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Abstract: Fish oil is rich in omega-3 fatty acids and essential for neuronal myelination and maturation.
The aim of this study was to investigate whether the use of a mixed-lipid emulsion composed of
soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF-LE) compared to a pure soybean
oil-based lipid emulsion (S-LE) for parenteral nutrition had an impact on neuronal conduction in
preterm infants. This study is a retrospective matched cohort study comparing preterm infants
<1000 g who received SMOF-LE in comparison to S-LE for parenteral nutrition. Visual evoked
potentials (VEPs) were assessed longitudinally from birth until discharge. The latencies of the evoked
peaks N2 and P2 were analyzed. The analysis included 76 infants (SMOF-LE: n = 41 and S-LE:
n = 35) with 344 VEP measurements (SMOF-LE: n= 191 and S-LE n = 153). Values of N2 and P2
were not significantly different between the SMOF-LE and S-LE groups. A possible better treatment
effect in the SMOF-LE group was seen as a trend toward a shorter latency, indicating faster neural
conduction at around term-equivalent age. Prospective trials and follow-up studies are necessary
in order to evaluate the potential positive effect of SMOF-LE on neuronal conduction and visual
pathway maturation.

Keywords: fish oil; omega-3 fatty acid; lipid emulsion; parenteral nutrition; brain maturation; visual
evoked potential; visual neuronal conduction

1. Introduction

Preterm infants, especially those who are born with an extremely low birth weight
(ELBW, < 1000g), are at an increased risk of abnormal brain maturation and development [1].
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) are essential constituents of
biological membranes and contribute to maintaining the structural and functional integrity
of cellular components [2,3]. Omega-3 LC-PUFA docosahexaenoic acid (DHA) is highly
concentrated in neuronal membranes and retinal ganglion cells and is crucial for normal
brain maturation [2,4,5]. Preterm infants are typically deficient in DHA for several reasons,
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including the following circumstances: (1) DHA accretion occurs during the last trimester
of pregnancy; (2) DHA supply from enteral nutrition falls short of fetal demands; and
(3) the capacity to synthesize DHA from precursor cells is very low [6,7]. Preterm infants
depend on parenteral nutrition for several weeks and the standard soybean oil-based
lipid emulsion (S-LE) for parenteral nutrition is almost devoid of DHA [8]. A mixed-lipid
emulsion composed of soybean oil, median-chain triglycerides, olive oil, and fish oil
(SMOF-LE) provides DHA and its precursor eicosapentaenoic acid (EPA) [9]. A previous
study demonstrated that electrophysiological brain maturation, as measured by amplitude-
integrated electroencephalography, was accelerated in infants who received a mixed-
lipid emulsion for parenteral nutrition [10]. The potentially positive effects on neuronal
conduction, as measured by visual evoked potentials, have not been investigated so far.
Visual evoked potentials (VEPs) are electrophysiological signals generated in response
to visual stimulation [11]. In preterm infants, VEPs are primarily used to assess visual
neuronal conduction and the maturation of the visual pathway [12]. VEPs consist of three
principal peaks (P1, N2, P2) that can be recorded from approximately 23 weeks of gestation
and show an ongoing maturational process in terms of both velocity and morphology in the
postnatal period [12,13]. In fact, VEP latencies become faster with increased gestational age,
and having late component peaks such as N2 and P2 is more stable over the time compared
to having early component peaks such as P1 that have been shown to be less reliable [12,14].
The aim of this study was to evaluate the effect of SMOF-LE in comparison to a pure
soybean oil-based lipid emulsion (S-LE) on visual neuronal conduction, as measured by
serial visual evoked potentials from birth until discharge.

2. Materials and Methods
2.1. Study Design

This retrospective matched cohort study was conducted at the Department of Pae-
diatrics and Adolescent Medicine at the Medical University of Vienna between the years
2009 and 2019. The study was approved by the local ethics committee (Nr. 2148/2020).
In order to detect potential differences in preterm infants’ brain maturation, we investigated
visual neural conduction measured by serial VEPs in infants who received SMOF-LE in
comparison to S-LE for parenteral nutrition.

2.2. Patient Groups

Infants born with an extremely low birth weight (<1000 g) between the years 2009 and
2019 who received serial VEP measurements from birth until discharge were included in
this study analysis. Infants in the two study groups were matched (1:1) for sex, gestational
age at birth (+/−3 days), and birth weight (+/−100 g) [15,16].

