
Citation: Hu, M.-J.; Tan, J.-S.; Gao,

X.-J.; Yang, J.-G.; Yang, Y.-J. Effect of

Cheese Intake on Cardiovascular

Diseases and Cardiovascular

Biomarkers. Nutrients 2022, 14, 2936.

https://doi.org/10.3390/

nu14142936

Academic Editors: Rosa Casas and

Lindsay Brown

Received: 14 June 2022

Accepted: 14 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Effect of Cheese Intake on Cardiovascular Diseases and
Cardiovascular Biomarkers
Meng-Jin Hu, Jiang-Shan Tan, Xiao-Jin Gao, Jin-Gang Yang and Yue-Jin Yang *

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China;
18393911603@163.com (M.-J.H.); happyshown@163.com (J.-S.T.); sophie_gao@sina.com (X.-J.G.);
jingangyang@126.com (J.-G.Y.)
* Correspondence: yangyjfw@126.com

Abstract: Background: A growing number of cohort studies revealed an inverse association between
cheese intake and cardiovascular diseases, yet the causal relationship is unclear. Objective: To
assess the causal relationship between cheese intake, and cardiovascular diseases and cardiovascular
biomarkers. Methods: A two-sample Mendelian randomization (MR) analysis based on publicly
available genome-wide association studies was employed to infer the causal relationship. The effect
estimates were calculated using the random-effects inverse-variance-weighted method. Results:
Cheese intake per standard deviation increase causally reduced the risks of type 2 diabetes (odds
ratio (OR) = 0.46; 95% confidence interval (CI), 0.34–0.63; p = 1.02 × 10−6), heart failure (OR = 0.62;
95% CI, 0.49–0.79; p = 0.0001), coronary heart disease (OR = 0.65; 95% CI, 0.53–0.79; p = 2.01 × 10−5),
hypertension (OR = 0.67; 95% CI, 0.53–0.84; p = 0.001), and ischemic stroke (OR = 0.76; 95% CI,
0.63–0.91; p = 0.003). Suggestive evidence of an inverse association between cheese intake and
peripheral artery disease was also observed. No associations were observed for atrial fibrillation,
cardiac death, pulmonary embolism, or transient ischemic attack. The better prognosis associated with
cheese intake may be explained by lower body mass index (BMI; effect estimate = −0.58; 95% CI, from
−0.88 to −0.27; p = 0.0002), waist circumference (effect estimate = −0.49; 95% CI, from −0.76 to −0.23;
p = 0.0003), triglycerides (effect estimate = −0.33; 95% CI, from −0.50 to −0.17; p = 4.91 × 10−5),
and fasting glucose (effect estimate = −0.20; 95% CI, from −0.33 to −0.07; p = 0.0003). There was
suggestive evidence of a positive association between cheese intake and high-density lipoprotein. No
influences were observed for blood pressure or inflammation biomarkers. Conclusions: This two-
sample MR analysis found causally inverse associations between cheese intake and type 2 diabetes,
heart failure, coronary heart disease, hypertension, and ischemic stroke.

Keywords: cheese intake; cardiovascular diseases; biomarkers; Mendelian randomization; causal association

1. Introduction

Dairy fat is characterized by a rich content of saturated fatty acids, which are known
to elevate the level of low-density lipoprotein (LDL) cholesterol, thereby the risk of car-
diovascular diseases [1]. Correspondingly, the dietary guidelines from both the American
Heart Association and the European Society of Cardiology recommend lowering the intake
of saturated fat, and only low-fat dairy products are suggested [2,3]. Surprisingly, a meta-
analysis including 12 prospective cohort studies demonstrated no significant increases in
cardiovascular diseases for a high intake of saturated fat compared with a low intake of
it [4]. Another meta-analysis including 21 prospective studies also found no significant
associations between dietary saturated fat intake and the risks of coronary heart disease,
stroke, or cardiovascular diseases [5]. In addition, specific dairy foods may play different
roles in the development of cardiovascular diseases. For example, the extensive European
Investigation into Cancer and Nutrition (EPIC) cohort involving 340,234 participants across
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eight European countries revealed that milk intake had no associations with type 2 dia-
betes, while cheese intake was inversely associated with the risk of diabetes (relative ratio
(RR) = 0.83; 95% CI, 0.70–0.98; p = 0.003) [6]. Similarly, other observational studies also
found no or even inverse correlation between cheese intake and cardiovascular diseases,
although cheese is usually regarded as a full-fat dairy product [7–9]. However, as these
are observational studies in nature, a selection bias may exist, which requires us to in-
terpret the results with caution. Regrettably, no randomized controlled trials with hard
endpoints are available on this topic to prove the causality. Such a randomized controlled
trial is also highly challenging to be performed in the future. However, considering the
fact that dairy accounts for 10% of daily calories in the USA, and cheese takes up 45% of
dairy [10], it is worthwhile to investigate the causal relationship between cheese intake and
cardiovascular outcomes.

