.9% kcal 

by weight 

sunflower oil) 

HFS: Insulin resistance, higher BW, 

epididymal fat, fed TG, fed FFA, FATP-

1 

Chicco et 

al. 2003 

[90] 

Wistar 

rats (male) 

~7-13 

wk (175-

190g) 

~10-43 

wk (3, 

15, or 

30 wk) 

Ad libitum:  

HSuc (63% kcal 

Suc by weight), 

for 3 wks, 15 

wks, or 20 wks 

HSuc - 3 wk: Insulin resistance, NC BW, 

higher plasma TG, FFA, higher 

LCACoA, NC glycogen, GS, PDHK and 

PDH activity, G6P, TG (muscle) 

HSuc - 15 wk: Insulin resistance (sig 

higher than 3 wk), NC BW, higher 

plasma TG (sig higher than 3 wk), FFA 

(sig higher than 3 wk), lower glycogen, 

GS, PDHK and PDH activity, G6P, 

higher TG (muscle) 

HSuc - 30 wk: Insulin resistance (sig 

higher than 3 wk), higher BW, higher 

plasma TG (sig higher than 3 wk), FFA 

(sig higher than 3 wk), lower glycogen, 

GS, PDHK and PDH activity, G6P, 

higher TG (muscle) 

Simi et 

al. 1991 

[91] 

Wistar 

rats (male) 

~5-8 wk 

(~160g) 

~17-20 

wk (12 

wk) 

Ad libitum:  

HF (48% kcal by 

weight lard) 

HF: NC BW, higher CS (quad) and 

HAD (quad and sol) activities, NC HK 

and PFK activities, NC glycogen 

(muscle), lower glycogen breakdown, 

higher FFA,  

Weeks (wks), days (d), skeletal muscle (SkM), extramyocellular lipids (EMCL), intramyocellular 

lipids (IMCL), body weight (BW), mitochondria (Mito), low-fat diet (LF), high-fat diet (HF), etha-

nol (Eth), high-fat, high-fructose diet (HFF), high-fat, high-fructose, high-cholesterol diet (HFFC), 

high-fat, high-sucrose diet (HFSuc), high-fructose diet (HFr), high-sucrose diet (HSuc), high-glu-

cose diet (HGlu), glucose (Glu), area under the curve (AUC), standard chow/control diet (CON), 

cholesterol (C), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol 

(LDL-c), total cholesterol (TC), triglycerides (TG), diacylglycerols (DAG), saturated fatty acids 

(SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), free fatty acids 

(FFA), fasting serum glucose (FSG), homeostatic model assessment of insulin resistance (HOMA-

IR), glucose transporter type 4 (GLUT-4), nonesterified fatty acids (NEFA), resting metabolic rate 

(RMR), uncoupling protein 3 (UCP3), soleus muscle (Sol), plantaris muscle (Pln), gastrocnemius 

muscle (Gastroc), tibialis (Tib), extensor digitorum longus (EDL), tibialis anterior muscle (TA), 

gastrocnemius soleus tibialis anterior and quadriceps (Hind leg muscles), peroxisome proliferator-

activated receptor ɑ (PPARɑ), liver X receptor alpha (LXRɑ), carbohydrate response element bind-

ing protein (ChREBP), stearoyl-CoA desaturase (SDC-1), cardiolipin synthase (CLS),  fatty acid 

binding protein 3 (FABP3), fatty acid translocase CD36 (FATCD36), glycerol kinase (GK), Glyco-

gen phosphorylase (GP), protein kinase B (AKT), phosphorylated protein kinase B (p-AKT), AKT 

substrate of 160 kDA (AS160), long chain acyl CoA (LCACoA), insulin receptor substrate 1 (IRS-1), 

phosphorylated insulin receptor substrate 1 (p-IRS-1), fatty acid transport protein 1 (FATP-1), glu-

cose-6-phosphate (G6P), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 

(PDHK), 3-hydroxyacyl-CoA dehydrogenase (HAD), hexokinase (HK), phosphofructokinase 

(PFK), mitochondrial respiratory control ratio (RCR), adenine nucleotide translocase (ANT). 
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Table S2. Research studies investigating the effects of a Western-style diet on skeletal muscle in 

adult animal models and humans. 

