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Abstract: Oxidative stress and inflammation have been recognized as important contributors to the
risk of chronic non-communicable diseases. Polyunsaturated fatty acids (PUFAs) may regulate the
antioxidant signaling pathway and modulate inflammatory processes. They also influence hepatic
lipid metabolism and physiological responses of other organs, including the heart. Longitudinal
prospective cohort studies demonstrate that there is an association between moderate intake of
the omega-6 PUFA linoleic acid and lower risk of cardiovascular diseases (CVDs), most likely as a
result of lower blood cholesterol concentration. Current evidence suggests that increasing intake of
arachidonic acid (up to 1500 mg/day) has no adverse effect on platelet aggregation and blood clotting,
immune function and markers of inflammation, but may benefit muscle and cognitive performance.
Many studies show that higher intakes of omega-3 PUFAs, especially eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), are associated with a lower incidence of chronic diseases characterized
by elevated inflammation, including CVDs. This is because of the multiple molecular and cellular
actions of EPA and DHA. Intervention trials using EPA + DHA indicate benefit on CVD mortality and
a significant inverse linear dose–response relationship has been found between EPA + DHA intake
and CVD outcomes. In addition to their antioxidant and anti-inflammatory roles, omega-3 fatty acids
are considered to regulate platelet homeostasis and lower risk of thrombosis, which together indicate
their potential use in COVID-19 therapy.
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1. Introduction

Despite the COVID-19 pandemic with more than 3.4 million deaths in the last year
due to infection with severe acute respiratory syndrome coronavirus 2, chronic non-
communicable diseases (NCDs) are still easily the most common global cause of mor-
bidity and mortality. The World Health Organization (WHO) estimated that 41 million
deaths in 2018 were due to NCDs [1]. NCDs include cardiovascular diseases (CVDs),
cancers, non-infectious respiratory diseases and metabolic diseases. Alongside other risk
factors, oxidative stress and inflammation have been recognized as important contributors
to risk of NCDs. Elevated levels of inflammatory markers, including several cytokines
and chemokines, are seen in those with NCDs [2]. Inflammation is an important part of
host defense, firstly by creating a hostile environment for microbes and later by initiating
tissue repair, recovery, and maintenance of homeostasis. However, prolonged (unresolved)
inflammation and continuous release of pro-inflammatory mediators can cause tissue dam-
age, metabolic changes and loss of function [3–5]. Thus, inflammation is a “double-edged
sword”. Likewise, in low or medium concentrations, free radicals (a term used to describe
reactive oxygen species (ROS) and reactive nitrogen species (RNS)) have physiological roles
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in protecting cells from various harmful influences, including microbes. Furthermore, free
radicals have a regulatory function in intracellular signaling cascades in several cell types,
such as endothelial cells, fibroblasts, cardiomyocytes, and thyroid tissue [6]. However,
when production of free radicals exceeds a particular concentration and disturbs the cell
redox potential, adverse effects are manifested. For example, many cellular structures
can be damaged as a result of oxidative stress, including membranes, proteins, lipids,
lipoproteins and DNA [6]. Inflammation and oxidative stress are inter-related: oxidative
stress can activate inflammatory signaling pathways, while inflammation induces oxidative
stress (Figure 1 [7]).
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Figure 1. The bidirectional links between inflammation and oxidative stress. Reactive oxygen species
(ROS) can act as inflammatory trigger initiating inflammation. On the other hand, inflammation
induces oxidative stress. Abbreviations used: IkB, inhibitory subunit of NFkB; MAPK, mitogen-
activated protein kinase; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; P,
phosphate; ROS, reactive oxygen species. Reproduced from [7].

Fatty acids are an integral component of cell membrane phospholipids, with specific
functional, metabolic, and signaling roles [8]. Different cells have different fatty acid com-
positions that influence membrane fluidity and flexibility, and the function of membrane
proteins [8]. Different intakes of polyunsaturated fatty acids (PUFAs) result in different
levels of PUFAs in cell membrane phospholipids from where they exert actions on cell
functions and cell and tissue responsiveness to signals (Figure 2). PUFAs may act as
antioxidants by regulating the antioxidant signaling pathway [9,10] and may modulate
inflammatory processes [10,11]. This review will provide an update on knowledge on
PUFAs and their effects on human health.



Nutrients 2021, 13, 2421 3 of 23Nutrients 2021, 13, x FOR PEER REVIEW  3  of  24 
 

 

 

Figure 2. Schematic overview of how polyunsaturated fatty acids (PUFAs) affect cell responses. 

2. Omega‐6 and Omega‐3 PUFAs 

There are two main families of PUFAs that are relevant to human health, the omega‐

6 and the omega‐3 PUFAs. In most diets, the PUFAs present in the highest amounts are 

linoleic  acid  (LA,  18:2ω‐6)  and  α‐linolenic  acid  (ALA,  18:3ω‐3). LA  and ALA  are  not 

synthesized  in  animals  and  so  are  regarded  as  essential  fatty  acids. Because  they  are 

synthesized in plants, LA and ALA are mainly found in high proportions in foods of plant 

origin.  For  example, many  seeds,  nuts,  and  plant  oils  are  rich  in  LA;  these  include 

safflower, sunflower and pumpkin seeds; walnuts; and corn, sunflower, safflower and 

soybean oils. Pumpkin seeds, walnuts and soybean oil are also good sources of ALA, as 

are flax seeds and flaxseed oil. The essentiality of PUFAs was first described in studies in 

rats, where deficiency resulted in a number of serious symptoms [12]. Essential fatty acid 

deficiency has been rarely described in humans, but low intakes are said to contribute to 

dermatitis, renal hypertension, mitochondrial activity disorders, CVDs, type 2 diabetes, 

impaired  brain  development,  arthritis,  depression,  and  decreased  body  resistance  to 

infection [13]. Some of these defects may be due to low intake of LA and ALA. However, 

they may also be due to low levels of the metabolic products of LA and ALA, including 

the long‐chain omega‐6 PUFA arachidonic acid (AA, 20:4ω‐6) and the long‐chain omega‐

3 PUFAs eicosapentaenoic acid (EPA, 20:5ω‐3) and docosahexaenoic acid (DHA, 22:6ω‐3). 

The metabolic  conversion of LA  to AA and of ALA  to EPA  shares  the  same enzymes 

(Figure 3), which means that the rate of synthesis of AA and EPA will depend upon the 

relative  availability  of  the  substrate  (i.e.,  LA  and ALA).  The  typical Western  diet  is 

characterized by 5 to 15 times higher intake of LA than ALA [14], meaning that LA is the 

dominant substrate for the pathway. This might explain why the metabolism of ALA to 

EPA and DHA appears to be limited in humans [14] and why the levels of AA in blood 

and in many cell types greatly exceed the levels of EPA and DHA [15]. 

Figure 2. Schematic overview of how polyunsaturated fatty acids (PUFAs) affect cell responses.

