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Abstract: The COVID-19 pandemic is the greatest challenge facing modern medicine and public
health systems. The viral evolution of SARS-CoV-2, with the emergence of new variants with
in-creased infectious potential, is a cause for concern. In addition, vaccination coverage remains
in-sufficient worldwide. Therefore, there is a need to develop new therapeutic options, and/or to op-
timize the repositioning of drugs approved for other indications for COVID-19. This may include the
use of calcifediol, the prohormone of the vitamin D endocrine system (VDES) as it may have potential
useful effects for the treatment of COVID-19. We review the aspects associating COVID-19 with
VDES and the potential use of calcifediol in COVID-19. VDES/VDR stimulation may enhance innate
antiviral effector mechanisms, facilitating the induction of antimicrobial peptides/autophagy, with a
critical modulatory role in the subsequent host reactive hyperinflammatory phase during COVID-19:
By decreasing the cytokine/chemokine storm, regulating the renin–angiotensin–bradykinin system
(RAAS), modulating neutrophil activity and maintaining the integrity of the pulmonary epithelial
barrier, stimulating epithelial repair, and directly and indirectly decreasing the increased coagulabil-
ity and prothrombotic tendency associated with severe COVID-19 and its complications. Available
evidence suggests that VDES/VDR stimulation, while maintaining optimal serum 25OHD status, in
patients with SARS-CoV-2 infection may significantly reduce the risk of acute respiratory distress
syndrome (ARDS) and severe COVID-19, with possible beneficial effects on the need for mechanical
ventilation and/or intensive care unit (ICU) admission, as well as deaths in the course of the disease.
The pharmacokinetic and functional characteristics of calcifediol give it superiority in rapidly optimiz-
ing 25OHD levels in COVID-19. A pilot study and several observational intervention studies using
high doses of calcifediol (0.532 mg on day 1 and 0.266 mg on days 3, 7, 14, 21, and 28) dramatically
decreased the need for ICU admission and the mortality rate. We, therefore, propose to use calcifediol
at the doses described for the rapid correction of 25OHD deficiency in all patients in the early stages
of COVID-19, in association, if necessary, with the new oral antiviral agents.
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1. Introduction

The COVID-19 pandemic, or SARS-CoV-2 coronavirus disease, is the greatest challenge
facing modern medicine and public health systems worldwide [1]. Entering the third year
of the global COVID-19 pandemic, since it was first reported in December 2019 in Wuhan
(China) until 15 March 2022, it has caused worldwide a total of 460,844,076 confirmed cases
and a total of 6,069,430 deaths [2]. Besides, the total impact of the pandemic has been far
greater than the reported deaths from COVID-19. Despite the global implementation of
hygienic preventive measures (e.g., social distancing, confinements, use of masks, frequent
hand washing) and large-scale vaccination programs in all countries of the world, global
morbidity and mortality due to COVID-19 remain high [3].

The viral evolution of SARS-CoV-2, with the emergence of new variants with in-
creased infectious potential [4], such as Omicron (Pango lineage B.1.1. 529), which contains
15 mutations in the receptor binding domain (RBD), are cause for concern. Besides, the
efficacy of currently available vaccines against these viral mutants may be lower, mostly
related to short-term immunity [5], in addition, vaccination coverage remains insufficient
worldwide [6]. Therefore, it is desirable that we continue to deepen our knowledge of
the immune response to SARS-CoV-2, to improve our understanding of the pathogenesis
of COVID-19. It is necessary to develop new therapeutic options and/or optimize the
repositioning of drugs already approved for use in humans for another indications [7], such
as the use of calcifediol, a prohormone of the vitamin D endocrine system (VDES), which
has potential useful actions for the treatment of COVID-19 [8,9], which we review hereafter.

2. COVID-19 (Coronavirus Disease 2019)

The coronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is
responsible for COVID-19 (coronavirus disease 2019). The analysis of the coronavirus
genome has revealed that the sequence of SARS-CoV-2 is 79.5–82.0%, identical to that of
SARS-CoV [10] Its genome encodes for a number of viral structural proteins, the spike
glycoprotein (S), envelope protein (E), membrane protein (M), nucleocapsid protein (N),
and nine accessory proteins (Orf3a, Orf3b, Orf6, Orf7a, Orf7b, Orf8, Orf9b, Orf9c, and
Orf10) [11,12]. The S protein is responsible for viral entry into host cells by direct receptor
binding and fusion with the host cell membrane [13].

The clinical spectrum of COVID-19 is variable [14]. Epidemiological studies have
reported that the vast majority (80%) of patients infected with SARS-CoV-2 during the acute
phase of infection are asymptomatic or show mild symptoms; approximately 20% progress
to severe symptomatology, of which 5% develop acute respiratory distress syndrome
(ARDS), septic shock, and multi-organ failure accompanied by a high risk of death [15,16].
Some patients continue to have long-term symptoms, termed post-acute sequelae of SARS-
CoV-2 or long-COVID, a condition in which COVID-19 symptomatology persists beyond
3–4 weeks after initial infection, with pulmonary, cardiovascular, hematological, neuropsy-
chiatric, renal, endocrine, gastrointestinal, hepatobiliary, and inflammatory sequelae [17].
The natural history of COVID, and the evolution of SARS-CoV-2 infection, is conditioned
by cell tropism and host immune response [18] (Figure 1).
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Figure 1. COVID-19 is characterized by an unbalanced host response to SARS-CoV-2 following viral 
replication, which depending on its intensity will characterize the development and severity of 
COVID-19: (1) reduction in innate antiviral defenses; (2) exuberant production of inflammatory cy-
tokines, with inadequate recruitment of inflammatory populations of monocytes and macrophages. 
Comparison with other viral infections IL: interleukin; IFN: interferon; ISG: interferon-stimulated 
genes; TNF: tumor necrosis factor; CXCLS: chemokine (C-X-C motif) ligands; IAV: influenza A vi-
rus; HPIV3: human parainfluenza virus type 3; RSV: respiratory syncytial virus. * When calcifediol 
levels are deficient, the cathelicidin response is impaired. Modified from Blanco Melo et al. [18]. 
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used as cholecalciferol (vitamin D3), ergocalciferol (vitamin D2), calcifediol (25 hy-
droxyvitamin D3), and calcitriol (1,25-dihydroxyvitamin D3) and sometimes even their 
analogues [19–21]. 