Author Subjects 
Age 

Start 

Age 

End 
Feeding Outcome 

Clark 

et al. 

2011 

[67] 

Ossabaw 

minipigs 

(male) 

- 
(24 wk 

study) 

Ad libitum:  

HFr (20% kcal Fr) 

HFFC (20% kcal Fr, 

46% kcal fat, 2% 

kcal C) 

HFr: Higher BW, CSA (pln, biceps, sol), 

non-sig higher type IIb/x, lower type I 

(pln, biceps, sol), non-sig lower MHCI 

(pln), non-sig higher MHCIIb (pln), NC 

IMCL 

HFFC: Higher BW, IMCL, TG (blood), 

CSA (pln, biceps), lower CSA (sol) non-

sig higher type IIb/x, lower type I (pln, 

biceps, sol), higher type IIa (biceps), 

decreased MHC1 (pln), non-sig higher 

MHCIIb (pln) 

Hsu et 

al. 2017 

[31] 

Taiwan 

Lee-Sung 

miniature 

pigs 

(castrated 

males) 

2 y 3 y 

LF (restricted to 

~2700 kcal/d, 66.4% 

kcal CHO [0% Fru], 

17.8% kcal fat) 

HFF (ad libitum 

~5200 kcal/d, 39.2% 

kcal CHO [17.8% 

Fru], 45% kcal fat) 

HFF: Higher weight gain and obesity. 

Increased serum TG, NEFA, insulin. NC 

in serum glucose. Increased HOMA-IR. 

HFF on SkM (sol): Decreased p-AKT. 

Insulin resistance. 

Hyatt 

et al. 

2016 

[92] 

Rhesus 

monkeys 

(male) 

~12 yr 
~14 yr 

(2 yr) 

Ad libitum: 2 

meals/day 

HFS (42.3% kcal fat, 

27% Suc) 

HFS: Increased BW, type I, decreased 

type IIa/x (sol), NC in pln or EDL 

(western blot), decreased PGC-1a in 

EDL, non-sig decrease in pln, non-sig 

increase in sol, NC GLUT4 

Rodrig

uez et 

al. 2015 

[93] 

C57/Bl6J 

mice 

(female) 

12 wks 32 wks 

Ad libitum:  

CON (67% kcal 

CHO [4% Suc], 10% 

kcal fat) 

HF (35% kcal CHO 

[17% Suc], 45% kcal 

fat) 

HF+Pom (same as 

HF) 

HF+GT (same as 

HF) 

Actual intakes not 

mentioned 

All HF Diets: Higher BW and obesity. 

NC in total FoxO3a. NC in mRNA of IL-

6 or MCP-1. NC in MAPK pathway. 

HF on SkM (gastroc): Decreased p-AKT 

with NC in mTOR. Increased mRNA 

and decreased phosphorylation of 

FoxO3a and FoxO1. Increased MAFbx, 

MURF1, p62, BNIP3L, and BNIP3. Non-

sig increases in LC3b and Gabarapl-1. 

  

Song et 

al. 2013 

[94] 

C57BL/6 J 

mice 

(male) 

14-15 

wks 

30-31 

wks 

Ad libitum: 

CON (66% kcal 

CHO, 10% kcal fat) 

HF (20% kcal CHO, 

59% kcal fat) 

HFr (70% kcal CHO 

[35% Fru], 9% kcal 

fat) 

Actual intakes not 

mentioned 

HF and HFr: Higher BW, plasma TG, 

and plasma FFA. Glucose intolerance 

(more sig in HFr). 

HF and HFr on SkM (quad): Increased  

TG, LCACoA, and expression of 

FATCD36. Increased expression of COx, 

CS, β-HAD, COX-1, and CPT-1 

enzymes. Increase in PGC-1ɑ protein. 

Increased expression of SREBP-1c and 

FAS genes. 

Deldicq

ue et al. 