Currently, the Mendelian randomization (MR) analysis has been widely applied to
assess the potential causal relationships between various exposures and clinical outcomes.
Compared with traditional observational studies, the MR analysis can overcome reverse
causation bias, since allelic randomization always precedes the onset of disease. More-
over, random segregation and the independent assortment of genetic polymorphisms
at conception enables the MR analysis to minimize the effect of confounding factors by
introducing genetic markers as instrumental variables (IVs) of exposures [11,12]. The
availability of large-scale genome-wide association studies (GWASs) further enables the
exploration of causality. Therefore, by applying an MR analysis, we are determined to
answer the following two key questions: (1) is cheese intake negatively, neutrally, or posi-
tively associated with cardiovascular diseases? (2) what is the effect of cheese intake on
cardiovascular-related biomarkers?

2. Materials and Methods
2.1. Study Design

The schematic view of the study design, and the three key assumptions of MR are
shown in Figure 1 and are as follows: (A) single nucleotide polymorphisms (SNPs) are
strongly associated with cheese intake; (B) SNPs are independent of known confounders; (C)
SNPs only affect cardiovascular diseases and biomarkers via cheese intake (Figure 1) [13].
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Figure 1. Three key assumptions of the Mendelian randomization study. (A) SNPs are strongly
associated with cheese intake; (B) SNPs are independent of confounders; (C) SNPs must only affect
cardiovascular diseases and biomarkers via cheese intake. SNP: single-nucleotide polymorphism.

2.2. Data Sources

The analysis was conducted using published summary-level data from GWASs of
the traits of interest in predominantly European individuals and included both males
and females. GWAS summary statistics for cheese intake (n = 451,486) were obtained
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from the UK biobank study, which assessed the relationship between the quantity of
cheese intake and SNPs [14]. Coronary heart disease (n = 184,305) was obtained from
CARDIoGRAMplusC4D Consortium [15]. Hypertension (n = 218,792), atrial fibrillation
(n = 127,442), cardiac death (n = 218,792), pulmonary embolism (n = 218,792), transient
ischemic attack (n = 214,634), and peripheral artery disease (n = 218,792) were obtained
from FinnGen Consortium. Heart failure (n = 977,323) was obtained from the Heart Failure
Molecular Epidemiology for Therapeutic Targets consortium (HERMES) [16]. Type 2
diabetes (n = 149,821) was obtained from the results reported by Morris et al. [17]. Ischemic
stroke (n = 440,328) was obtained from the results reported by Malik, R., et al. [18]. For
cardiovascular biomarkers, systolic blood pressure (SBP, n = 757,601) and diastolic blood
pressure (DBP, n = 757,601) were obtained from International Consortium of Blood Pressure
(ICBP). Body mass index (BMI, n = 339,224) and waist circumference were obtained from
the Genetic Investigation of ANthropometric Traits consortium (GIANT). C-reactive protein
(CRP, n = 204,402) was obtained from the data reported by Ligthart et al. [19]. Interleukin
6 (n= 3,394) was analyzed by Folkersen et al. [20]. Adiponectin (n= 39,883) was analyzed
by Dastani et al. [21]. Total cholesterol (n= 187,365), triglycerides (n= 177,861), high-
density lipoprotein (HDL, n = 187,167), and LDL (n = 173,082) were obtained from Global
Lipids Genetics Consortium (GLGC). Fasting glucose (n = 58,074) was obtained from Meta-
Analyses of Glucose and Insulin-related traits Consortium (MAGIC). Ethics approval was
not required for the current analysis as all included GWAS data are publicly available and
had been approved by the corresponding ethical review boards.