Since its discovery just over a century ago, we now know that it is not a vitamin, but 
a threshold nutrient and part of the vitamin D endocrine system (VDES), similar to other 
steroid hormones [22,23] (Figure 2). 

Figure 1. COVID-19 is characterized by an unbalanced host response to SARS-CoV-2 following
viral replication, which depending on its intensity will characterize the development and severity
of COVID-19: (1) reduction in innate antiviral defenses; (2) exuberant production of inflammatory
cytokines, with inadequate recruitment of inflammatory populations of monocytes and macrophages.
Comparison with other viral infections IL: interleukin; IFN: interferon; ISG: interferon-stimulated
genes; TNF: tumor necrosis factor; CXCLS: chemokine (C-X-C motif) ligands; IAV: influenza A virus;
HPIV3: human parainfluenza virus type 3; RSV: respiratory syncytial virus. * When calcifediol levels
are deficient, the cathelicidin response is impaired. Modified from Blanco Melo et al. [18].

3. Vitamin D Endocrine System—Calcifediol

Vitamin D generates many metabolites and “vitamin D” is frequently ambiguously
used as cholecalciferol (vitamin D3), ergocalciferol (vitamin D2), calcifediol (25 hydrox-
yvitamin D3), and calcitriol (1,25-dihydroxyvitamin D3) and sometimes even their ana-
logues [19–21].

Since its discovery just over a century ago, we now know that it is not a vitamin, but
a threshold nutrient and part of the vitamin D endocrine system (VDES), similar to other
steroid hormones [22,23] (Figure 2).

“Vitamin” D3 is totally inactive, requiring two sequential hydroxylations, at the 25-
and 1α-position to become active. The first in the liver is mainly by the microsomal enzyme
CYP2R1 to form 25-hydroxyvitamin D (25OHD3) or calcifediol, and a second hydroxylation
(CYP27B1) is mainly in the proximal tubule of the kidney, but also in many other cell types
(i.e., skin, immune cells, lung, bone cells, placenta etc.) to obtain the active metabolite, i.e.,
1,25-dihydroxyvitamin D3 (1,25(OH)2D3) or calcitriol, the VDES hormone [24]. Vitamin
D3, whether synthesized in the epidermis or from dietary sources, is rapidly taken up (half
of an oral dose is taken up in 2–6 h), principally by the liver, but also by other tissues, such
as adipose and muscle. Hydroxylation to synthesize 25OHD3 occurs mainly in the liver,
although other tissues express this enzymatic activity as well [24].

Calcifediol (25OHD3) is the prohormone and cornerstone of the VDES. It is the metabo-
lite with the highest blood concentration and longest half-life (2–3 weeks). There is universal
agreement that the measurement of the total 25OHD blood concentration is the marker of
the nutritional status of the vitamin D endocrine system [25]. Its measurement has been
used by health authorities and scientific societies to establish normal status, define vitamin



Nutrients 2022, 14, 2716 4 of 20

D deficiency and degrees of vitamin D insufficiency, on which to establish vitamin D refer-
ence intake values, as well as to perform population monitoring of vitamin D deficiency,
insufficiency, or excess [26,27].
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1,25(OH)2D is the hormone of such endocrine system, having a short half-life (5–8 h).
It is produced from its precursor 25OHD, by the enzymatic activity of 25OHD-1α hy-
droxylase. It is carried out in kidney tubular cells for its endocrine actions, tightly regu-
lated by parathyroid hormone (PTH), fibroblast growth-factor 23 (FGF23), calcium, phos-
phate, and 1,25(OH)2 D. Likewise in epidermal keratinocytes testes, intestine, lung, breast,
macrophages, activated lymphocytes, parathyroid gland, osteoblasts, and chondrocytes, for
their local actions (autocrine and paracrine), with less tight regulation. The extrarenal syn-
thesis of 1,25(OH)2D is stimulated by cytokines, such as interferon gamma and TNF-α [24].

Calcitriol binds with high affinity to the vitamin D receptor (VDR), a nuclear tran-
scription factor present in the cells of multiple organs and systems, which determines the
systemic endocrine and auto/paracrine action of the VDES [28]. The classical VDR belongs
to the nuclear receptor superfamily. Ligand binding results in heterodimerization with the
retinoic X receptor (RXR [28]). Most cells respond to VDR activation by changes in gene
expression, protein synthesis, or cell differentiation and function [24,28].

The main action of VDES is the regulation of calcium and phosphorus homeostasis
and the adequate health and mineralization of the skeleton. However, experimental animal,
cellular, molecular, and genetic studies consistently suggest that VDR signaling has numer-
ous extra-osseous actions. These include muscle and immune function, skin differentiation,
regulation of cell proliferation, and aspects of reproduction, as well as metabolic and cardio-
vascular properties. Based on observational studies in patients, 25OHD deficiency has been
associated with almost all of the diseases predicted by these extraosseous effects [24,28].

During evolution, the immune system and the VDES had an interesting synchronous
development, whereby cells of the immune system are a target of the VDES, and calcitriol
regulates metabolic signaling pathways and multiple crucial cytokines of the immune
system (innate and adaptive) [29,30]. The localized synthesis of calcitriol from calcifediol
in alveolar macrophages, dendritic cells, lymphocytes [31], as well as in broncho alveolar
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cell epithelium and pulmonary endothelial cells, may be responsible, in an autocrine or
paracrine manner, for many of the immunological and extraosseous effects of VDES [28].