2010 

[95] 

Humans 

(male) 
~20 yr 

~20 yr 

(6 wk) 

Energy 

requirement-based 

on:  

HF: Higher BW, glucose intolerance, 

higher IMCL, NC FFA (plasma), DAG 

(muscle), ceramides, phospholipids, 

phospho-PKB 
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HF (50% kcal fat), 

hypercaloric (+30% 

kcal) 

Seyssel 

et al. 

2016 

[96] 

Humans 

(male, 

healthy, 

high-risk 

for 

T2DM, 

first-

degree 

relative of 

T2DM 

patient) 

(not 

mentio

ned) 

(7 d 

each 

w/ 4-5 

wk 

washo

ut) 

RCT Crossover: 

CON (55% kcal 

CHO, 30% kcal fat) 

HFr (CON +3.5 g 

Fru/kg fat-free mass 

[+35% kcal] per d) 

HFr on SkM (vastus lateralis): Increased 

lipid content and SREBP-1c mRNA 

expression. Sig shift in energy fuel 

substrates to CHO oxidation measured 

via IC. Downregulation of genes of 

ACADVL, ACADS, HADHA, HADHB, 

and ACAA2 (enzymes of β-oxidation). 

Downregulation of genes of CPT1B and 

CPT2 (needed for fat to enter 

mitochondria). Decreased MLYCD and 

L41 mRNA, UCP3 protein, and genes of 

respiratory enzymes (i.e. cytochrome c). 

Osterbe

rg et al. 

2015 

[63] 

Humans 

(male) 

18-30 

yr 

18-30 

yr (4 

wk) 

Energy 

requirement-based 

on:  

HF (55% kcal fat), 

hypercaloric (+35% 

kcal)  

HF: Higher body fat % and lean mass, 

non-sig BW, NC endotoxin, LBP, sCD14, 

hsCRP, higher TNFα, non-sig IL6, NC 

insulin sensitivity, fatty acid oxidation 

(muscle), pyruvate oxidation 

Surows

ka et al. 

2019 

[97] 

Humans 

(male and 

female) 

~22 yr 

~22 yr 

(6 d 

each) 

Energy 

requirement-based 

on RCT w/ 4-8 wk 

washout:  

Hypercaloric (+50% 

kcal)  

LP-HF+HSuc (5% 

kcal protein, 25% 

kcal fat, 34% kcal 

Suc) 

HP-LF+HSuc (20% 

kcal protein, 10% 

kcal fat, 34% kcal 

Suc) 

LP-HF: Higher BW, fasting and fed 

plasma fructose, lactate (sig higher than 

HP-LF), uric acid (sig higher than HP-

LF), TG, NEFA, insulin, higher fasting 

glucose, higher IMCL (sig higher than 

HP-LF), NC fasting glucagon or IGF-1 

HP-LF: Higher BW, fasting and fed 

plasma fructose, lactate, uric acid, TG, 

NEFA, insulin, higher fasting glucose, 

higher IMCL, NC fasting glucagon or 

IGF-1 

Van 

Proeye

n et al. 

2011 

[98] 

Humans 

(male) 
~21 yr 

~21 yr 

(6 wk) 

Normal energy 

intake-based on:  

HF (50% kcal fat), 

hypercaloric (>30% 

kcal) 

HF: Higher BW, IMCL, exercise-induced 

IMCL breakdown, decreased exercise-

induced glycogen breakdown, NC 

AMPKα, ACCβ, pAMPK, p-ACCβ, 

PDK4 expression, NC FFA 

Weeks (wks), days (d), year (yr), treatment (Tx), significant (Sig), no change (NC), indirect calo-

rimetry (IC), type 2 diabetes mellitus (T2DM), skeletal muscle (SkM), carbohydrate (CHO), extra-

myocellular lipids (EMCL), intramyocellular lipids (IMCL), cholesterol (C), high-density lipopro-

tein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), body weight (BW), low-fat 

diet (LF), high-fat diet (HF), high-saturated fat diet (HF/Sat), high-polyunsaturated fat diet 

(HF/PUFA), ethanol (Eth), high-fat high-fructose diet (HFF), high-fructose diet (HFr), high fat high 

sucrose diet (HFS), high-fat + pomegranate extract diet (HF+Pom), high-fat + green tea extract diet 