2.3. Selection and Validation of SNPs

Three criteria were applied to select suitable SNPs. First, we selected SNPs associated
with cheese intake at the genome-wide significance threshold with p < 5 × 10−8. Second,
the independence among the selected SNPs was evaluated according to the pairwise-
linkage disequilibrium [22]. When r2 > 0.001 (clumping window of 10,000 kb), the SNP
correlated with more SNPs or with a higher p-value was deleted. Third, the F-statistic was
calculated to validate the strength of individual SNPs. When F-statistics were greater than
ten, SNPs were considered powerful enough to mitigate the influence of potential bias.
Before performing the MR analysis, we also conducted data-harmonization steps, as the
effects of an SNP on the exposure and the outcome had to correspond to the same allele.

2.4. MR Analysis

An inverse-variance weighted (IVW) meta-analysis under a random-effects model was
regarded as the primary analysis. The following two methods, including weighted median
and MR-Egger, were performed as sensitivity analyses. The weighted-median method
can provide valid estimates if more than 50% of information comes from valid IVs [23].
The MR-Egger method can be used to assess the horizontal pleiotropy of selected IVs [24].
Cochrane’s Q-value can indicate heterogeneity among selected IVs. Additionally, a leave-
one-out sensitivity analysis was conducted to determine whether the overall estimates were
disproportionately affected by an individual SNP. To account for multiple testing in cheese
intake with cardiovascular outcomes and biomarkers, Bonferroni-corrected thresholds of
p < 0.005 (α = 0.05/10 outcomes) and p < 0.0042 (α = 0.05/12 biomarkers) were used for
cardiovascular outcomes and biomarkers, respectively. When the p-value was between the
Bonferroni-corrected value and 0.05, suggestive evidence of association was considered,
and further confirmation was required. All statistical analyses were performed using the
“TwoSampleMR” packages in R version 4.0.3 (R Foundation for Statistical Computing,
Vienna, Austria).

3. Results
3.1. SNP Selection and Validation

In summary, the included studies were published between 2012 and 2021 and were
mainly based on the European population (Supplementary Table S1). Sixty-five IVs
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achieved genome-wide significance levels, and all F-statistics were greater than ten (Sup-
plementary Table S2).

3.2. Cardiovascular Diseases

The IVW analysis revealed that the genetically predicted cheese intake per standard-
deviation increase was inversely associated with five of the ten cardiovascular diseases,
including, with decreasing magnitude of association, type 2 diabetes (odds ratio (OR) = 0.46;
95% confidence interval (CI), 0.34–0.63; p = 1.02 × 10−6), heart failure (OR = 0.62; 95% CI,
0.49–0.79; p = 0.0001), coronary heart disease (OR = 0.65; 95% CI, 0.53–0.79; p = 2.01 × 10−5),
hypertension (OR = 0.67; 95% CI, 0.53–0.84; p = 0.001), and ischemic stroke (OR = 0.76; 95%
CI, 0.63–0.91; p = 0.003) (Figure 2). Suggestive evidence of an inverse association between
genetically predicted cheese intake and peripheral artery disease was also observed. In
contrast, no associations were observed for atrial fibrillation, cardiac death, pulmonary
embolism, or transient ischemic attack (Figure 2). For most cardiovascular diseases, the
weighted-median and MR-Egger analyses revealed consistent estimates but of low precision
(Table 1). No evidence of directional pleiotropy was detected. The heterogeneity was higher
for some cardiovascular diseases. Therefore, an IVW meta-analysis under a random-effects
model was adopted to mitigate the influence of heterogeneity.
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confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.

Scatter plot and forest plot of the association between cheese intake and cardiovascular
diseases are shown in Supplementary Figure S1 and Supplementary Figure S2, respectively,
where similar results can be observed. The leave-one-out sensitivity analysis, as shown in
Supplementary Figure S3, revealed that the overall estimates were not disproportionately
affected by any individual SNP. The funnel plot in Supplementary Figure S4 also indicated
no evidence of horizontal pleiotropy.
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Table 1. Associations between genetically predicted cheese intake and cardioartery disease in
sensitivity analyses using the weighted-median and MR-Egger methods.