Other actions include the stimulation of proliferation, alveolar cell differentiation and
the expression of some essential lung genes (including surfactant protein) [32]. VDES is
also involved in the functional regulation of the cardiovascular system [33,34] and is clearly
involved via several pathways in coagulation mechanisms [35].

The upper and lower airway epithelium and the immune and cardiovascular systems,
which play a key role in COVID-19 [36], are targets of VDES. The 25OHD/calcifediol
deficiency is highly prevalent worldwide [37,38] and has been associated with a number
of diseases [39], including immune disorders, pulmonary, infectious, and cardiovascular
diseases [40], as well as idiopathic deep vein thrombosis of the lower extremities [41].

It is, therefore, not surprising that since the beginning of the COVID-19 pandemic, a
possible link between a deficient 25OHD status and COVID-19 infection and/or COVID-
19 severity has been proposed. This, from the beginning of this pandemic until now,
has generated more than 1100 publications listed in PubMed associating the keywords
“COVID-19” and “vitamin D”.

We now have strong consistent evidence that VDES dysregulation in the lung and
immune cells of SARS-CoV-2 infected patients [42], and that VDR stimulation could enhance
the antiviral response and reduce cytokine storm [43]. Another study on the systematic
reuse of potential drugs to be used in COVID-19, based on machine learning, has reported
that VDR stimulation could have a protective effect on pathways affected by SARS-CoV-2
infection [7], suggesting a potential protective role of VDES metabolites in the treatment
of COVID-19.

In the following, we will firstly review the available data on possible mechanisms
by which VDES may protect against COVID-19 or its complications. Secondly, we will
summarize the clinical data (observational and interventional studies) linking calcifediol
to COVID-19.

4. Mechanisms Linking Vitamin D Endocrine System and COVID-19

Several studies, prior to COVID-19, link serum 25OHD status and upper respiratory
tract infections [9,44]. Observational studies reported an increased risk of infections in
patients with low serum 25OHD levels [45,46], and similarly, certain vitamin D receptor
(VDR) polymorphisms have been associated with increased risk of acute lower respiratory
tract infections [46].

Recently, two meta-analyses of randomized controlled trials (albeit heterogeneous)
conducted between 2007 and 2020 show a significant reduction in the risk of upper respira-
tory tract infection and daily or weekly vitamin D supplementation, especially when the
baseline level prior to study entry is low [47,48].

The regulatory effects of VDES in optimizing innate and adaptive immune function
have been rigorously reviewed by Greiller and Martineau as well as others [45,49,50],
and several recent reviews pick up on the mechanisms of interaction between VDES and
SARS-CoV-2 infection [9,51–53]. VDES/VDR signaling may provide beneficial effects on
COVID-19 by several mechanisms.

4.1. Vitamin Endocrine D System and the Immune System
4.1.1. Innate Immunity

Respiratory monocytes/macrophages, bronchial epithelial cells, and type II alveolar
cuboidal lining cells (ACII) constitutively express the gene encoding VDR, with high
basal expression of 1α-hydroxylase (CYP27B1) and low expression of the genes encoding
24-hydroxylase (CYP24A1) and other VDES proteins. The genes encoding the β-defensins
and LL-37 contain consensus vitamin D response elements (VREs) [24,28].

The intracrine activation of the VDES include induction of the AMP cathelicidin
(cAMP) and β-defensin (DEFB4), as well as modulation of autophagy. That results in
enhanced defense against viral infections [54]. Cathelicidin not only has potent prophy-
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lactic and therapeutic potential in COVID-19 as an inhibitor of viral binding to ACE2,
but also modulates local inflammation and leukocyte migration and infiltration, reduc-
ing the production of proinflammatory cytokines and chemokines in acute lung injury.
Furthermore, it activates the expression of interferon I, which is critical in SARS-CoV-2 in-
fection, all of which is beneficial in mitigating the cytokine storm that follows SARS-CoV-2
infection (Figure 3).
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Figure 3. Antiviral actions of VDES and the innate immune response: autophagy/apoptosis. Au-
tophagy is an essential mechanism by which cells cope with viruses. Autophagic encapsulation of
viral particles packages them for lysosomal degradation and subsequent presentation of antigens
and adaptive antiviral immune responses. Therefore, autophagy may be highly sensitive to changes
in 25OHD serum levels. The specific mechanisms by which VDES promotes autophagy involve
down regulation of the mTOR pathway, which inhibits autophagy, and the promotion of Beclin 1 and
PI3KC3, key autophagy-driving enzymes. The upregulation of intracellular Ca and NO by VDES
also stimulates the activity of PI3KC3 to promote autophagy. DEFB4A: defensin beta 4A. mTOR:
mammalian target of rapamycin. Ca: calcium. NO: nitric oxide. PIK3C3: phosphatidylinositol
3-kinase catalytic subunit type 3. TLR: toll-like receptor. VDR: vitamin D receptor.

Calcitriol also promotes an antioxidant effect in monocytes by up-regulating glu-
tathione reductase (GR) and glutamate–cysteine ligase (GCL), which reduces the produc-
tion of oxygen radicals [55]. It can also stimulate viral autophagy [56,57]. VDR activation
can also inhibit S-phase kinase-associated protein 2 (Skp2), which plays a key role in the
viral replication mechanism in COVID-19 [58].

The limiting element of this defense mechanism against viruses and bacteria is that it
requires the adequate availability of calcifediol at the time of infection, and serum levels of
25OHD may vary widely, even within populations [23].