This study compared two different parenteral lipid emulsion periods: Infants in the
SMOF-LE group received a mixed-lipid emulsion (SMOF-LE, SMOFlipid® 20%; Fresenius
Kabi), which contained 30% soybean oil, 30% medium-chain triglycerides, 25% olive
oil, and 15% fish oil (2015–2019), while infants in the S-LE received a pure soybean oil-
based lipid emulsion (S-LE, Intralipid® 20%; Fresenius Kabi) (2009–2012) for parenteral
nutrition [17]. Data referred to two different epochs where two different lipid emulsions
(S-LE vs. SMOF-LE) were used in clinical practice and serial VEP measurements were
performed from birth until term-equivalent age as part of two observational studies [18,19].
S-LE was the standard lipid emulsion in our unit before the year 2012; after a random-
ized controlled trial [20] on parenteral nutrition (2012–2015) we switched to SMOF-LE for
parenteral nutrition. SMOF-LE contains 2.2% DHA and 2.4% EPA, while S-LE is devoid
of DHA and EPA [17]. Enteral nutrition was commenced using breast milk or donor
milk (provided from June 2012) and increased gradually according to the local protocol
(maximum of 20 mL/kg per day). If donor milk was used, infants were switched to preterm
formula after 32 weeks of postmenstrual age (PMA). Milk feedings were fortified when
the level of 100 mL/kg of enteral nutrition was reached. The standard local nutritional
protocol for parenteral nutrition did not differ substantially between the two nutritional
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eras, except for the type of lipid emulsion (S-LE and SMOF-LE). Infants received full
parenteral nutrition directly after birth and lipid emulsions were started at 1 g/kg/d.
Lipids were increased daily by 0.5 g/kg/d and dosed up to 3.5 g/kg/day, at the discre-
tion of the attending physicians, and reduced in relation to enteral nutrition (increased
up to 20 mL/kg/day). Parenteral nutrition was stopped at 140–160 mL/kg/d of enteral
nutrition. Due to predicted negative outcomes on VEPs, patient data reporting severe
retinopathy of prematurity (grade > II), cystic periventricular leukomalacia, and severe
intraventricular haemorrhage (grade > II) were not included in this study [21–23]. Par-
enteral nutrition-associated cholestasis, abdominal surgery for necrotizing enterocolitis or
focal intestinal perforation [23], and genetic or metabolic disorders were exclusion criteria.
VEP measurements with impedance over 10 kΩ and artefacts were also excluded from the
analysis [18].

2.3. Visual Evoked Potentials

Visual evoked potentials were analyzed longitudinally (maximum 10 days between
consecutive measurement) from birth until discharge using flash VEPs. Data on serial
VEP measurements were obtained from two independent studies and retrospectively
analyzed [18,19]. The first VEPs were performed as soon as the clinical condition of
the preterm was stable. Measurements were assessed using a Nihon Kohden MEB-9400
Neuropack S1 device. Surface gold electrodes were positioned at Oz(+) and at Fz(−)
according to the international 10/20 system. Red light LED goggles were used with
0.4 cd/m2 and held at a distance of 5 cm in front of the infant’s eyes [18]. Impedance
was kept below 10 kΩ, the stimulation frequency was 0.7 Hz, the bandpass filter was
1–100 Hz, and the sweep time was 1 s. The procedure was performed in a semi-dark
environment. At least two repetitions of 30 averages were obtained from both eyes. A total
mean repetition curve was obtained from every single repetition considered and the
consecutively most stable peaks (P1, N2, P2) were considered in the statistical analysis
(Figure 1) [11,14]. VEP peaks refer to retino-geniculo-cortical pathway activation and their
latencies and morphology changes with increased GA [12,13]. A precise origin of P1 has
not been identified yet. P1 usually appears between the 28th and the 32nd gestational week
and could be the result of basal dendrite activities [13,24]. Even if its presence is an index
of visual development, it has been described as a less reliable peak for use in a population
of premature infants [18,24]. Early-phase late VEP components (N2) are more likely to
be generated in the dorsal extrastriate cortex of the middle occipital gyrus, while the late
components (P2) refer to near associative areas [25].