Outcome Weighted Median MR-Egger Pleiotropy Heterogeneity

OR (95% CI) p OR (95% CI) p Intercept p Q p

Coronary heart disease 0.65 (0.51–0.84) 0.001 1.14 (0.49–2.66) 0.757 −0.010 0.18 84 0.02
Hypertension 0.73 (0.55–0.96) 0.023 1.45 (0.55–3.82) 0.450 −0.014 0.11 107 <0.01

Atrial fibrillation 0.83 (0.50–1.39) 0.483 2.59 (0.47–14.15) 0.277 −0.021 0.15 80 0.04
Heart failure 0.85 (0.67–1.08) 0.172 0.85 (0.31–2.34) 0.750 −0.005 0.54 135 <0.01

Type 2 diabetes 0.67 (0.51–0.90) 0.007 1.65 (0.39–7.03) 0.50 −0.021 0.08 153 <0.01
Transient ischemic attack 0.86 (0.56–1.32) 0.487 1.06 (0.31–3.70) 0.924 −0.003 0.79 51 0.77

Ischemic stroke 0.71 (0.55–0.91) 0.008 1.17 (0.55–2.48) 0.679 −0.008 0.25 80 0.04
Pulmonary embolism 0.81 (0.44–1.48) 0.497 0.45 (0.07–3.04) 0.417 0.010 0.55 68 0.19

Peripheral artery disease 0.72 (0.43–1.20) 0.207 0.57 (0.11–3.11) 0.520 0.003 0.86 82 0.03
Cardiac death 0.74 (0.45–1.20) 0.223 1.24 (0.29–5.23) 0.772 −0.009 0.49 52 0.73

CI, confidence interval; MR, Mendelian randomization; OR, odds ratio.

3.3. Cardiovascular Biomarkers

The IVW analysis showed that genetically predicted cheese intake per standard-
deviation increase was inversely associated with 4 of the 12 cardiovascular biomarkers,
including, with decreasing magnitude of association, BMI (effect estimate = −0.58; 95%
CI, from −0.88 to −0.27; p = 0.0002), waist circumference (effect estimate = −0.49; 95%
CI, from −0.76 to −0.23; p = 0.0003), triglycerides (effect estimate = −0.33; 95% CI, from
−0.50 to −0.17; p = 4.91 × 10−5), and fasting glucose (effect estimate = −0.20; 95% CI,
from −0.33 to −0.07; p = 0.0003) (Figure 3). Suggestive evidence of a positive association
between genetically predicted cheese intake and HDL was also observed. No associations
were observed for SBP, DBP, CRP, LDL, Interleukin 6, total cholesterol, or adiponectin
(Figure 3). The weighted-median and MR-Egger analyses revealed similar estimates but
of low precision. No evidence of directional pleiotropy was detected in the majority of
biomarkers except for HDL (Table 2).

Table 2. Associations between genetically predicted cheese intake and cardiovascular biomarkers in
sensitivity analyses using the weighted-median and MR-Egger methods.

Outcome Weighted Median MR-Egger Pleiotropy Heterogeneity

Effect Estimate (95% CI) p Effect Estimate (95% CI) p Intercept p Q p

Systolic blood pressure −1.14 (from −2.17 to −0.11) 0.030 0.09 (from −7.17 to 7.35) 0.981 −0.026 0.68 593 <0.01
Diastolic blood pressure −0.52 (from −1.12 to 0.09) 0.094 1.34 (from −3.37 to 6.06) 0.579 −0.032 0.43 765 <0.01

Body mass index −0.30 (from −0.48 to −0.12) 0.001 −0.65 (from −2.20 to 0.89) 0.416 0.001 0.92 250 <0.01
Waist circumference −0.39 (from −0.59 to −0.19) <0.001 −0.45 (from −1.76 to 0.86) 0.508 −0.001 0.95 136 <0.01
C-Reactive protein −0.25 (from −0.43 to −0.06) 0.009 −0.27 (from −1.58 to 1.03) 0.688 0.001 0.94 135 <0.01

Interleukin 6 −0.23 (from −1.02 to 0.55) 0.564 −0.40 (from −2.88 to 2.07) 0.750 0.006 0.79 42 0.77
Adiponectin −0.04 (from −0.23 to 0.14) 0.639 −0.51 (from −1.33 to 0.30) 0.228 0.007 0.26 41 0.02

Total cholesterol −0.13 (from −0.35 to 0.09) 0.245 0.82 (from −0.20 to 1.84) 0.130 −0.014 0.10 62 <0.01
Triglycerides −0.40 (from −0.59 to −0.21) <0.001 −0.71 (from −1.49 to 0.07) 0.087 0.006 0.34 38 0.02

HDL 0.21 (from 0 to 0.43) 0.054 2.04 (from 0.56 to 3.51) 0.013 −0.027 0.03 157 <0.01
LDL −0.16 (from −0.37 to 0.05) 0.133 0.18 (from −0.71 to 1.08) 0.690 −0.006 0.44 40 0.01

Fasting glucose −0.30 (from −0.46 to −0.14) <0.001 −0.05 (from −0.68 to 0.59) 0.881 −0.002 0.64 37 0.01

CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MR, Mendelian randomization.