Epithelial barrier is the first line of defense for physically protecting the host against
bacterial, fungal, viral, and parasitic pathogens. VDR stimulation plays an important
role in maintaining epithelial barrier homeostasis and integrity in multiple organs [59]
by preserving the integrity of junctional complexes [60]. The same has been observed in
the lung epithelium, where VDR deletion leads to the destruction of tight and adherents
junction proteins (such as claudins ZO-1, occludin, etc.) resulting in reduced tight junctions
and compromised lung barrier integrity [61].

These data indicate that VDES has therapeutic potential for contributing to the pre-
vention or resolution of ARDS, which is associated with significant damage to the alveolar
epithelial barrier.
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4.1.2. Adaptive Immunity

Cytokine and chemokine storm is one of the most devastating pathophysiological
aspects of SARS-CoV-2 infection and is a major cause of morbidity and mortality. It is
an exaggerated activation of the adaptive immune pathway, with an exuberant secretion
of pro-inflammatory cytokines and chemokines because of dysregulation of the innate
immune system [18,62].

Calcitriol, produced locally from calcifediol by bronchoalveolar epithelial cells, mono-
cytes/macrophages and activated lymphocytes, can dramatically change the immune
status from a proinflammatory to a tolerogenic state, suppress T-lymphocyte proliferation
and modulate cytokine production and differentiation with diverse effects on different
T-lymphocyte subsets [63], and may contribute to minimizing the COVID-19 cytokine
and chemokine crisis. Calcitriol results in anti-inflammatory activity on macrophages by
increasing interleukin (IL)-10 and decreasing inflammatory stimuli [64].

Calcitriol drives antigen-presenting dendritic cells (DC) towards a less mature and
more tolerogenic phenotype, as evidenced by morphological change and altered cytokine
production and changes in surface marker expression.

Calcitriol shifts the balance of the adaptive immune system from Th1, Th9, and
Th17 lymphocytes to the Th2 and regulatory T lymphocytes (Tregs) immune profile, by
suppressing the expression of Th1 (IL-2, IFN-γ and TNF-α), Th9 (IL-9), and Th17 (IL-17
and IL-21) cytokines while inducing the expression of Th2 cytokines (IL-4, IL-5, IL-9 and
IL-13). The global effect is summarized in Figure 4.
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exerts effects through VDR on antigen-presenting cells (APC)/dendritic cell (DC) and T lymphocytes.
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presentation. On T lymphocytes, the direct effect consists of an induction of T helper-2 lymphocytes
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a downward regulation of T helper-1 (Th1), T helper-17 (Th17)-lymphocytes and T helper-9 (Th9)-
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The calcitriol formed also promotes the differentiation of regulatory T cells (Treg), both
directly and indirectly through their interaction with antigen-presenting cells, contributing
to the suppression of the pro-inflammatory state.

APC = antigen-presenting cell; DC = dendritic cell; naïve T cells MHC = membrane
histocompatibility complex; cluster of differentiation (CD) 80 = CD86 (co-stimulatory
molecules), and CD54 (adhesion molecule); PD-L1 = programmed death-ligand 1; ILT-3
= immunoglobulin-like transcript, T lymphocytes; TH1 = T helper 1; TH2 = T helper 2;
TH17 = T helper 17; Treg = regulatory T cell; IL = interleukin; TNF-α = tumor necrosis
factor-α; FoxP3 = Forkhead box P3 (master gene controlling the development and function
of regulatory cells); CTLA-4 = cytotoxic T lymphocyte-associated Ag-4). Modified from
Bouillon R and Quesada-Gomez JM [8].

4.2. Vitamin D Endocrine System and Renin–Angiotensin–Aldosterone System (RAAS)

VDES is a potent negative regulator of RAAS, which is of paramount importance in the
development of severe COVID-19, contributing significantly to ARDS and its maintenance.
VDR activation negatively regulates ACE1 (and its proinflammatory consequences), but
also positively regulates ACE2 by decreasing RAAS activity, both systemically and in the
kidney (Figure 5).

In models of LPS-induced respiratory failure, calcitriol has been shown to repress renin,
ACE, and Ang II expression, inducing ACE2 expression [65,66]. On the other hand, the
dysregulation of local and circulating RAAS, inducing increased ACE/Ang II expression
levels, and reduced ACE2/Ang-(1-7) expression levels have been reported to contribute
to worsening the course of ischaemia–reperfusion-induced acute lung injury (ALI) [67].
Therefore, VDR stimulation may at least partially attenuate LPS-induced ALI by enhancing
ACE2/Ang-(1-7) axis activity and inhibiting renin and the ACE/Ang II/AT1R cascade [66].
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Figure 5. The vitamin D endocrine system (VDES) contributes to the reduction in acute respiratory
distress syndrome (ARDS) and related clinics in COVID-19. Vitamin D receptor (VDR) and vitamin
D endocrine system enzymes are expressed in activated monocytes/macrophages/granulocytes
and lymphocytes and in bronchoalveolar epithelial cells. The availability of 25OHD3 (calcifediol)
is essential for synthesizing 1,25(OH)2D3 (calcitriol), which through its endocrine, auto/paracrine
action on VDR A: (1) decreases the intensity of the cytokine and chemokine storm, (2) modulates
neutrophil activity, (3) maintains the integrity of the pulmonary epithelial barrier, (4) stimulates
epithelial repair, and (5) directly and indirectly decreases the risk of hypercoagulability and pul-
monary or systemic thrombosis. B: is a powerful negative regulator of the RAAS, inhibiting renin
and the ACE/Ang II/AT1R cascade and inducing ACE2/Ang-(1-7) axis activity, contributing to
decrease the intensity of ARDS in all its aspects, following SARS-CoV-1 infection. (A) SARS-CoV-2
= severe acute respiratory syndrome coronavirus 2; IFN-α, IFN-γ = interferon gamma α and γ;
IL-1β, IL-6, IL-12, IL-18, IL-33 = interleukin-1β, 6, 12, 18, 33; TNF-α = tumour necrosis factor-α;
TGFβ = transforming growth factor α and β; CCL2, CCL3, CCL5 Chemokine = C-C motif ligand 2, 3,
5; CXCL8, CXCL9, CXCL10 = C-X-C (chemokine motif ligand 8, 9, 10). (B) ACII = alveolar cuboidal
cells type II; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; Ang I = angiotensin I;
Ang II = angiotensin II; Ang-(1-7) = angiotensin 1-7; MasR = Mas G-protein-coupled receptor; AT1R
and AT2R = angiotensin II receptor 1 and 2.