2.4. Statistical Analysis

Data were analyzed with IBM SPSS Statistics® (International Business Machines
Corporation, Statistical Package for the Social Sciences) (IBM Corp., Armonk, New York,
NY, USA; Version 26) and the R statistical software (R Foundation for Statistical Computing,
Vienna, Austria; Version 3.6.2). For metric parameters, means and standard deviations
(SD) were calculated, while for nominal and ordinal parameters absolute frequencies were
specified. A two-sample t-test with a two-sided significance level of α = 0.05 was used for
calculating and comparing baseline characteristics as well as VEP values, while for the
categorical data a χ2-test with a two-sided significance level of α = 0.05 was applied.

The analysis of the three outcome variables P1, N2, and P2 comprised three steps:
(1) the prediction of the outcomes at the set postmenstrual ages (PMA); (2) propensity
balancing; and (3) the analysis of the outcomes with the inverse propensity weights. These
steps were applied separately to P1, N2, and P2 and for the distinct PMAs.
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Figure 1. Analysis of the visual evoked potential.

2.4.1. Prediction of the Outcomes

The three outcome variables, P1, N2m and P2, were analyzed for an infant at up to
nine time points: 28, 29, 30, 31, 32, 33, 34, 35, and 36 weeks PMA. The values were estimated
from the available observations by normal kernel smoothing [26].

2.4.2. Propensity Balancing Analysis

For the observations included in the analysis, we set the balancing weights so as to
match the weighted means of the groups for the background variables of sex (male/female),
gestational age at birth (+/−3 days), and birth weight (+/−100 g) [15,16]. The balance
was described by the three scaled differences of the within-group means. The scaling was
carried out using the pooled SD of the variable. These balances were the sole diagnostic,
or assessment, of the quality of the balancing. They were compared to the scaled differences
evaluated without the balancing weights. It was essential for the balancing to be based
only on the background variables (and the treatment) and not be informed by the values of
the outcomes except, indirectly, by the PMAs at which the observations were taken.

2.4.3. Analysis of the Outcomes

The hypothesis that the outcomes have identical means in the two groups was tested
using the t statistic adapted for the balancing of the weights. By way of a sensitivity
analysis, we repeated the analyses (prediction, balancing, and comparison of the outcomes)
for values of PMA from 28 to 36 weeks. In normal kernel smoothing, the value of the
smoothed fit at a given time point was defined as the weighted mean of observations. The
weights were set according to the distance of the observation times and the evaluation
time point. For an observation made at time point t, the weight used for estimating the
values at time point s was defined as the density of the standard normal distribution at
(t-s)/sigma, where sigma was the SD of the kernel. After exploring several alternatives,
we chose sigma = 10 (days). That is, the weight of an observation at time point s (t = s) is
1.00, at t = s + 11.75 and t = s − 11.75 is 0.50, and at t = s + 16.60 and t = s − 16.60 is 0.25.
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The precision of the prediction at a point s is summarized by the total of the weights of the
infants’ observations. From an analysis of values at a particular PMA (s), we excluded all
infants with the total kernel weight smaller than a given threshold (0.10).

3. Results

A total number of 118 preterm infants with longitudinal VEP measurements from birth
until discharge were screened for the study analysis. After applying the exclusion criteria,
76 infants (SMOF-LE: n = 41 and S-LE: n = 35) with 344 VEP measurements (SMOF-LE:
n= 191 and S-LE n = 153) were included in the analysis (Figure 2). Groups were well
matched, and no significant differences were found in the descriptive characteristics, co-
morbidities, or nutritional aspects (Table 1). The type of feeding at discharge, days on
parenteral nutrition, and parenteral lipids were not significantly different between the two
groups (Table 1).

Figure 2. Flow diagram for patients and visual evoked potential measurement exclusion criteria.
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Table 1. Descriptive characteristics.