2. Omega-6 and Omega-3 PUFAs

There are two main families of PUFAs that are relevant to human health, the omega-6
and the omega-3 PUFAs. In most diets, the PUFAs present in the highest amounts are
linoleic acid (LA, 18:2ω-6) and α-linolenic acid (ALA, 18:3ω-3). LA and ALA are not
synthesized in animals and so are regarded as essential fatty acids. Because they are
synthesized in plants, LA and ALA are mainly found in high proportions in foods of plant
origin. For example, many seeds, nuts, and plant oils are rich in LA; these include safflower,
sunflower and pumpkin seeds; walnuts; and corn, sunflower, safflower and soybean oils.
Pumpkin seeds, walnuts and soybean oil are also good sources of ALA, as are flax seeds
and flaxseed oil. The essentiality of PUFAs was first described in studies in rats, where
deficiency resulted in a number of serious symptoms [12]. Essential fatty acid deficiency
has been rarely described in humans, but low intakes are said to contribute to dermatitis,
renal hypertension, mitochondrial activity disorders, CVDs, type 2 diabetes, impaired brain
development, arthritis, depression, and decreased body resistance to infection [13]. Some
of these defects may be due to low intake of LA and ALA. However, they may also be due
to low levels of the metabolic products of LA and ALA, including the long-chain omega-6
PUFA arachidonic acid (AA, 20:4ω-6) and the long-chain omega-3 PUFAs eicosapentaenoic
acid (EPA, 20:5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3). The metabolic conversion
of LA to AA and of ALA to EPA shares the same enzymes (Figure 3), which means that the
rate of synthesis of AA and EPA will depend upon the relative availability of the substrate
(i.e., LA and ALA). The typical Western diet is characterized by 5 to 15 times higher intake
of LA than ALA [14], meaning that LA is the dominant substrate for the pathway. This
might explain why the metabolism of ALA to EPA and DHA appears to be limited in
humans [14] and why the levels of AA in blood and in many cell types greatly exceed the
levels of EPA and DHA [15].
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Figure 3. Pathway of conversion of essential fatty acids to their more unsaturated and longer chain derivatives.

3. Omega-6 PUFAs and Human Health
3.1. General Overview

LA may have physiological actions and health benefits in its own right or through
acting as the substrate for the synthesis of other omega-6 PUFAs including γ-linolenic
acid (GLA, 18:3ω-6), dihomo-γ-linolenic acid (DGLA, 20:3ω-6) and AA (see Figure 3).
It is considered that 1–2% of daily energy intake as LA is required for normal growth
and development. LA, GLA, DGLA and AA can all be incorporated into cell membrane
phospholipids, although AA is typically present in the highest amounts [15]. This is of
physiological significance, because AA is a substrate for bioactive lipid mediators, many of
which are together referred to as eicosanoids (see later).

3.2. Omega-6 PUFAs and the Skin

LA has a specific and unique role in the structural integrity of the skin and in barrier
function because it is as an essential constituent of ceramides [16]. The epidermis consists
of cells and a lipid-rich extracellular matrix (with 50% ceramides, 25% cholesterol and 15%
free fatty acids) [17]. The extracellular matrix forms the stratum corneum permeability
barrier, whose fluidity depends on the LA content, and other fatty acids seem not to be
able to substitute for LA in this role. Due to a lack of the required enzymes, the skin has
limited conversion of LA to AA [18]. Fatty acids can be delivered to the epidermis by
cellular uptake through lipoprotein receptors, and subsequently they may act to protect the
function and appearance of the skin and to modulate the inflammatory response [19,20].
Different PUFAs may relieve symptoms associated with inflammatory skin disorders (e.g.,
atopic dermatitis (AD)/eczema; psoriasis), most likely through changes in the ratio of
pro-and anti-inflammatory eicosanoids [18,21,22]. AD is long-term inflammation of the
skin with complex and multifactorial pathophysiology. The Th2 inflammatory pathway
dominates in the acute phase of AD with the elevated release of interleukins (IL)-4, -5,
-13, and -31, followed by activation of mast cells and eosinophils and production of spe-
cific immunoglobulin E antibodies. A change in the cytokine profile accompanies the
progression of acute to chronic skin inflammation, including a move away from the Th2
phenotype towards the Th1, Th22 and Th17 phenotypes [22]. PUFAs may affect skin
inflammation by acting as substrates for lipid mediators, such as eicosanoids (see later),
which are directly involved in inflammatory processes [23,24], and through modulation
of immune cell function and cytokine production via eicosanoids or other mechanisms.
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Prevention of active inflammation and the improvement of epidermal barrier function may
be an excellent therapeutic approach for patients with AD. It seems that treatment with
combined omega-6 PUFAs (LA oils and GLA as a dietary supplement) and long-chain
omega-3 PUFAs (particularly EPA and DHA) has the potential to ameliorate inflammatory
processes in the skin [18], helping with disease management.

3.3. Linoleic Acid, Blood Cholesterol and CVDs

It has been established that moderate LA intake, as a partial replacement for saturated
fatty acids, reduces blood total cholesterol and low-density lipoprotein (LDL)-cholesterol
concentrations [25,26]. This seems to be the result of the upregulation of hepatic LDL
receptor (LDLR) gene and protein expression, thereby promoting hepatic clearance of
circulating LDL [26]. LA enhances the transcription of the liver X receptor alpha (LXRα)
gene, probably via peroxisome proliferator-activated receptors (PPARs). In turn, LXRα
upregulates the expression of the cholesterol 7α-hydroxylase (CYP7) gene which encodes
the enzyme regulating the pathway of the conversion of cholesterol into bile acids. There-
fore, LA helps to catabolize cholesterol by promoting CYP7 activity [26]. In response to
cholesterol use in hepatocytes (for bile acid synthesis), the number and activity of LDLRs is
increased [26]. This involves sterol regulatory element binding proteins (SREBPs), which
are transcription factors with an essential role in regulating cholesterol and triglyceride
levels in the body [27]. SREBPs activate the transcription of genes that encode proteins
involved in cholesterol uptake (i.e., LDLR) and in cholesterol, fatty acid, and triglyceride
synthesis [27]. SREBPs are produced as proteins that require cleavage for activation: this
process is facilitated by SREBP cleavage-activating protein (SCAP) which binds native
SREBPs, transporting them to the Golgi for proteolytic processing [28,29]. Thus, SCAP
acts to promote SREBP cleavage and so regulates SREBP activity. Sterols bind to SCAP
and prevent the SCAP–SREBP complex from leaving the endoplasmic reticulum, thus
hindering proteolytic cleavage of the native SREBP and acting to control hepatic cholesterol
homeostasis [29]. Thus, the SCAP pathway plays a crucial role in the feedback regulation of
hepatic lipid metabolism [28,29]. By acting to remove hepatic cholesterol through bile acid
synthesis, LA will promote SREBP activation (via SCAP activity), leading to upregulation
of LDLR expression, so favoring LDL-cholesterol clearance from the circulation.