4.3. Vitamin D Endocrine System and the Coagulation System

The activation of the RAAS, together with intense inflammation, can alter the coagula-
tion cascade. This, combined with infection of endothelial cells results in a prothrombotic
state, as found in SARS-CoV-2 infections. Indeed, intra-alveolar or systemic fibrin-clot
formation and thrombotic complications are prominent findings in patients with COVID-19.

VDR activation plays an important anti-inflammatory and anti-thrombotic role. Cal-
citriol (i) inhibits the maturation and activity of dendritic cells and the inflammatory
response of effector T cells; (ii) in T/B cells activates anti-inflammatory IL-10 production;
(iii) down-regulates IL-6, TNF, NF-κB, and monocyte-chemoattractant-protein-1 (MCP-1);
in macrophages activates the antimicrobial peptide cathelicidin; (iv) down-regulates IFNγ,
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IL-17 and IL-21 in T cells; (v) up-regulates the natural anticoagulants thrombomodulin (TM)
and tissue factor pathway inhibitor (TFPI), deactivating tissue factor (TF); and (vi) down-
regulates the natural anticoagulants thrombomodulin (TM) and tissue factor pathway
inhibitor (TFPI), thereby reducing the hypercoagulable state [68]. These antithrombotic
effects have been well documented in VDR-null mice [69,70]. In patients with ischaemic
stroke, observational studies reported an association between low 25OHD levels and de-
velopment of deep-venous thromboembolic events. Furthermore, a significant positive
association was found between TFPI (a dual coagulation inhibitor that binds to both the
TF/Factor VIIa complex and Factor Xa) and serum 25OHD levels (>20 ng/mL) [71].

4.4. Vitamin D Endocrine System and Fibrosis

The activation of the TGF-β signaling pathways in human lung epithelial cells is
reduced by calcitriol, which down-regulates fibronectin and collagen expression, thereby
inhibiting transdifferentiation of stimulated lung epithelial cells into myofibroblasts [72].
Calcifediol and calcitriol, acting on the local renin–angiotensin system in the lungs, are able
to suppress induced pulmonary fibrosis [73,74].

Thus, from a mechanistic perspective, there is good reason to postulate that VDES
metabolites, in addition to host responses to ARDS, in the early viral phase (via innate an-
tiviral effector mechanisms, including induction of antimicrobial peptides and autophagy),
may have a critical modulatory role in the later hyperinflammatory phase of COVID-19.
The activation of the VDR signaling pathway may generate beneficial effects by, decreas-
ing the cytokine/chemokine storm, producing a shift from a Th1 and Th17 phenotype
towards adaptive immune responses with an amplified Th2 phenotype; regulating the
renin–angiotensin–bradykinin system (RAAS); modulate neutrophil activity and main-
tain the integrity of the pulmonary epithelial barrier; stimulating epithelial repair and
directly and indirectly decreasing the increased coagulability and prothrombotic tendency
associated with severe COVID-19 and its complications.

5. Circulating 25OHD Levels and Incidence and Severity of COVID-19

Since April 2020, many epidemiological and association studies have been published,
investigating the relationship between the circulating levels of 25OHD and outcomes of
SARS-CoV-2 infection, related to the incidence, severity, and mortality of COVID-19. Most
but not all publications find an association with decreased levels of 25OHD. There are no
clear reasons for such discrepancy, but this could be related to the heterogeneity of the
patients, disease severity, or the interpretation of severity used by each author at the time
the study, as well as the objective of the study (admission, survival, death, need for intensive
care unit). Furthermore, most studies are observational and do not correct for various
comorbidities. Moreover, most of the studies measured circulating levels of 25OHD at the
time of SARS-CoV-2 infection, so the possibility of reverse causality in the reduction in total
25OHD levels cannot be completely ruled out, given the large inflammatory component of
the disease.

Several small meta-analyses showed that lower 25OHD levels are associated with
increased patient susceptibility to infection, higher rates of hospital admissions, longer
hospital stays, increased need for mechanical ventilation or intensive care unit admission,
and higher COVID-19 mortality [75–83]

A larger meta-analysis included 54 clinical studies, representing a total of 1,403,715
patients concluded that low 25OHD levels are associated with increased risk of SARS-CoV-2
infection, severity (hospitalization and ICU admission), and mortality from COVID-19,
regardless of the cut-off point chosen in the assessment (severe deficiency (<10 ng/mL),
deficiency (<20 ng/mL), and insufficiency (<30 ng/mL)) [83]. The most recent meta-analysis
evaluated studies with more than 2 million subjects and concluded that serum 25OHD
levels below 20 ng/mL increased 1.46 fold the risk of being infected by SARS-CoV-2 [84].
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6. Calcifediol Treatment for COVID-19

The data summarized above suggest a link between the VDES and COVID-19 infec-
tions. The observational data also suggest that a poor vitamin D status may aggravate the
course of this viral infection. Intervention studies are of course the final proof for causality
and efficacy. The vitamin D status can be improved by administration of vitamin D or by
intake of calcifediol.