Variables S-LE
(n = 35)

SMOF-LE
(n = 41) p-Values

Gender, female (n,%) 20 (57.1) 23 (56.1) 0.99
Gestational age, weeks (mean ± SD) 25.6 ± 1,1 25.1 ± 1.1 0.45

Birth weight, g (mean ±SD) 820 ± 173 775 ± 129 0.20
Small for gestational age (n,%) 0 (0) 1 (2.4) 0.99

Head circumference, cm (mean ± SD) 23.9 ± 2.2 23.2 ± 1.3 0.07
Antenatal steroids for lung maturation (n,%) 35 (100) 39 (95.1) 0.99

Lung maturation, complete (n,%) 29 (82.9) 25 (61.0) 0.09
Cesarean Section (n,%) 33 (94.3) 32 (78.0) 0.05

Multiple birth (n,%) 15 (42.9) 12 (29.3) 0.23
Umbilical artery pH (mean ± SD) 7.34 ± 0.66 7.32 ± 0.11 0.37
Apgar Score, 5 min (mean ± SD) 8.4 ± 0.6 8.5 ± 0.9 0.56

Total days of mechanical ventilation (mean ± SD) 2.0 ± 3.9 3.7 ± 6.1 0.16
ROP grade I-II (n,%) 17 (48.6) 23 (56.1) 0.64
IVH grade I-II (n,%) 7 (20.0) 5 (12.2) 0.52

PVL grade l (n,%) 0 (0) 1 (2.4) 0.99
Chronic lung disease (n,%) 6 (17.1) 9 (22.0) 0.77

NEC (n,%) 1 (2.9) 3 (7.3) 0.62
Total days on any parenteral nutrition (mean ± SD) 35 ± 16 31 ± 16 0.26

Total days on parenteral lipids (mean ± SD) 22 ± 10 22 ± 8 0.98
Total days on enteral nutrition (mean ± SD) 73 ± 21 86 ± 37 0.06

Weight gain per day, g (mean ± SD) 23 ± 2 23 ± 9 0.85

Feeding at discharge (n,%)
Human milk 10 (28.6) 15 (36.6) 0.47

Formula 16 (45.7) 16 (39.0) 0.64
Both 9 (25.7) 9 (22.0) 0.78

Postmenstrual age at discharge, weeks (mean ± SD) 36.2 ± 2.6 38.2 ± 5.0 0.044
Weight at discharge, g (mean ± SD) 2403 ± 560 2705 ± 1011 0.12

Weight Z-Score at discharge (mean ± SD) −1.9 (0.6) −1.6 (1.1) 0.13
Length at discharge, g (mean ± SD) 43.9 (4.0) 44.9 (6.8) 0.48

Length at discharge Z-Score (mean ± SD) −0.09 (1.2) −0.08 (0.7) 0.48
HC at discharge, g (mean ± SD) 31.8 (2.9) 32.5 (4.3) 0.43

HC Z-Score at discharge (mean ± SD) −0.1 (0.7) 0.1 (1.1) 0.42

Retinopathy of prematurity (ROP); intraventricular hemorrhage (IVH); periventricular leukomalacia (PVL); necrotizing enterocolitis (NEC);
head circumference (HC).

Considering the strong maturational feature of P1, which is consistent around term-
equivalent age [18], and having less observations for this peak, it was not possible to
perform a predictive value analysis in this case.

A maturational feature could be observed for both considered peaks: N2 and P2.
Precise latency values for these peaks at different PMAs are reported in Figure 3 (unadjusted
values). As expected, the N2 and P2 latencies decreased continuously from birth until
discharge in both groups. Starting at 34 weeks PMA, the values of N2 and P2 were faster
in the SMOF-LE group in comparison to the S-LE group but did not reach statistical
significance (Figure 3).

The treatment effect between the two groups was calculated and showed a trend
towards a shorter latency of VEPs in the SMOF-LE group at around term-equivalent age
but did not meet statistical significance (Figure 4 and Table 2).
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Figure 3. Unadjusted latencies of N2 and P2 in the S-LE and SMOF-LE groups between 28 and 36 weeks postmenstrual
age (PMA).

Figure 4. Negative treatment effect favors the SMOF-LE group at around term-equivalent age.
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Table 2. Estimated treatment effect on N2 and P2 between 28 and 36 weeks postmenstrual age (PMA).