One more benefit of LA on circulating LDL-cholesterol is its inhibitory effect on propro-
tein convertase subtilisin kexin type 9 (PCSK9) [30], which directly interacts with LDLR [31].
Secreted PCSK9 binds to LDLR, promoting its internalization. By lowering PCSK9, LA
helps to maintain the LDLR on the hepatocyte membrane, and so favoring LDL-cholesterol
clearance. Genetic variants in LDLR, PCSK9 and apolipoprotein B genes correlate with an
atherogenic lipid profile and consequently worse cardiovascular outcomes [32]. Among
232 unrelated Japanese patients, 6% had LDLR/PCSK9 gene variants and higher levels of
LDL-cholesterol than those with only LDLR gene variants [32]. Further, these patients had
a greater risk of nonfatal myocardial infarction [32].

The ability of LA to lower LDL-cholesterol would be expected to result in lowered
CVD incidence and mortality. A systematic review and meta-analysis of prospective
cohort studies identified that the replacement of 5% energy as saturated fatty acids by
LA was associated with a 9% reduction in coronary heart disease (CHD) [33]. In another,
more recent meta-analysis of 30 prospective cohort studies, higher circulating and adipose
tissue LA (which reflect the intake of LA) were both associated with lower risk of major
cardiovascular events [34]. Thus, cohort studies demonstrating lower CVD with higher
LA intake agree with the LDL-cholesterol lowering by LA which occurs by means of
the mechanisms described above. However, randomized controlled trials (RCTs) of LA
investigating cardiovascular mortality have been equivocal and suggest either increased
mortality [35] or no overall effect [36]. Such studies are discussed elsewhere [37,38], and it is
important to note that they have often employed intakes of LA that are in excess of current
recommended intakes that limit total PUFAs to 5 to 10% of energy [39,40]. Furthermore, it
seems likely that the interventions with LA were confounded by the presence of significant
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amounts of trans fats due to the consumption of vegetable oil-based spreads [41]. Despite
the apparent failure of RCTs, current evidence supports the potential long-term benefits
of LA intake in lowering the risk of CVDs. The latest meta-analysis reports results from
38 studies involving 44 prospective cohorts of 811,069 participants (almost half of the
studies were published in the period 2014 to 2020), comparing high versus low dietary
LA intakes [42]. The estimated median intake across LA categories ranged from 1.1% to
11.6% of energy among studies that provided adequate data for a dose–response analysis.
Higher LA intake, as assessed by dietary surveys or through the use of biomarkers (LA
concentration in adipose tissue or blood compartments), was associated with a modestly
lower risk of mortality from all causes, CVDs and cancer [42]. The associations between
dietary LA intake and mortality from cancer or from all causes were non-linear. Compared
with the lowest intake of energy from LA, the relative risk (RR) of total mortality was 0.97
(95% confidence interval (CI) 0.89, 1.06) for 5% of energy intake from LA, and for 10% of
energy intake from dietary LA, it was 0.88 (95% CI 0.73, 1.05). For cancer mortality, the RRs
were 0.96 (95% CI 0.94, 0.98) and 0.83 (95% CI 0.78, 0.89) for 5% and 10% of energy intake
from LA, respectively. When excluding two studies in which participants had cancer at
baseline, the RRs of total mortality were 0.94 (95% CI 0.86, 1.02) and 0.81 (95% CI 0.69, 0.96)
for 5% and 10% of energy intake from LA, respectively, with the lowest LA intake as the
reference. The association between dietary LA intake and CVD mortality was linear; the
RR for each 5% increase in energy intake from LA was 0.93 (95% CI 0.91, 0.95).

3.4. Linoleic Acid and the Brain

Since it has a low concentration in the brain (<2% of total fatty acids), LA has been con-
sidered to be non-functional, especially compared to AA and DHA, which can contribute
up to 40% of brain fatty acids [43]. It appears that more than half of LA entering the brain
becomes a substrate for β-oxidation or acts as a precursor for the synthesis of oxidized
metabolites [44]. The role of these metabolites in the brain is not yet fully understood,
although they may be linked to disorders such as migraines. In this context, Ramsden
et al. showed that lowering dietary LA from 7% to 2% of energy combined with 1.5 g per
day EPA and DHA for three months reduced migraine frequency and improved quality of
life [45]. It is not clear whether this is an effect of lower LA, of increased long chain omega-3
PUFAs, or of the combination of the two. Hence, longer-term LA-lowering regimens alone
without changing EPA and DHA remain to be investigated for their impact on migraine.

3.5. Arachidonic Acid as a Precursor of Bioactive Lipid Mediators

AA can contribute up to 25% of the fatty acids in phospholipids of skeletal mus-
cles, brain, liver, platelets, and immune cells [46]. Deacylation and reacylation of AA
in cell membranes keeps the level of free AA in cells low and limits its availability for
oxidation [47]. The reaction of AA with molecular oxygen through the cyclooxygenase
(COX), lipoxygenase (LOX) and cytochrome P450 pathways leads to the generation of
mediators which are together referred to as eicosanoids, and include prostaglandins (PGs),
thromboxanes (TXs) and leukotrienes (LTs) (Figure 4) [24,48].

Phospholipase A2 can release AA from the membrane into the cell cytosol [49,50].
Physiologically, the majority of AA released is promptly incorporated back into the mem-
brane phospholipids, making the fatty acid unavailable as a substrate for oxidation [51].
Thus, under “resting” conditions, eicosanoid production is low and the metabolites
produced have roles in maintaining homeostasis through regulating physiological pro-
cesses [24]. However, in the presence of some stimuli, for example, inflammatory stimuli,
sufficient AA is released to drive significant increases in eicosanoid formation. Hence, in
this situation, eicosanoids such as PGD2 and E2 and 4-series LTs are produced in increased
amounts and have roles as mediators and regulators of the inflammatory response [24].
Consequently, many of these eicosanoids are linked to inflammatory disease and multiple
anti-inflammatory drugs target the enzymes involved in their synthesis and action [24].
However, it is now recognized that AA-derived metabolites also have roles in the resolution
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of inflammation: for example, lipoxin A4 is a potent pro-resolving mediator [52,53]. Inter-
estingly, the generation of eicosanoids early in the inflammatory response is linked with the
later induction of resolution. These considerations have complicated our understanding of
the role of omega-6 PUFAs in general, and of AA in particular, in inflammation [54].
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In addition to their role in regulating immunity and inflammation [24], AA-derived
eicosanoids are involved in regulating platelet aggregation, hemostasis, thrombosis and
vascular tone [55–57]. Eicosanoids can act as vasodilators (e.g., PGE2 and PGI2) or vaso-
constrictors (e.g., TXA2 and the cysteinyl-LTs), therefore affecting blood flow and blood
pressure. TXA2 and PGI2 play a central role in vascular homeostasis and the control of
blood flow through their actions on platelets and on vascular smooth muscle cells. TXA2 is
mainly produced by platelets via COX-1, and its production is increased when platelets are
activated. TXA2 promotes smooth muscle contraction, acting as a vasoconstrictor, and is a
potent activator of platelets, causing their aggregation and leading to thrombus formation.
PGI2 (sometimes called prostacyclin) is mainly produced by endothelial cells. It is a potent
vasodilator and inhibits platelet aggregation and smooth muscle cell proliferation. Hence,
the balance in the production of TXA2 and PGI2 establishes vascular tone and thrombotic
potential. PGD2 is also an inhibitor of platelet aggregation [58], while the effects of PGE2
are related to its concentration [58].