Correcting 25OHD deficiency in critically ill patients by cholecalciferol supplemen-
tation requires much higher doses than usual [85]. As an alternative strategy to increase
the serum 25(OH)D3 concentrations in vitamin D-deficient adults, oral supplementation of
25(OH)D3 (calcifediol) has been suggested [86,87].

Calcifediol may have some advantages over native vitamin D (cholecalciferol or
vitamin D3, and ergocalciferol or vitamin D2) [88], which gives it a certain superiority
for use in COVID-19: (1) calcifediol induces a more rapid increase in circulating 25OHD
than oral cholecalciferol; (2) oral calcifediol is more potent than cholecalciferol; (3) oral
calcifediol has a higher rate of intestinal absorption, which confers advantages in cases of
malabsorption; (4) oral calcifediol has a linear dose–response curve, independent of initial
serum 25OHD [89].

When cholecalciferol is absorbed, it is incorporated into chylomicrons and enters
the lymphatic system before entering the bloodstream. Oral vitamin D seems to be less
efficient than skin-synthesized vitamin D [90], maybe due to a higher retention in body fat.
Calcifediol is more hydrophilic and, therefore, after ingestion, is absorbed into the venous
portal system, immediately increasing circulating concentrations of 25(OH)D3, which is
available within hours (Figure 6), to be a substrate for calcitriol synthesis in the kidney and
extra-renal tissues, such as broncho-alveolar lung cells, immune cells, or other potential
target tissues.
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72 ng/mL). The pharmacokinetic characteristics of calcifediol allow it to be rapidly absorbed within
hours, facilitating the immediate availability of 25OHD3 in target tissues (results provided from the
technical dossier of the product by FAES-Farma. Lejona. (Spain).

Calcifediol’s ease of absorption and availability is especially relevant in patients
with severe fat malabsorption [89]. Furthermore, calcifediol does not require hepatic
25-hydroxylation, which is of great importance in clinical situations where rapid restoration
of serum 25OHD is desirable and CYP2R1 expression is compromised.
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CYP2R1 mutations are rare in the general population, and it seems that only bi-allelic
mutations create problems in producing sufficient 25OHD [91]. The functional impairment
of CYP2R1 activity, however, has been well demonstrated in several animal models of
obesity, diabetes, or glucocorticoid excess [92] and is likely in patients with obesity or type
2 diabetes, with malabsorption [93] or with inflammatory lung diseases, such as COPD
or asthma [94,95]. Thus, treatment with calcifediol is more effective than cholecalciferol
in increasing serum 25OHD concentrations in these patients. An additional advantage
of oral calcifediol is its more linear dose–response curve, whereas a higher intake of
ergocalciferol/cholecalciferol results in a plateau effect [89]. This is relevant when rapidly
elevated serum 25OHD levels are needed, as for example in patients with COVID-19.

Therefore, oral calcifediol is more potent than cholecalciferol, according to the results
of nine RCTs, comparing physiological doses of oral cholecalciferol with oral calcifediol [86]
and in clinical trials where the two drugs have been compared head-to-head [87].

The oral administration of 20 µg of calcifediol compared to 800 IU (20 µg) of cholecal-
cifeol was significantly more effective and faster in increasing serum 25OHD concentrations
in postmenopausal women in the range above 30 ng/mL; furthermore, it produced signifi-
cantly more pronounced suppression of eotaxin, IL-12, monocyte chemoattractant protein
1 MCP-1, and macrophage inflammatory protein 1 beta MIP-1β [96], which are markers
implicated in the severity of COVID-19 [97].

Treatment with calcifediol prescribed for whatever health reason, such as osteoporo-
sis, improves the 25OHD status [87,98], and thus may reduce the risk and impact of
COVID-19 [53]. Indeed, in a retrospective cohort study in the Barcelona area (Spain) on a
population of 4.6 million inhabitants collected in the public health system registries, from
April 2019 to February 2020, the risk of COVID-19 infection during the first wave of the
pandemic was assessed in patients who were prescribed cholecalciferol (n = 108,343) or
calcifediol (n = 134,703) during the previous 4 months and were compared with propensity
score-matched untreated controls [99]. In cholecalciferol-supplemented patients, the hazard
ratio for infection was significantly lower (HR = 0.95; 95% CI: 0.91–0.98). Serum 25OHD
levels were measured in a subpopulation of patients. Patients on calcifediol treatment,
who achieved 25OHD levels above 30 ng/mL, suffered a lower rate of SARS-CoV-2 infec-
tion (HR = 0.69; 95% CI: 0.61–0.79), a lower risk of severe COVID-19 (HR = 0.61; 95% CI:
0.46–0.81) and lower risk of COVID-19 mortality (HR = 0.56; 95% CI: 0.42–0.76). These
parameters were statistically significantly lower compared to untreated 25OHD-deficient
patients (<20 ng/mL). Similarly, when patients had been supplemented with cholecal-
ciferol, both the rate of SARS-CoV-2 infection (HR = 0.66; 95% CI: 0.57–0.77), the risk of
severe COVID-19 (HR = 0.72; 95% CI: 0.52–1.00) and COVID-19 mortality (HR = 0.66; 95%
CI: 0.46–0.93) were significantly lower. The same report also described a reduced risk of
SARS-CoV2 infection and COVID-19 mortality in patients with stage 4–5 chronic renal
failure treated with calcifediol [99]. These results are similar, although of a lesser magnitude,
to those observed in a cohort of patients with COVID-19 treated with calcitriol [99].