PMA
(Weeks)

S-LE N2
Means St.error SMOF-LE

N2 Means St.error Estimate St.error Lower 95% CI Upper 95% CI

28 334.6 3.6 338.4 4.9 3.7 6.1 −8.5 15.9
29 331.8 3.6 334.1 3.8 2.2 5.2 −8.1 12.7
30 329.0 3.6 330.6 3.5 1.6 5.9 −8.5 11.7
31 326.1 3.7 329.4 3.6 3.2 5.2 −7.1 13.6
32 324.4 3.7 330.1 3.5 5.7 5.1 −4.5 16.2
33 323.2 3.8 330.3 3.5 7.1 5.2 −3.2 17.5
34 324.3 4.5 328.2 3.9 3.8 6.1 −8.1 15.8
35 326.4 4.3 325.0 4.5 −1.3 6.2 −13.8 11.8
36 327.9 6.3 321.5 5.5 −6.3 8.4 −23.3 10.6

PMA
(Weeks)

S-LE P2
Means St.error SMOF-LE

P2 Means St.error Estimate St.error Lower 95% CI Upper 95% CI

28 473.9 6.4 474.4 6.9 0.4 9.5 −18.6 19.5
29 470.1 6.8 470.2 6.1 0.08 8.6 −17.2 17.3
30 466.5 5.8 465.7 5.6 −0.7 8.1 −17.0 15.5
31 461.6 5.8 462.1 5.4 0.5 7.9 −15.4 16.5
32 452.1 5.7 457.8 5.6 5.7 7.6 −9.4 21.1
33 452.5 6.8 452.8 5.1 0.2 8.5 −16.8 17.3
34 464.8 8.3 452.4 5.4 −12.3 9.9 −32.2 7.6
35 463.8 7.8 451.2 6.1 −12.6 9.9 −32.5 7.2
36 462.7 8.3 456.1 11.1 −6.6 13.7 −34.1 20.8

4. Discussion

Visual neuronal conduction, as measured by VEPs, was not significantly different in
preterm infants who received a mixed-lipid emulsion containing fish oil (SMOF-LE) in
comparison to a soybean oil-based lipid emulsion (S-LE) for parenteral nutrition. Starting
at 34 weeks PMA, the treatment effect showed a trend towards accelerated visual neuronal
conduction in the SMOF-LE group in comparison to the S-LE group but did not reach
statistical significance.

In vitro studies have shown that DHA supplementation uniquely promotes neurite
growth and synaptic activity [27–29]. In a previous study, we found that electrophysio-
logical brain maturation, as measured by amplitude-integrated EEG, was accelerated in
infants receiving SMOF-LE in comparison to S-LE [10]. The potentially beneficial effect of
SMOF-LE on neuronal conduction, as measured by VEPs, has not been investigated yet.
VEPs measure the functional integrity of the visual pathways from the retina via the optic
nerves to the visual cortex and correlate with the synaptic activity and visual pathway
maturation [25]. Thus, the use SMOF-LE for parenteral nutrition might have a positive
effect on visual neuronal conduction and may have caused the accelerated maturation of
the visual pathway in our study.

Several studies have evaluated the effect of maternal LC-PUFA supplementation dur-
ing pregnancy and lactation on visual evoked potential in term infants, with conflicting
results [30–34]. A study by Bauer et al. [34] demonstrated that LC-PUFA supplementation
in adults has a positive effect on cortical visual processing, including improving peak am-
plitudes and reducing latencies. However, this was associated with EPA supplementation
and not with DHA. While DHA seems to play a very important role during the first years
of development, EPA is relevant in adults [2]. In particular, EPA is considered a biomarker
for pre-dementia syndrome and cognitive decline [2]. However, fish oil is rich in DHA and
EPA, and analysis of the individual omega-3 fatty acids is almost impossible.