3.6. Effects of Increased Intake of Arachidonic Acid

AA is commonly found in foods of animal origin, such as meats, offal (liver, kidney)
and eggs. The average daily intake of AA in developed countries is estimated to be in
the range of 100 to 350 mg, which is approximately 0.1% of the total energy intake [59].
Additionally, AA can be synthesized from LA (Figure 3). Despite the limited conversion of
LA to other omega-6 PUFAs (approximately 1 to 2.2%), it seems that the synthesis of AA
from LA is an important metabolic pathway that serves to maintain the level of AA in cell
membranes [60,61]. Nevertheless, variations in LA intake over the range seen in Western
diets do not result in differences in the AA content of blood or cell lipids [62], and dietary
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supplementation with 6.5 g/day of LA (as sunflower oil) did not affect the AA content of
peripheral blood mononuclear cells (lymphocytes and monocytes) in healthy subjects [63],
regardless of LA being a precursor for AA synthesis. The reason for the latter finding
may be the already high intake of LA in the Western diet, meaning that the pathway of
AA synthesis from LA is already saturated. A systematic review that included the results
from 36 RCTs found that neither an increased nor decreased intake of LA relative to the
average intake within the Western diet (around 10 g/day) affected AA concentrations in
plasma/serum phospholipids or erythrocytes [62].

Supplementation with AA itself increases the content of AA in different blood pools in
a dose-dependent manner [59]. This might be expected to affect processes such as inflam-
mation, the immune response and blood clotting, which are all regulated by eicosanoids
produced from AA (see earlier). However, a recent systematic review of studies conducted
in adults concluded that increasing AA intake to as much as 1000–1500 mg/day had no
adverse effect on platelet aggregation and blood clotting, immune function and markers of
inflammation [59]. In fact, some benefits of additional AA on cognitive function have been
reported [64], which is important especially in the aging population. Furthermore, AA
supplementation (600 mg/day) during physical training activities improved performance
and increased body strength, peak power, and post-exercise anabolic signaling [65]. It was
suggested that 1000 mg/day AA actually decreased inflammation, indicated by lower IL-6,
while it increased PGE2, which is a potential ergogenic factor, thus increasing tolerance
to intense training [66]. Eicosanoids derived from AA promote skeletal muscle growth
by controlling differentiation, proliferation and survival of myoblasts, particularly during
and after physical activity in healthy subjects [50]. Moreover, AA is a component of some
common endocannabinoids that modulate and control neural processes involved in social
behavior, pain, and mood [67,68]. Additionally, endocannabinoids are found to regulate
gastrointestinal inflammation [69], renal function [70] and sperm motility [71]. Free AA
also plays an essential role in neuronal activities acting via ion channels responsible for
brain, heart, and muscle cell excitability [72].

3.7. Effects of γ-Linolenic Acid and Dihomo-γ-Linolenic Acid

GLA is present in some plant seed oils including evening primrose, blackcurrant, and
borage oils (where it contributes about 9%, 17%, and 21% of fatty acids, respectively) [73].
However, its level in typical diets is very low. GLA seems to be efficiently converted to
DGLA in many cells and tissues, including some inflammatory cells [73]. GLA is found in
low levels in circulating lipids, cells and tissues because of its rapid conversion to DGLA.
On the other hand, DGLA is present in circulating lipids and in membrane phospholipids
of most cells, and following GLA supplementation, DGLA levels are elevated [63,74,75].
DGLA is a substrate for COX and LOX and its metabolites (e.g., PGE1) are reported to
mainly have anti-inflammatory properties and to inhibit platelet aggregation [73]. Hence,
the ratio of AA/DGLA in the circulation, cells or tissues may influence inflammatory
processes and thrombosis. The differential enzymatic activities of cells and tissues to
elongate GLA to DGLA and then desaturate DGLA to AA will determine the ratio of
AA/DGLA and thus the balance of their metabolites. Some inflammatory cells, such as
human neutrophils, seem to have high elongase relative to desaturase activity, but many
other tissues (brain, intestine, liver, kidney) appear to have both activities [73]. Interestingly,
supplementation with GLA leads to elevated DGLA but not AA in specific inflammatory
cells, whereas both DGLA and AA levels are increased in circulating lipids and some
tissues [73].

4. Omega-3 PUFAs and Human Health
4.1. DHA and Development of the Brain and Eye

Both EPA and DHA have important functions in the body [76]. DHA has many roles:
it participates in regulating the active transport of amino acids (choline, glycine, taurine)
through the cell membrane [77,78], in regulating the function of sodium channels [72], and
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in initiating the response of rhodopsin to visual stimuli [79]. DHA is the most abundant
omega-3 fatty acid in the central nervous system and retina [80], which is not surprising
given its roles: it is important for neurotransmission, neuroplasticity and signal trans-
duction [81–84]. DHA increases serotonin and acetylcholine concentration in nervous
tissue [85] and is a precursor of unique modulatory molecules, including (neuro) protectin
D1 [86]. DHA appears to be essential, not only for the functioning and maintenance of
the visual and nervous systems, but also for prenatal and early postnatal brain and visual
development [80,87]. In this context, there is evidence to suggest that omega-3 PUFA sup-
plementation during pregnancy is linked to cognitive and visual development and brain
function in the offspring [80,85]. However, a systematic review of 11 RCTs of maternal
omega-3 PUFA supplementation during pregnancy suggested few differences in cognitive,
language, or motor development between the groups, except for cognitive scores in 2-
to 5-year-old children, in whom maternal omega-3 supplementation resulted in higher
developmental standard scores [88]. Nevertheless, because of the strength of the evidence
for the early roles of DHA in cognitive and visual development, the European Food Safety
Authority has mandated the inclusion of DHA in infant formula [89].

4.2. EPA and DHA and Psychological, Psychiatric and Behavioral Disorders

Although historically there was much focus on the role of DHA in early cognitive and
visual development, due its high content in the brain and visual system, omega-3 PUFAs
are likely to have important roles in the brain beyond infancy and are probably important
for brain function throughout the life course [85,90–93].