Similarly, a study was carried out in another retrospective cohort of 15,968 patients,
including all hospitalized for COVID-19 in Andalusia (Spain) between January and Novem-
ber 2020, obtained from the central registry of electronic medical records (Andalusian
Population Health Database; BPS). The effect of the administration of vitamin D, or its
metabolites, in the 15–30 days prior to hospitalization was assessed with respect to patient
survival. Both Kaplan–Meier survival curves and hazard ratios supported an association be-
tween prescription of these metabolites and patient survival. The association was stronger
for calcifediol (HR = 0.67; 95% CI: 0.50–0.91) than for cholecalciferol (HR = 0.75; 95% CI:
0.61–0.91). The relationship was maintained when a 30-day period before hospitalization
was assessed but with a slightly lower effect (calcifediol (HR = 0.73; 95% CI: 0.57–0.95);
cholecalciferol (HR = 0.88; 95% CI:0.75–1.03)), suggesting that the closer the treatment is
to hospitalization, the greater the protective effects [100]. These results suggest that im-
proving serum 25OHD concentration may improve the prognosis of COVID-19. Therefore,
treatment with calcifediol in patients with COVID-19 could be of potential therapeutic
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benefit by improving 25OHD status more rapidly, and thus be immediately available in
target cells, to combat the effects of SARS-CoV-2 in COVID-19 [8,53].

In order to investigate the potential therapeutic benefit of calcifediol, two intervention
strategies have been designed. One using high doses of calcifediol [101–103], and the other
using much lower doses [104]. The first published study, using a high-dose approach,
was a parallel, open-label, randomized, double-masked pilot clinical trial conducted at
the Hospital Universitario Reina Sofía in Córdoba (Spain) (preliminary to the clinical trial
registered as “Prevention and treatment with Calcifediol of Coronavirus induced acute
respiratory syndrome (SARS) COVID-19 (COVIDIOL)” [NCT0436690]) [101]. Thus, in
76 consecutive patients hospitalized with COVID-19, clinical pictures of acute respiratory
infection were confirmed by a radiographic pattern of viral pneumonia and by positive PCR
for SARS-CoV-2 with CURB65 severity scale (recommending hospital admission in case of
total score > 1). All hospitalized patients received the best available treatment, the same
standard of care, (according to hospital protocol), and a combination of hydroxychloroquine
(400 mg every 12 h on the first day and 200 mg every 12 h for the next 5 days) and
azithromycin (500 mg orally for 5 days).

Eligible patients were assigned to oral calcifediol/non-calcifediol in a 2:1 ratio, by elec-
tronic randomization. The treatment regimen, designed based on the kinetics of calcifediol
in the formulation used (Figure 7), consisted of oral calcifediol (0.532 mg on the day of
admission), followed by doses of 0.266 mg on days 3 and 7, and then weekly until discharge
or admission to the intensive care unit (ICU). The results of effectiveness were compelling:
of 50 patients treated with calcifediol, only one required ICU admission (2%), whereas, of
26 untreated patients, 13 required admission (50%) (p = 0.00000077). The estimated odds
ratio of univariate risk for ICU in patients treated with calcifediol versus untreated with
calcifediol: 0.02 (95% CI 0.002–0.17). The odds ratio of multivariate risk estimate for ICU
in patients with calcifediol treatment vs. ICU without calcifediol treatment (adjusting for
hypertension and type 2 diabetes): 0.03 (95% CI: 0.003–0.25). Of the patients treated with
calcifediol, none died, and all were discharged without complications. The number of
deaths was too small to achieve statistical significance against a null hypothesis of no effect,
but the result is consistent with the plausible hypothesis that the decrease in mortality
would be similar to the decrease in ICU admissions (Figure 7).
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Shortly thereafter, a retrospective study of patients hospitalized for PCR-confirmed
COVID-19 infection (excluding the patients involved in the just mentioned pilot study)
addresses mortality reduction in patients treated with calcifediol [102]. Patients from five
hospitals in Andalusia (Spain) (n = 537) hospitalized due to COVID-19 received standard
care for pre-existing comorbidities and calcifediol or not, according to the treatment sched-
ule of the pilot study cited above. Patients in one hospital received the option to receive
calcifediol, while this option was not available in the other hospitals. Slightly more patients
in the calcifediol-treated group had one or more comorbidities at baseline. In-hospital
mortality during the first 30 days was 17.5%. The OR of death for patients receiving calcife-
diol (5% mortality rate) was 0.22 (95% CI 0.08–0.61), compared to patients not receiving
calcifediol (20% mortality rate; p = 0.0005). In the multivariable logistic regression model,
there was a significant difference in the mortality in patients who received calcifediol,
compared to patients who did not (OR = 0.16; 95% CI 0.03–0.80) [102].