As in previous studies, we observed a maturational feature for the VEP components
and therefore a reduction in latencies for both N2 and P2. Values of around 300 ms were
observed for N2, while values of around 400 ms were observed for P2, and this is in
accordance with previous studies [11]. The median number of days on parenteral lipid was
22 days in both groups, which is very similar to our previously published study (median:
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18 days) evaluating the effect of SMOF-LE compared to S-LE on electrophysiological brain
maturation, as measured by amplitude-integrated EEG [10]. Data on parenteral DHA
intake were not available and therefore we estimated that the DHA intake in our study
was very similar to this study (median DHA intake: 48 mg/kg/d), which is comparable to
in utero transfer rates (45 mg/kg/d) (10). However, we could not confirm our previous
findings where brain maturation was accelerated, measured by amplitude-integrated EEG
in the SMOF-LE group (10). In the current study, a trend for accelerated maturation within
the SMOF-LE group, while not significant, could be observed around term-equivalent
age, and this could be related to the metabolization and synthesis of lipid for neuronal
support during different stages of neonatal brain development. Complex processes taking
place in early infant brain development correlate strongly with gestational age and the
first year of life [35,36]. Whereas the second trimester provides a basis for neuronal circuit
development, the last trimester is the deciding factor in proper cerebral communication.
Special glia cells called oligodendrocytes increase in number between 15 and 20 weeks
of gestational age (w GA) and differentiate and reach a peak at between 30 and 40 w GA.
Once these cells are differentiated, neuronal axons undergo myelination and thereby
enhance the conduction of action potentials and establish major white matter tracts. Even
though the pathways involved in DHA synthesis have not bee completely resolved, besides
environmental impacts and birth complications, LCPUFAs are recognized as some of the
most important compounds for the synthesis of neuronal tissues [17]. Whilst normally
being adequately supplied by the mother during pregnancy, preterm infants lack these
needed substrates for the build-up of cell membrane composites [37]. The plasma lipid
levels of DHA are low in most terrestrial animals, including humans, suggesting that
the brain has particular mechanisms to concentrate DHA [38]. In vitro, glial and cerebral
endothelial cells, but not neurons, can produce DHA from ALA and other precursor n-3
fatty acids [38,39]. Further understanding of brain DHA uptake will provide more insight
into understanding the temporal window of brain growth and neural maturation. Recently,
in a review investigating the controversies of parental lipids in preterm infants by Frazer
and Martin [40], it was noted that parenteral fish oil may decrease ARA levels, which was
associated with impaired growth, sepsis, and ROP. Yet, in our recent randomized trial [20],
we did not find any impacts of SMOF-LE on these mentioned parameters; however, specific
information on ARA levels was not collected and could not be provided in this study. The
limitation of our study is the relatively small sample size and the retrospective nature,
which may not be large enough to pick up a statistically significant difference. However, a
potential bias of the nutritional management according to the individualized physicians’
discussion cannot ruled out. Furthermore, VEP measurements were not performed beyond
term-equivalent age, as any possible significant difference at later time points has not been
assessed. In this regard, Birtsch and colleagues [41] as well as Hofmann and colleagues [42]
reported a positive effect of polyunsaturated fatty acid on VEP in heathy born infants,
measured between birth and one year of age. Only one study, performed in 1996, looked at
the effect of LC-PUFA on visual evoked potential, reporting information from birth until
52 weeks PMA [43]. In the mentioned study, a breast milk group, a LC-PUFA group rich
in DHA and a control group were compared. A better wave morphology and a faster
late latency component were observed in both the breast milk and the LC-PUFA group
compared to the control. Due to a change in the regime of enteral nutrition that introduced
human donor milk instead of formula for preterm infants until the 32nd week of gestation,
more infants who received SMOF-LE than S-LE were provided with donor milk in case of
the lack of their own mothers’ milk. Yet, preterm formula feeding at the time was already
fortified with DHA. Prospective trials and follow-up studies are necessary in order to
evaluate the potentially positive effect on visual neuronal conduction and visual pathway
maturation. While SMOF-LE provides DHA in tenfold higher amounts compared to S-LE
(2.2% vs. 0.2%), the DHA precursor alpha-linolenic acid is provided in 2.5 times lower
amounts (SMOF-LE: 2.5 %; S-LE: 5.6 %) [44]. This might attenuate some of the potential
effects of additional provision of DHA. Considering the low conversion rate from alpha-
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linolenic acid to DHA of only 1%, this effect is highly likely negligible [45]. However,
infants in the SMOF-LE group were well-matched with infants in the S-LE group, and this
study provides the first exploratory data analyzing the effect of SMOF-LE compared to
S-LE on neuronal conduction from birth until discharge, as assessed by VEPs.

5. Conclusions

This study found no significant differences in visual neuronal conduction, measured
by VEPs, in preterm infants who received a mixed-lipid emulsion containing fish oil
(SMOF-LE) in comparison to a soybean oil-based lipid emulsion (S-LE) for parenteral
nutrition. A possible better treatment effect in the SMOF-LE group was seen as a trend
toward a shorter latency, indicating faster neural conduction at around term-equivalent
age. Follow up studies are necessary to evaluate the potentially positive effect SMOF-LE
on visual pathway maturation.
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