A number of studies have reported lower levels of EPA and DHA in the bloodstream of
children with attention deficit hyperactivity disorder or autistic spectrum disorders than in
control children [94] and it has been postulated that normalizing the fatty acid levels would
result in clinical benefit in these conditions. This has been examined in quite a number
of trials in children and adolescents with attention, learning, or behavioral disorders,
some showing some improvements but others finding no effect (see [76] for References).
These trials have been reviewed and subjected to meta-analysis many times, with differing
conclusions [95–99]. The different findings most likely relate to several factors that differ
between the studies, including the dose of omega-3 PUFAs used, the balance of EPA to
DHA, the duration of supplementation, the precise outcome(s) measured, and differences
in the children studied. One review concluded that studies using higher doses of omega-3
PUFAs or of longer duration or in children/adolescents with low socioeconomic status
were more likely to demonstrate benefits [95].

Data from nine countries were used to demonstrate a significant inverse correlation
between annual fish consumption and the prevalence of major depression [100]. This
observation is compatible with a proposed protective effect of omega-3 PUFA towards
depression. Many observational studies have investigated the relationship between fish
and omega-3 fatty acid intake and depression; such studies have been subject to meta-
analysis [101]: compared with the lowest intake of EPA + DHA, the highest intake was
associated with a relative risk of depression of 0.82 (95% CI 0.73, 0.92). There have also
been a number of RCTs of EPA + DHA in individuals with depression. For example, a
small study using a very high dose of EPA + DHA (9·6 g/day) reported a decrease in
depressive symptoms [102], while this effect was not seen in a study using a lower dose
of DHA alone (2 g/day) [103]. EPA + DHA (6.2 g/day) given for 4 months significantly
improved almost all outcomes, including depressive symptoms, in patients with bipolar
manic depression [104]. Similarly, EPA (2 g/day for 4 weeks) improved symptoms in
patients with unipolar depressive disorder [105]. There are many meta-analyses of RCTs
involving participants with depressive disorders, including a number published fairly
recently [106–111]. One analysis of 26 studies, which included 2160 participants, identified
an overall benefit from EPA + DHA [108]. Furthermore, the analysis suggests that use of
pure EPA formulations or formulations containing >60% EPA was associated with clinical
benefits, whereas pure DHA or DHA-rich formulations did not show benefits. Another
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meta-analysis of 20 RCTs also identified significant benefit from omega-3 PUFAs [109] but
concluded that better quality evidence is needed. Another recent meta-analysis identified
no significant effect of EPA + DHA on depressive symptoms in older people (>65 years
of age) who “were well”, while there was “a large effect” of EPA + DHA in older peo-
ple with depression [110]. It was concluded that “omega-3 PUFAs are effective in the
treatment of elderly depressed patients” [110]. Despite these findings, it is important to
note that some recent meta-analyses of RCTs of EPA + DHA in depression do not find
evidence of benefit [111]. Nevertheless, the International Society for Nutritional Psychiatry
Research supports the use of omega-3 PUFAs for the prevention of depression in high-risk
populations and for the treatment of depression in pregnant women, children, and the
elderly [112]. It is suggested that either pure EPA or a combination of EPA + DHA with a
ratio of at least 2 in favor of EPA be used, while the suggested EPA dose is 1 to 2 g/day.

Patients with schizophrenia have lower levels of EPA and DHA in their erythrocytes
than do controls (see [76] for References). The first trial of omega-3 PUFAs in schizophrenia
identified clinical improvement with EPA (2 g/day), but not with DHA [113], while subse-
quent trials also showed benefit with EPA [114,115], but not all studies have seen this [116].
Another study reported significant benefits of omega-3 PUFAs given for 26 weeks to pa-
tients with schizophrenia [117]. Despite these findings, a Cochrane review concluded that
omega-3 PUFAs should be regarded only as an experimental treatment for schizophre-
nia [118]. A study reported significant benefit from 1 g/day EPA in borderline person-
ality disorder [119], while a small number of studies report anti-aggressive effects of
DHA [120,121].

4.3. EPA and DHA and Cognitive Decline

A meta-analysis of observational studies showed a positive association between
dietary intake or plasma levels of DHA and memory in adults [122]. An inverse association
between DHA intake and risk of dementia and Alzheimer’s disease was identified through
a meta-analysis of observational studies [123]. Post-mortem studies have reported that
the brains of people with Alzheimer’s disease contain less DHA than those without the
disease [124–126], and some studies have also linked low levels of omega-3 PUFAs in the
blood to dementia [127–129]. Higher plasma phosphatidylcholine DHA was associated
with a 47% lower risk of developing all-cause dementia and a 39% lower risk of Alzheimer’s
disease in a subgroup of the Framingham Heart Study [130].

Sinn et al. [131] reported that EPA + DHA (1.8 g/day for 6 months) reduced depressive
symptoms and improved cognition in adults with mild cognitive impairment. However,
compared with placebo, daily supplementation with 1.7 g DHA and 0.6 g EPA for 6 months
did not affect the Mini-Mental State Examination score in patients with Alzheimer’s disease
being treated with an acetylcholine esterase inhibitor [132]. Nevertheless, the omega-3
PUFAs had a significant effect on cognitive functioning measured with the Alzheimer’s
Disease Assessment scores as well as the sub-items, and a correlation was found with
the increase in plasma omega-3 PUFAs [133]. This suggests that the effect of omega-3
PUFAs depends on the specific aspect of cognitive health assessed. Furthermore, subgroup
analysis showed a benefit of omega-3 PUFAs in the group with very mild cognitive decline
at baseline [132]. A meta-analysis of six RCTs of duration 3–40 months and using 0.14 to
1.8 g EPA + DHA daily identified a slower rate of cognitive decline in those receiving
omega-3 fatty acids [134], while a systematic review reached the conclusion that the most
beneficial effect of EPA and DHA supplementation in Alzheimer’s patients can be expected
in the early stage of the disease [135]. These findings all suggest that individuals with mild
cognitive decline would be a good target group for omega-3 PUFAs. However, it might be
even more beneficial to start intervention with omega-3 PUFAs before any cognitive decline
occurs [136]. In this context, it has been shown that omega-3 PUFA supplementation in
healthy older people has a beneficial effect on white matter microstructural integrity, grey
matter volume in specific brain areas and vascular parameters accompanied by improved
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executive function [137]. This indicates that there might be a potential for preventive uses
of omega-3 PUFAs to maintain cognitive health in older people.