A larger observational cohort study included patients admitted to COVID-19 wards
at Hospital del Mar; Barcelona (Spain) [103]. Calcifediol treatment significantly reduced
the need for ICU support and significantly reduced mortality (Figure 8). Of 838 patients,
447 received calcifediol, while 391 were not treated on admission. The prescription of cal-
cifediol was based on the ward to which they were assigned, depending on bed availability.
In five of the eight wards patients received calcifediol, while in the other three wards they
did not. Otherwise, treatment was similar and there were no significant differences in
patient characteristics. Among those treated on admission with calcifediol, 4.5% required
ICU admission, compared to 21% in the untreated group. The logistic regression of cal-
cifediol treatment on ICU admission, adjusted for age, sex, baseline linearized 25OHD
levels, and comorbidities showed that treated patients had a reduced risk of requiring ICU
admission (OR 0.13, 95% CI 0.07–0.23). In addition, 7% of the 55 treated with calcifediol
died on admission compared to 15.9% of the untreated. Adjusted results showed a reduced
mortality risk with an OR 0.21 [95% CI 0.10, 0.10–0.43]) [103].
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Figure 8. Early calcifediol administration and outcome of COVID-19. Patients (n = 838) hospitalized
for COVID-19 received best available treatment and standard care for pre-existing comorbidities.
Treatment groups were based on having received from admission (1) oral calcifediol (25OH D3)
in soft gelatin capsules (0.532 mg), then oral calcifediol (0.266 mg) on days 3 and 7, then weekly
until discharge or ICU admission (n = 447) represented in red; (2) no calcifediol treatment (n = 391)
represented in blue. Cumulative distribution of patients presenting with ICU admission or in-hospital
death according to treatment groups. Patients hospitalized with COVID-19 on calcifediol treatment,
compared to those who did not receive calcifediol showed) a lower need for ICU admission (45% vs.
21%), reduced risk (OR 0.13, 95% CI 0.07–0.23) p < 0.0001 (left), and significantly lower in-hospital
mortality during the first 30 days (7% vs. 15.9%,) OR 0,21 [95% CI 0.10–0.43 p < 0.0001) (right).
Elaborated from data obtained from Nogues X et al. [103].
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The first results of the daily low-dose calcifediol administration strategy, a randomized,
double-blind, placebo-controlled, multicenter, clinical trial implemented by the Tehran
University of Medical Sciences and Shahid Beheshti University of Medical Sciences (Iran)
have just been published [104]. The trial included patients, admitted to the referral hospital
for COVID-19, with serum 25OHD levels below 30 ng/mL. All patients received the same
standard of care (a combination of hydroxychloroquine, azithromycin, and, in patients with
pneumonia, ceftriaxone). Subjects in the treatment group (n = 53) received calcifediol, 25 µg
administered orally once daily, and the nontreatment group (n = 53) received placebo. At
one month of treatment, serum 25OHD levels were significantly increased in patients receiv-
ing calcifediol (42.0 ± 2.3 ng/mL) compared to the placebo group, 19.3 ± 1.7 ng/mL. After
60 days, 24 patients in the treatment group had levels of 59.6 ± 3.8 ng/mL vs. 19 patients
in the placebo group 19.4 ± 1.6 ng/mL (p < 0.001). Treatment with oral calcifediol was
associated with a significant increase in the percentage of lymphocytes and a decrease in
the neutrophil-to-lymphocyte ratio in calcifediol-treated patients, with an overall lower
trend for hospitalization, length of time in the intensive care unit, and need for respiratory
support and mortality, but the differences were not statistically significant.

The big and main difference with the three previous studies was that the first week
dose of calcifediol in the first three trials was 1.064 mg (0.532 in the first two days), with a
high availability of 25OHD3 for use in target organs in the first few hours, compared to
0.175 mg in the Iranian study.

The available data strongly suggest that treatment with calcifediol can decrease the
severity of COVID-19, as evidenced by the reduced need for intensive care and decreased
mortality risks. It is a cost-effective treatment, free of major adverse effects and widely
available, and could have positive implications for the treatment of the disease worldwide.
However, we need the results of ongoing large, randomized trials to complete the evidence.
In the meantime, based on the available data we recommend rapid correction of 25OHD
deficiency in all COVID-19 subjects.

7. Conclusions

SARS-CoV2 infection has peculiarities that make the treatment of COVID-19 partic-
ularly complicated. The severe disease is characterized by an unbalanced host response
to SARS-CoV-2, which, following intracellular viral replication, induces a reduction in
innate antiviral defenses leading to the exuberant production of pro-inflammatory cy-
tokines/chemokines, with inadequate recruitment of inflammatory populations of mono-
cytes and macrophages with decreased cell surface expression of ACE2, thus losing a
lung protective mechanism, leading to increased inflammation, oedema and more severe
ARDS, and increased cardiovascular and multi-organ involvement, increasing the risk of
thromboembolism. The intensity of these responses will determine the intensity of clinical
outcomes in COVID-19.

From a mechanistic perspective, there are good reasons to postulate that stimulation
of the VDR signaling pathway may have multiple functional actions in COVID-19: (1) in
the early viral phase through innate antiviral effector mechanisms, including induction
of antimicrobial peptides, such as cathelicidin and defensin and autophagy; (2) in the
later hyperinflammatory phase of COVID-19 it may generate beneficial effects by decreas-
ing the cytokine/chemokine storm, producing a shift from a Th1 and Th17 phenotype
towards adaptive immune responses with an amplified Th2 phenotype; regulating the
renin–angiotensin–bradykinin system (RAAS); modulating neutrophil activity and main-
taining the integrity of the pulmonary epithelial barrier; stimulating epithelial repair; and
directly and indirectly decreasing the increased coagulability and prothrombotic tendency
associated with severe COVID-19 and its complications, including multiple organ fibrosis
and probably minimizing post-COVID-19 syndrome.

Calcifediol provides pharmacokinetic advantages that give it a certain superiority for
use in COVID-19. It is very hydrophilic and, therefore, after ingestion, is absorbed via
the venous portal system and does not require hydroxylation at position 25, immediately
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increasing circulating concentrations of 25(OH)D3; it is available within hours, and in a
stable manner, to be the substrate for calcitriol synthesis in bronchoalveolar lung cells,
immune cells, or other potential target tissues in COVID-19.

The available data strongly and consistently suggest that treatment with calcifediol
can reduce the severity of COVID-19, as evidenced by a reduced need for intensive care
and a decreased risk of mortality. It is cost-effective, without significant adverse effects
and widely available, and could have positive implications for the treatment of the disease
worldwide. Of course, the evolution of COVID-19 is influenced by many other risk factors,
such as age, gender, obesity, and nutritional factors, such as vitamin K have been suggested
as disease modifiers of SARS-CoV-22 infection [105].

In conclusion, we, therefore, propose to consider using calcifediol at the doses de-
scribed for the rapid correction of 25OHD deficiency in all patients in the early stages of the
disease, in association, if necessary, with the new oral antiviral agents, such as molnupiravir,
fluvoxamine, plitidepsin, paxlovid, etc. [106,107].
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