Scatter plot, forest plot, the results of the leave-one-out sensitivity analysis, and the
funnel plot of the association between cheese intake and cardiovascular biomarkers are
shown in Supplementary Figure S5, Supplementary Figure S6, Supplementary Figure S7,
and Supplementary Figure S8, respectively, where similar results can be observed.
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4. Discussion

In the present two-sample MR analysis, we comprehensively assessed the causal
association between cheese intake and cardiovascular diseases as well as cardiovascular
biomarkers. Our results revealed that cheese intake was inversely associated with type 2
diabetes, heart failure, coronary heart disease, hypertension, and ischemic stroke, which
may be explained by decreased BMI, waist circumference, triglycerides, and fasting glucose.

As a full-fat dairy product, cheese may be intuitively associated with high risks of
cardiovascular diseases due to high content of saturated fatty acids and its effect on blood
cholesterol [1]. However, recent studies showed that the scenario may not be the truth.
On one hand, meta-analyses failed to reveal significant associations between a high intake
of saturated fatty acids and cardiovascular diseases [4,5]. On the other hand, the effect
of food on a single biomarker such as blood cholesterol may be insufficient to assess the
risk of cardiovascular disease [25]. In that case, it may be inappropriate to assess the effect
of cheese on cardiovascular disease just based on saturated fatty acids. Therefore, we
regarded cheese as a food matrix and applied an MR analysis to explore its association with
cardiovascular diseases. Contrary to common belief, cheese intake could actually reduce
the risks of type 2 diabetes, heart failure, coronary heart disease, hypertension, and ischemic
stroke. Concordant with our MR results, a meta-analysis of prospective cohort studies
also revealed an inverse association between cheese intake and coronary artery disease
(RR = 0.82; 95% CI, 0.72–0.93) as well as stroke (RR = 0.87; 95% CI, 0.77–0.99) [26]. Moreover,
the meta-analysis conducted by Gao et al. concluded that cheese intake was associated
with a reduced risk of type 2 diabetes (RR = 0.82; 95% CI, 0.77–0.87) [27]. Guo et al. also
revealed that cheese intake was marginally inversely related to cardiovascular diseases
(RR = 0.98, 95% CI, 0.95–1.00), while no relationship was observed for mortality (RR = 0.99,
95% CI, 0.96–1.01) [28]. However, different from previous meta-analyses mainly based on
observational studies, our results derived from the MR analysis may provide a more solid
conclusion, as the MR analysis is not influenced by confounders or reverse causality.