(HF+GT), high-carbohydrate diet (HC), fructose (Fru), sucrose (Suc), free fatty acids (FFA), normal 

control diet (CON), randomized cross-over trial (RCT), triglycerides (TG), total triglycerides 

(TTG), diacylglycerols (DAG), fasting serum glucose (FSG), homeostatic model assessment of in-

sulin resistance (HOMA-IR), glucose transporter type 4 (GLUT-4), nonesterified fatty acids 

(NEFA), resting metabolic rate (RMR), uncoupling protein 3 (UCP3), protein kinase B (AKT), 

phosphorylated protein kinase B (p-AKT), stearoyl-CoA desaturase-1 (SDC1), soleus muscle (Sol), 

plantaris muscle (Pln), gastrocnemius muscle (Gastroc), quadriceps muscle (Quad), extensor digi-

torum longus muscle (EDL), tibialis anterior muscle (TA), forkhead box O3a (FoxO3a), forkhead 

box O1 (FoxO1), muscle atrophy F-box (MAFbx), muscle ring finger-1 (MURF1), ubiquitin-binding 

protein (p62), BCL2 Interacting Protein 3 Like (BNIP3L), BCL2 Interacting Protein 3 (BNIP3), Mi-

crotubule Associated Protein 1 Light Chain 3 Beta (LC3b), GABA Type A Receptor Associated 
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Protein Like 1 (Gabarapl-1), interleukin 6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1), 

Mitogen-Activated Protein Kinase (MAPK), long chain acyl CoA (LCACoA), fatty acid translocase 

CD36 (FATCD36), cytochrome oxidase (COx), citrate synthase (CS), β-hydroxyacyl CoA dehydro-

genase (β-HAD), carnitine palmitoyltransferase-1 (CPT-1), proliferator-activated receptor coactiva-

tor (PGC-1ɑ), cyclo-oxygenase-1 (COX-1), murine sterol regulatory element-binding protein-1c 

(SREBP-1c), lipogenic enzyme fatty acid synthase (FAS), lipopolysaccharide binding protein (LBP), 

acyl-CoA dehydrogenase very long chain (ACADVL), acyl-CoA dehydrogenase C2 to C3 short 

chain (ACADS), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase 

alpha and beta subunit (HADHA and HADHB), acetyl-CoA acyltransferase 2 (ACAA2), carnitine 

palmitoyltransferase 1B (CPT1B), carnitine palmitoyltransferase 2 (CPT2), malonyl-CoA decarbox-

ylase (MLYCD), uncoupling protein 3 (UCP3), acetyl-CoA carboxylase (ACCβ), 5' AMP-activated 

protein kinase (AMPK), pyruvate dehydrogenase kinase 4 (PDK4). 
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Table S3. Primer sequences utilized in qPCR analysis of gene expression in the skeletal muscle of 

juvenile Iberian pigs. 

Accession 

Number 
Gene Protein Primer Sequence 

Product 

Size 

(bp) 

NM_213963.2 PPARGC1A PPARG coactivator 1 alpha 

F: AACCAGGACTCTGTATGGACTG 

R: 

GTTCAGGAAGATCTGGGCAAAG 

80 

NM_001007191.1 CPT1B 
Carnitine palmitoyltransferase 

1B 

F: CTCTGGACGAGGAGTCTCAC 

R: CACCTGTTGTAGCAGTTGCC 
97 

NM_001128433.1 
GLUT4/ 

SLC2A4 

GLUT4 / Solute carrier family 2 

member 4 

F: AGTGGCTGGGAAGGAAGAAG 

R: GGAACCGTCCAAGAATGAGC 
120 

NM_001258386.1 TOP2B Topoisomerase (DNA) II beta 
F: GCTGGTCCTGAAGATGATGC 

R: TACGCTGTCTCCGATCTTCC 
106 

1Accession number is the unique identification number for the messenger RNA (mRNA) sequence 

for which primers were designed. Sequences were retrieved from the RefSeq database of the Na-

tional Center for Biotechnology Information. 

 


