&

Ung nLutrients

)

Supplementary materials

Personalized Metabolic Avatar: A Data Driven Model of
Metabolism for Weight Variation Forecasting and Diet Plan

Evaluation

Alessio Abeltino 12, Giada Bianchettil?, Cassandra Serantonil?, Federico Ardito3, Daniele Malta3,

Marco De Spirito'? and Giuseppe Maulucci®?*

1 Neuroscience Department, Biophysics Section, Universita Cattolica del Sacro Cuore, 00168 Rome, Italy
2 Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy

3 RAN Innovation, Viale della Piramide Cestia, 00153 Rome, Italy

* Correspondence: giuseppe.maulucci@unicatt.it; Tel.: +39-06-30154265

S1. Seasonality analysis

1000

Monday

Tuesday
Thursday
Friday
Saturday
Sunday

Wednesday

Weekday

Figure S1. Violin plot of the EB for all days in a week.

For each user, an ANOVA test was carried out to check if a significant variation
existed through the weekdays. The p values obtained from ANOVA analysis were
significant (p < 0.05) for Users 1 and 2, and, therefore, we concluded that seasonal
differences could exist (as an example, the results are shown in Table S1), and it was

reasonable to include seasonal terms in the model.

Table S1: ANOVA Analysis Results.
sum_sq df F PR(>F) EtaSq

Weekday 9.270996e+06 1.0 38.748621 1.580438e-09 0.112072

Residual 7.345283e+07 307.0 NaN NaN NaN

S2. EB Correction

Aw (kg)

L]

[]
User 0 User 1
2 -
EJ
= 0
4
-2
10000 -5000 0 6000 —4000 —2000 0 2000
EB (kcal) EB (kcal)
User 2 " - 5 User 3
=0
< 0
]
-2
L]
—4000 —2000 0 —6000 ~4000 -2000 0
EB (kcal) EB (kcal)

Figure S2. Distribution of weekly w versus weekly EB for all users.

S3. Theory of RNN: GRU and LSTM models

The basic RNN cell incorporates the dependence of the inputs by having a hidden
state, or memory, that holds the essence of what has been observed so far. The value of
the hidden state at any point in time is a function of its value at the previous time step and
the value of the input at the current time step, and it is defined through the formula:

he = @(he_1,Xt), (S1)

Here, ht and ht-1 are the values of the hidden states at time t and t-1, respectively,
and Xt is the value of the input at time t (that in our case consists of the food's composition
and the weight in preceding time steps). The recursiveness of formula (1) allows the RNN
to be able to encode and incorporate information from arbitrarily long sequences.

As for traditional neural networks, the RNN's parameters are defined by three weight
matrices U, Vand W, corresponding to the weights of the input, output, and hidden states,
respectively. These weight matrices are shared between each of the time steps because the
same operation is applied to different inputs at each time step. This reduces the number
of parameters that the RNN needs to learn.

We can describe the RNN in terms of the following equations:

h’t = tanh(Wht_l + Uxt), (Sz)
y; = softmax(Vh,), (S3)

The internal state of the RNN at time ¢ is given by the value of the hidden vector A(t), which
is the sum of the weight matrix W and the hidden state h,_, at time #-/, and the product of the
weight matrix U and the input x, at time ¢, passed through a fanh activation function. In our
application, the input x, corresponds to the following variable set: w, mc ,m; , mpand EB. The
choice of tanh over other activation functions such as sigmoid has to do with it being more efficient
for learning in practice, and helps combat the vanishing gradient problem (2). The output vector

Y at time ¢ is the product of the weight matrix / and the hidden state h;, passed through a softmax
activation, such that the resulting vector is a set of output probabilities (3).

Like traditional neural networks, training RNNs also involves backpropagation of
gradients. The only difference is that in this case, since the weights are shared by all time
steps, the gradient at each output depends not only on the current time step, but also on
the previous ones. This process is called backpropagation through time (BPTT) [1]. For
that reason, we need to sum up the gradients across the various time steps in the case of
BPTT. This is the key difference between traditional backpropagation and BPTT. During
backpropagation, the gradients of the loss with respect to the weights are computed at
each time step, and the parameters updated with the sum of the gradients.

A well known problem encountered when training artificial neural networks is the
vanishing and exploding gradient problem. This problem manifests as the gradient of the
loss (with respect to W matrix) approaching either 0 or infinity, making the network hard
to train.

During each iteration of training, each weight of the neural network receives an
update proportional to the partial derivative of the error function with respect to the
current weight. The problem is that in some cases, the gradient will be vanishingly small,
effectively preventing the weight from changing its value. In the worst case, this may
completely stop the neural network from further training.

There are a few approaches to minimizing the problem, such as proper initialization
of the W matrix, more aggressive regularization, using ReLU instead of tanh activation,
and pre-training the layers using unsupervised methods. However, the most popular
solution is to use LSTM or GRU architectures that have been designed to deal with this
problem and learn long-term dependencies more effectively.

The LSTM is a variant of the SimpleRNN cell that is capable of learning long-term
dependencies. It implements recurrence similarly to RNN cells, but instead of a single
tanh layer, there are four layers interacting in a very specific way.

LSTM works around the vanishing gradient problem by using the gates i, f, o and g.