4.4. EPA and DHA and Inflammation

Both EPA and DHA have a range of anti-inflammatory effects [11,138–140]. Primarily,
EPA and DHA decrease the production of AA-derived eicosanoids. They do this partly
by competing with AA for incorporation into cell membrane phospholipids (i.e., EPA and
DHA result in lower amounts of AA in cell membranes), partly by reducing the release of
AA from membranes, partly by inhibiting the action of the enzymes COX-2 and 5-LOX on
AA, and partly by competing with AA for metabolism by COX and LOX enzymes [138].
Intervention studies have shown that increased intake of EPA + DHA results in increased
concentrations of EPA and DHA in the membranes of cells involved in inflammation (and
most likely in many other cell types) (see [138] for References]. As well as being linked with
decreased production of AA-derived eicosanoids, this increase in omega-3 PUFA content is
linked with decreased levels of other inflammatory markers including various cytokines
and chemokines, acute-phase proteins, and adhesion molecules [11,138–141]. For example,
a number of human studies show inverse associations between EPA and DHA status (e.g.,
omega-3 index which is the sum of EPA plus DHA in erythrocytes) and blood markers of
inflammation such as C-reactive protein [142–144], cytokines such as IL-6 [142–144] and
adhesion molecules such as soluble intercellular adhesion molecule 1 [143]. Furthermore,
meta-analyses of RCTs with EPA and DHA confirm reductions in the concentrations of
C-reactive protein [145,146] and several cytokines [147].

The anti-inflammatory effects of EPA and DHA are often reported to involve decreased
activation of the pro-inflammatory transcription factor nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB) in response to inflammatory stimuli as a result of the
inhibition of phosphorylation of the inhibitory subunit of NFκB, IκB [148,149]. Some stud-
ies have linked this effect to membrane-mediated actions of EPA and DHA that inhibit the
early stages of inflammatory signaling [150]. These actions require EPA and DHA to be in-
corporated into cell membrane phospholipids. However, it appears that EPA and DHA can
also act directly on inflammatory cells via membrane receptors to diminish inflammatory
responses. GPR120 is a plasma membrane G protein coupled receptor (also called free fatty
acid receptor 4) that is able to bind long-chain fatty acids, especially DHA [151]. GPR120
shows high expression on adipocytes and inflammatory cells such as macrophages [151].
DHA activation of GPR120 was shown to reduce NFκB activation in macrophages and
to decrease the production of inflammatory cytokines [151]. Recent updates on omega-3
PUFA actions mediated through GPR120 can be found elsewhere [152–155]. This mecha-
nism of action means that EPA and DHA can exert anti-inflammatory effects that do not
require their incorporation into cell membranes and do not involve modification of lipid
mediator production.

EPA and DHA are also recognized as precursors for the synthesis of novel specialized
pro-resolving mediators (SPMs). SPMs include resolvins, protectins and maresins [53,156–158].
Resolvins are synthesized from both EPA (E-series) and DHA (D-series), while maresins
and protectins are synthesized from DHA (Figure 5). These pathways use the enzymes
involved in the pathways of synthesis of eicosanoids (Figure 5).

As their name indicates, SPMs activate the resolution of inflammation. Hence, a lack
of the omega-3 PUFAs, especially EPA and DHA, may not favor resolution of inflammation
and may, in fact, promote the pathogenesis of various diseases in which inflammation
is involved. Increased intake of EPA and DHA has been reported to result in higher
concentrations of some SPMs in human blood and tissues (see [159] for References).
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As a result of their various interacting anti-inflammatory and inflammation-resolving
actions, increased intake of EPA and DHA could have therapeutic potential in diseases
involving inflammation. This has been well explored in RCTs in rheumatoid arthritis where
high doses of these omega-3 PUFAs induce several clinical benefits [160–162]. Systematic
reviews of the use of EPA and DHA in patients with rheumatoid arthritis confirm a
reduction in pain [163,164]. An observational study reported that a higher blood level of
EPA was associated with greater treatment efficacy of anti-tumor necrosis factor antibodies
in patients with rheumatoid arthritis [165]. The anti-inflammatory effects of EPA and
DHA are likely to extend beyond “classic” chronic inflammatory diseases into age-related
conditions characterized by low-grade inflammation such as CVDs, metabolic disease,
cognitive decline, and sarcopenia [140,166,167]. However, the possible benefits of omega-3
PUFAs on these latter conditions will also involve effects on several processes in addition
to inflammation. For example, EPA and DHA beneficially modify blood lipids [168,169],
and platelet aggregation [170,171], contributing to lower risk of CVDs. The effects on blood
lipids relate to the regulation of pathways of lipid synthesis and degradation partly via
the action of transcription factors and gene expression, especially in the liver [172], while
the effects on platelet aggregation relate to modification of eicosanoid profiles [24], as
reviewed elsewhere recently [173]. In addition, omega-3 PUFAs play an important role as
antioxidants and regulate antioxidant signaling pathways. Mitochondrial membranes have
a high DHA content, and research suggests that DHA is crucial for adenosine triphosphate
synthesis by oxidative phosphorylation [10]. DHA is reported to reduce mitochondrial
oxidative stress and cytochrome c oxidase activity while increasing manganese-dependent
superoxide dismutase activity [10]. The anti-inflammatory effects of omega-3 PUFAs may
also be important in this regard, since inflammation induces oxidative stress (Figure 1).

4.5. EPA and DHA and CVDs

The long history of omega-3 PUFAs, especially EPA and DHA, and CVDs has been
reviewed in detail elsewhere [174–178]. Results from both cohort studies and RCTs have
been subject to systematic review and meta-analysis numerous times (see [178] for a
summary). For example, Chowdhury et al. [179] brought together prospective studies
that examined the association of dietary or circulating fatty acids with risk of coronary
outcomes. Aggregation of data from 16 cohort studies involving over 422,000 individuals
showed a 13% lower risk for those in the top third of dietary intake of EPA + DHA
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compared with those in the lower third of intake [179]. Data from 13 studies involving
over 20,000 individuals showed 22%, 21% and 25% lower risk of coronary outcomes for
those in the top third of blood levels of EPA, DHA and EPA + DHA, respectively, compared
with those in the lower third [179]. Alexander et al. [180] reported data from prospective
cohort studies reporting the association of dietary EPA and DHA with risk of various
coronary outcomes. The aggregation of data from 17 studies showed an 18% reduction
in risk for any coronary heart disease event for those with higher dietary intake of EPA
+ DHA compared to those with lower intake. There were also significant reductions of
23%, 19% and 47% in the risk for fatal coronary events, coronary death and sudden cardiac
death, respectively. Another study aggregated data from 19 studies that investigated the
association between EPA or DHA concentration in a body pool such as plasma, serum,
erythrocytes or adipose tissue and risk of future CHD in adults who were healthy at study
entry [181]. EPA and DHA were each associated with a lower risk of fatal CHD, with
about a 10% lower risk for each one standard deviation increase in either EPA or DHA.
Harris et al. [182] used data from 10 cohort studies and identified a 15% reduction in risk
of fatal CHD for each one standard deviation increase in the omega-3 index. Clearly, there
is substantial evidence that omega-3 PUFAs, especially EPA and DHA, reduce the risk of
CVDs, especially CHD [178], acting through plausible mechanisms of action to beneficially
affect a range of risk factors [145]. Thus, omega-3 PUFAs, especially EPA and DHA, have a
role in the prevention of CVDs; this is the basis of most recommendations for the intake of
EPA and DHA.