The beneficial effects of cheese on cardiovascular diseases may be explained by the
following mechanisms: First, in the included SNPs, rs13257887 is located in the MSRA gene,
and MSRA-transgenic animals were found to be more resistant to oxidative stress [29].
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rs62034322 is located in the IL27 gene, which was able to limit chronic inflammatory pathol-
ogy [30]. rs1291145 is located in the SAMHD1 gene, which also played a significant role in
immune and inflammation [31]. It is well-known that oxidative stress and inflammation
have significant effects on the development and progression of cardiovascular diseases [32].
Second, apart from saturated fatty acids, cheese is also rich in various minerals, such as
calcium. Calcium has been reported to be inversely correlated with the level of total choles-
terol and LDL by binding with fatty acids in the intestine to form insoluble soap, which
may inhibit the absorption of fatty acids [33]. Additionally, both calcium and dairy had
inverse relationships with blood pressure and hypertension [34]. Calcium may also reduce
the risk of stroke [35]. Third, cheese contains a large amount of proteins, including casein,
α-lactalbumin, and β-lactoglobulin and less abundant proteins, such as lactoferrin [36],
which could reduce inflammation in rodent models with chronic disease [37]. Therefore,
although saturated fat may increase the levels of inflammation, dairy-product proteins had
neutral or even beneficial effects on inflammation [38]. Fourth, cheese belongs to probiotic
foods, which contain a large amount of live microorganisms. Microorganisms can bind
with the bile acids in the intestine, thereby inhibiting the reabsorption of bile acids into the
enterohepatic circulation. The short-chain fatty acids produced by microorganisms in the
intestine may alter cholesterol synthesis [39]. The main members of probiotic bacteria in
cheese, Lactobacillus and Bifidobacterium genera [40], were demonstrated to have benefi-
cial effects on immunity, inflammation, and cardiovascular risk factors in clinical trials [41].
A meta-analysis including 15 randomized controlled trials revealed that probiotics could re-
duce body weight (−0.60 kg), BMI (−0.27 kg/m2), and fat percentage (0.60%) in overweight
and obese subjects [42]. Another meta-analysis found that probiotics could significantly
improve blood glucose and insulin resistance [43]. Therefore, when administered in an
adequate quantity, cheese may modulate the gut microbiome and have beneficial effects
on the host [44]. Fifth, saturated fat in dairy could increase the LDL particle size, which
may decrease the ability to permeate into the arterial wall [45]. Quebec Cardiovascular
Study with 13-year follow-up data revealed that small dense LDL particles could increase
the risk of ischemic heart disease, while that was not the case for large LDL particles [46].
Additionally, the small dense LDL particles in dairy products are present in significantly
fewer quantities [47]. Cheese also contains quite a lot of conjugated linoleic acid, which
was associated with lower blood pressure in rats [48] and affected the progression of
atherosclerosis in rabbits [49].

Therefore, the effects of cheese on cardiovascular disease should be considered as
a function of the total nutrient contents instead of simply that of a single component,
such as saturated fat. After all, each food involves complex physical and nutritional
components that may influence the digestion, absorption, and bioactive processes and the
subsequent biological effects. However, it seems that recommendations based on saturated
fat fail to consider the complex matrices and correspondingly complex effects on disease.
Additionally, substantial evidence indicated that compared with individual nutrients, the
food matrix had a more decisive influence on chronic disease [50]. For example, although
dairy products are rich in saturated fat, they were in fact associated with lower nine-year
incidences of metabolic syndrome and impaired fasting glycaemia and/or type 2 diabetes
according to the D.E.S.I.R. study (Data from an Epidemiological Study on the Insulin-
Resistance syndrome) [51]. It is, therefore, possible that the combined action of calcium,
protein, probiotics, and short-chain fatty acids existing in the matrix of cheese leads to
significant beneficial effects despite the presence of saturated-fat content.

Several limitations to this study deserve our attention. First, completely excluding
the influence of potential directional pleiotropy is difficult in any MR study. However,
evidence of pleiotropic effects was not observed in most MR-Egger intercept tests except for
HDL, and similar results were observed in the sensitivity analyses. Second, the examined
GWASs were primarily conducted in individuals of European ancestry, which might limit
the generalization of our findings to other ethnicities. After all, dairy may exert different
effects on individuals from European countries and other countries. A major component of
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dairy, lactose, cannot be metabolized by most East Asians [52]. Nonetheless, the European
origin makes the population-stratification bias unlikely to influence our results. Third,
there is a very large number of cheeses with very different compositions. However, the
original GWAS was just focused on the population who consumed cheese with no details
about whether it was being consumed with other diets. We had no details about the type
or the duration of cheese intake, which limited us from conducting a further analysis.

5. Conclusions

This two-sample MR analysis found a causally inverse association between cheese
intake and cardiovascular diseases including type 2 diabetes, heart failure, coronary heart
disease, hypertension, and ischemic stroke, as well as a causally inverse association among
cardiovascular biomarkers including BMI, waist circumference, triglycerides, and fasting
glucose. No influences were observed for blood pressure or inflammation biomarkers. The
intake of cheese may open up new opportunities for the management of cardiovascular
diseases in the future.
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Abbreviation

BMI body mass index
CI confidence interval
CRP C-reactive protein
DBP diastolic blood pressure
GWAS genome-wide association study
HDL high-density lipoprotein
IV instrumental variable
IVW inverse-variance weighted
LDL low-density lipoprotein
MR Mendelian randomization
OR odds ratio
RR relative ratio
SBP systolic blood pressure
SNP single-nucleotide polymorphism
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