Despite the evidence in favor of a preventative role of EPA and DHA towards CVDs,
the effect of EPA and DHA as a treatment in patients at increased risk of CVDs (e.g., post
myocardial infarction) remains controversial, partly because of inconsistent findings in
large trials [178,183]. These inconsistent findings have meant that outcomes from meta-
analyses of this literature base have changed several times over the last 20 years (see [178]
for a summary). Nevertheless, findings of a 2019 meta-analysis of 13 RCTs [184] and
of a 2021 meta-analysis of 40 trials [185] indicate a dose-dependent therapeutic effect of
EPA and DHA: a statistically significant inverse linear dose–response relationship was
found between EPA + DHA administration and risk of CVD outcomes [184,185]. It was
estimated that every 1 g/day EPA + DHA corresponded to a 9% and 7% lower risk of
myocardial infarction and total coronary heart disease, respectively, and to a 5.8% lower
risk of CVD events. The Reduction of Cardiovascular Events with Icosapent Ethyl Inter-
vention Trial (REDUCE-IT) [186] involved patients with established cardiovascular risk or
with diabetes and elevated triglyceride level (1.52 to 5.63 mmol/L), who were receiving
statin therapy. In the trial, they received 4 g/day of a formulation rich in EPA ethyl ester
(providing 3.6 g of EPA daily). Mineral oil was used as a placebo. The median duration of
follow-up was 4.9 years. The primary outcome was a composite of cardiovascular death,
nonfatal myocardial infarction, nonfatal stroke, coronary revascularization or unstable
angina. The key secondary end point was a composite of cardiovascular death, nonfatal
myocardial infarction, or nonfatal stroke. Compared with placebo, EPA resulted in a
statistically significant reduction in both the primary and secondary outcomes, as well
as a number of other clinical outcomes [186]. Another recent trial, the Effect of Vascepa
on Improving Coronary Atherosclerosis in People with High Triglycerides Taking Statin
Therapy (EVAPORATE) trial [187] used the same EPA ethyl ester preparation and the
same dose as used in REDUCE-IT. EVAPORATE demonstrated that EPA might directly
promote atherosclerotic plaque regression in hypertriglyceridemic individuals [187]. Thus,
omega-3 PUFAs may directly target atherosclerotic plaques in patients who already have
advanced CVD, as suggested by earlier studies in mice [188] and humans [189,190]. The
positive findings of REDUCE-IT and EVAPORATE contrast with those of the more recently
published Long Term Outcomes Study to Assess Statin Residual Risk with Epanova in
High Cardiovascular Risk Patients with Hypertriglyceridemia (STRENGTH) trial [191]. In
this trial, statin-treated patients with hypertriglyceridemia and high cardiovascular risk
were given 4 g/day of a formulation of highly purified EPA and DHA as free fatty acids
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(providing approximately 2.2 g EPA and 0.8 g DHA daily) or corn oil as placebo. There was
no significant difference in a composite outcome of major adverse cardiovascular events
between the groups and the trial was stopped early [191]. Reasons for the differences in the
findings of REDUCE-IT and STRENGTH are discussed elsewhere [183] and will be summa-
rized here. One explanation could be that EPA and DHA have differential effects on some
cardiometabolic risk factors [192], and therefore a formulation of pure EPA could have a
different effect from a formulation that combines EPA and DHA. Both EPA and DHA lower
triglycerides [192], an effect seen in both REDUCE-IT and STRENGTH to a similar extent
(decrease of 18%). DHA is reported to increase LDL-cholesterol more than EPA does [192].
This could explain why LDL-cholesterol was increased by 3% with EPA + DHA treatment
in STRENGTH while LDL-cholesterol was lowered by an average of 6.6% in REDUCE-IT
which provided EPA but not DHA. DHA increases HDL-cholesterol, especially the HDL2
subfraction which is cardioprotective, but EPA does not affect HDL-cholesterol [192]. How-
ever, both REDUCE-IT and STRENGTH reported higher HDL-cholesterol with omega-3
PUFAs. One final difference between REDUCE-IT and STRENGTH is the choice of placebo,
mineral oil in REDUCE-IT and corn oil in STRENGTH. It has been argued that mineral
oil may have adverse effects on some cardiovascular risk factors [193], therefore making
omega-3 PUFAs appear beneficial, as in REDUCE-IT. A recent systematic review of min-
eral oil when used as a placebo indicated inconsistent effects on blood lipids and other
biomarkers and reached the conclusion that mineral oil is not likely to be responsible for
effects seen in trials like REDUCE-IT and EVAPORATE [194]. Thus, at this point in time,
the exact reasons for the different findings of REDUCE-IT and STRENGTH are not clear.

4.6. α-Linolenic Acid and Human Health

The health benefits of EPA and DHA may be achieved by increasing intake of oily fish
or by using supplements that contain EPA and DHA. However, the question of whether
the major plant omega-3 PUFA, ALA, possesses these same benefits, either in its own right,
or following conversion to EPA and DHA is an important one [14]. ALA has been demon-
strated to have anti-inflammatory, neuroprotective, and antidepressant effects [14,195].
Increasing ALA intake may produce modest cardioprotection by lowering total and LDL-
cholesterol (relative to saturated fatty acids), maintaining endothelial function, and through
antithrombotic and anti-inflammatory effects [196,197]. Human studies on the effects of
ALA often use high intakes and report some conversion to EPA, although not to DHA [14].
In fact, the conversion efficiency of ALA is low in human adults; it estimated that only 5%
of ALA is converted to EPA and less than 1% to DHA [198]. Thus, any protective effects of
ALA are likely due to ALA itself, unless high intakes are used in which case they may be
due to EPA [14].

5. Relevance of PUFAs to COVID-19

Since late 2019, a novel infection with severe acute respiratory syndrome coronavirus 2
has resulted in a global pandemic [199]. Symptoms of the resulting coronavirus disease dis-
covered in 2019 (COVID-19) are highly variable, and range from none to a life-threatening
illness that is related to the strength of the immune-inflammatory response of infected
individuals [200]. Uncontrolled release of pro-inflammatory cytokines and excessive co-
agulation usually accompany this acute respiratory disease [200,201]. Therefore, current
treatments are focused on addressing inflammation and thrombosis. As mentioned already,
omega-3 fatty acids, especially EPA and DHA, are anti-inflammatory, promote synthesis
of pre-resolving mediators and regulate platelet aggregation and thrombosis. These ef-
fects suggest that EPA and DHA might be useful as part of therapy for COVID-19 [202].
Omega-3 fatty acids are found to upregulate some of the functions of cells that are part of
the innate immune response, including neutrophils, macrophages, natural killer cells, mast
cells, basophils, and eosinophils. They also promote antigen-specific responses mediated
by T-cells and B-cells, producing antibodies and generating an immunological memory
specific to repeated infection with the same pathogen [203]. Higher COVID-19-related
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deaths have been seen in the regions with a low omega-3 index, such as the USA and some
European countries [202]. However, this is simply an association with no demonstration
of a cause and effect relationship. A pilot study published by Asher et al. reported on
how the omega-3 index related to COVID-19 outcomes in 100 patients [204]. The critical
endpoint was death from COVID-19 infection. In models adjusted for age and sex, it was
found that patients with an omega-3 index higher than 5.7% had about 75% lower risk
for mortality relative to those below that value. A randomized clinical trial published
the effects of omega-3 fatty acid supplementation on multiple outcomes in critically ill
patients with COVID-19 [205]. A fourteen-day intervention with EPA and DHA (400 and
200 mg daily added to the enteral feed) resulted in significantly better one-month survival
compared with the control group (21% vs. 3%). EPA + DHA also improved markers of
kidney function and some markers of respiratory function and increased blood lymphocyte
numbers; however, it is important to note that many other outcomes were not different
between groups. Nevertheless, this trial gives encouragement for EPA + DHA as a thera-
peutic option [206]. In this regard, it is noteworthy that the dose of EPA and DHA used
by Doaei et al. [205] is modest compared with doses used in many trials in patients with
CVDs or inflammatory conditions. Thus, stronger effects might be seen at high doses.
Whether omega-3 PUFAs can reduce the incidence of coronavirus infection itself is not clear.
However, results from a COVID-19 Symptom Study app using results from 445,850 users
indicate a modest reduction in the risk of testing positive for infection in those who use
omega-3 PUFA supplements [207].

6. Conclusions

PUFAs display a plethora of biological activities at the molecular and cellular levels
that result in effects on cell and tissue function linked to health outcomes and disease
risk. Antioxidant and anti-inflammatory properties of omega-3 PUFAs are important and
are recognized as contributing to reduced disease risk and severity (i.e., better health).
Furthermore, these properties offer therapeutic opportunities in conditions marked by
excessive inflammation and oxidative stress. Both omega-6 and omega-3 PUFAs lower
CVD risk through multiple interacting mechanisms; the omega-6 PUFA LA acts mainly
through lowering LDL-cholesterol, while both the omega-3 PUFAs EPA and DHA lower
triglycerides, promote blood flow and cardiac and vascular function and control thrombosis
and inflammation. The actions of pro-resolution mediators produced from EPA and DHA
are particularly important. The breadth of the effects of omega-3 PUFAs explains why
they have roles in both the prevention and treatment of CVDs, especially of CHD, and in
the control of inflammatory conditions and various neurological disorders. Although the
eicosanoid mediators produced from the omega-6 PUFA AA are mainly pro-inflammatory
in character, current evidence shows only limited effect of LA and AA on inflammatory
biomarkers at intakes currently consumed in human diets. Furthermore, AA, similar
to DHA, is important in brain development and cognitive function. The relationship
between omega-6 and omega-3 PUFAs and their bioactive lipid mediators in the context
of inflammation is not yet fully understood. It is widely accepted that an optimal ratio of
omega-6 and omega-3 PUFAs within a healthy diet positively affects inflammation and
other biological processes, although there is no consensus on what that ratio should be.
Likewise, the precise balance between the omega-3 PUFAs EPA and DHA for optimal
health is unclear, although both seem to be important. DHA is vital for early life visual and
neural development. The principal roles of the plant omega-3 PUFA ALA are in controlling
conversion of LA to AA and in acting as a substrate for synthesis of EPA. Based on current
early evidence, omega-3 PUFAs (EPA + DHA) have promising effects in COVID-19 patients,
although further clinical studies are needed to confirm these benefits.

Author Contributions: I.D. conceived the article; I.D. drafted the article; P.C.C. reviewed the draft
and provided substantial input; both authors agreed the final content. Both authors have read and
agreed to the published version of the manuscript.



Nutrients 2021, 13, 2421 16 of 23

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: I.D. has no conflicts to declare. P.C.C. acts as an advisor/consultant to
DSM, BASF AS, Cargill, Smartfish, Fresenius-Kabi, Nutrileads, Bayer Consumer Care and GSK
Consumer Healthcare.

References
1. World Health Organization. Noncommunicable-Diseases. Available online: https://www.who.int/news-room/fact-sheets/

detail/noncommunicable-diseases (accessed on 1 June 2018).
2. Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.

Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [CrossRef]
3. Calder, P.C.; Albers, R.; Antoine, J.M.; Blum, S.; Bourdet-Sicard, R.; Ferns, G.A.; Folkerts, G.; Friedmann, P.S.; Frost, G.S.; Guarner,

F.; et al. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 2009, 101 (Suppl. 1), S1–S45. [CrossRef]
4. Panigrahy, D.; Gilligan, M.M.; Serhan, C.N.; Kashfi, K. Resolution of inflammation: An organizing principle in biology and

medicine. Pharmacol. Ther. 2021, in press. [CrossRef]
5. Barnig, C.; Bezema, T.; Calder, P.C.; Charloux, A.; Frossard, N.; Garssen, J.; Haworth, O.; Dilevskaya, K.; Levi-Schaffer, F.;

Lonsdorfer, E.; et al. Activation of resolution pathways to prevent and fight chronic inflammation: Lessons from asthma and
inflammatory bowel disease. Front. Immunol. 2019, 10, 1699. [CrossRef]

6. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress:
Harms and benefits for human health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [CrossRef]

7. Miles, E.A.; Calder, P.C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative
review. Front. Immunol. 2021, 12, 712608. [CrossRef]

8. Calder, P.C. Functional roles of fatty acids and their effects on human health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [CrossRef]
9. Sakai, C.; Ishida, M.; Ohba, H.; Yamashita, H.; Uchida, H.; Yoshizumi, M.; Ishida, T. Fish oil omega-3 polyunsaturated fatty acids

attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS ONE 2017, 12, e0187934. [CrossRef]
10. Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.

The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines 2020, 8, 306.
[CrossRef]

11. Calder, P.C. n-3 PUFA and inflammation: From membrane to nucleus and from bench to bedside. Proc. Nutr. Soc. 2020, 79,
404–416. [CrossRef]

12. Spector, A.A.; Kim, H.-Y. Discovery of essential fatty acids. J. Lipid Res. 2015, 56, 11–21. [CrossRef]
13. Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560s–569s. [CrossRef]
14. Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty

acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [CrossRef]
15. Walker, C.G.; West, A.L.; Browning, L.M.; Madden, J.; Gambell, J.M.; Jebb, S.A.; Calder, P.C. The pattern of fatty acids displaced

by EPA and DHA following 12 months supplementation varies between blood cell and plasma fractions. Nutrients 2015, 7,
6281–6293. [CrossRef]

16. Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2014, 1841,
422–434. [CrossRef]

17. Wertz, P.W. Biochemistry of Human Stratum Corneum Lipids; Taylor & Francis: New York, NY, USA, 2006; pp. 33–42.
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