We can describe how the hidden state h; at time ¢ is calculated from the value of
hidden state h,_, at the previous time step using the following equations:

i=cWhi_y +Uixe + Vicq), (54)
f=0Wrhey + Usxe + Vi ceq), (S5)
o=0Wyhi_qy +Upxy + V, ce_q), (56)

g = tanh(Wyh_1 + Ugx,), (57)
e =) +(g*0), (S8)
he = tanh(c,) * o, (59)

Here i, f and o are the input, forget and output gates. They are computed using the same
equations but with different parameter matrices W;, U;, V;, We, Us, Vi, Wy, Uy, V, The sigmoid
function modulates the output of these gates between 0 and 1, so the output vectors
produced can be multiplied element-wise with another vector to define how much of the
second vector can pass through the first one.

The forget gate defines how much of the previous state 4,_; you want to be allowed to
pass through. The input gate defines how much of the newly computed state for the
current input xt you want to let through, and the output gate defines how much of the
internal state you want to expose to the next layer. The internal hidden state g is computed
based on the current input x, and the previous hidden state 4;_;.

Given i, f, o and g, the cell state ¢ can be calculated at time 7 as the cell state c,_; at time -/
multiplied by the value of the forget gate f, plus the state g multiplied by the input gate i. This is

basically a way to combine the previous memory and the new input. Finally, the hidden state /4, at
time ¢ is computed as the memory c; at time ¢, with the output gate o.

LSTM is a drop-in replacement for a SimpleRNN cell; the only difference is that it is
resistant to the vanishing gradient problem.

Instead, the GRU is a variant of the LSTM cell, capable of learning long-term
dependencies.

It retains LSTM’s resistance to the vanishing gradient problem; furthermore, its
internal structure is simpler, and hence, it is faster to train since there are fewer
computations needed to update the hidden state.

Instead of the i, f, and o gates in the LSTM cell, the GRU cell has 2 gates:

e z:update gate
e r:reset gate

The z gate is needed to define how much previous memory to keep around, while
the r gate is needed to define how to combine the input with it.

The GRU cell defines the computation of the hidden state 4, at time ¢ from the hidden state
he_; at the previous time step using the following set of equations:

z = a(Whe_q + U,xy), (510)
r=odW,hi_; + U,xy), (511)

¢ = tanh(W,(hy_1 * 1) + Ucxy), (512)
hy = (z*c)((I —2z) * hy_q). (513)

The outputs of the update gate z and the reset gate r are both computed using a
combination of the previous hidden state h,_; and the current input x,. The sigmoid
function modulates the output of these functions between 0 and 1. The cell state c is
computed as a function of the output of the reset gate r and input x;. Finally, the hidden
state h, at time t is computed as a function of the cell state ¢ and the previous hidden state
h¢_;. The parameters W,, U,, W,, U, and W,, U, are learned during training.

In conclusion, GRU neural networks are better than LSTM for our application
because they are faster and thus more suitable for implementation in web-based

applications, while keeping all of the LSTM advantages.
Input layer GRU OQutput layer

input I
input 2
input 3
ouiput |
.

input 4

inpw‘_S

input n

Figure S3. Distribution of weekly w versus weekly EB for all users.

S4. Regularization techniques

1. Dropout

Dropout is a regularization technique for reducing overfitting in neural networks by
preventing complex co-adaptations on training data [2]. It is a very efficient way of
performing model averaging with neural networks. It is a technique where randomly
selected neurons are ignored during training. This means that their contribution to the
activation of downstream neurons is temporarily removed on the forward pass and any
weight updates are not applied to the neuron on the backward pass. If neurons are
randomly dropped out of the network during training, others will have to step in and
handle the representation required to make predictions for the missing ones. This is
believed to result in multiple independent internal representations being learned by the
network.

The effect is that the network becomes less sensitive to the specific weights of
neurons, but in turn, it results in a network that is capable of better generalization and is
less likely to overfit the training data. In tensorflow, the library used for the development
of the model (https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout,
accessed on 7 July 2022), dropout is easily implemented by randomly selecting nodes to
be dropped out with a given probability (e.g., 20%) in each weight update cycle. Dropout
is only used during the training of a model and is not used when evaluating the skill of
the model.

2. Layer weight regularizers

Regularization is the most used technique to penalize complex models in machine
learning. It is deployed for reducing overfitting (or, contracting generalization errors) by
making network weights small. Additionally, it enhances the performance of models for
new inputs [3].

Regularizers allow us to apply penalties on layer parameters or layer activity during
optimization. These penalties are summed into the loss function that the network
optimizes.

These layers expose three keyword arguments:

e kernel_regularizer: Regularizer to apply a penalty on the layer's kernel
e Dbias_regularizer: Regularizer to apply a penalty on the layer's bias
e activity_regularizer: Regularizer to apply a penalty on the layer's output

The following built-in regularizers are available as part of the tf.keras.regularizers
module (https://www .tensorflow.org/api_docs/python/tf/keras/regularizers, accessed on
05 July 2022):

L1 class

A regularizer that applies a L1 regularization penalty. The L1 regularization penalty
is computed as:

e Llclass:
A regularizer that applies an L1 regularization penalty. The L1 regularization
penalty is computed as:
loss = Ul - reduce_sum(abs(x)), (514)
In our case, the default value used was LI = 0.01.
o L[2class:
A regularizer that applies an L2 regularization penalty. The L2 regularization
penalty is computed as:
loss = 12 - reduce_sum(square(x)), (515)
In our case, the default value used was L2 = 0.01.
e L1L2 class:

A regularizer that applies both L1 and L2 regularization penalties.
In our case, the default values used were LI = 0.0/ and L2 = 0.01.

S5. Activation functions

31 — tanh(x)
ReLU(x)
2.
l J
O.
_1 .

T T T

=7 0 y:

Figure S4. Activation functions considered in the hyperparameter tuning: hyperbolic tangent and
rectified linear unit.

S6. Performance vs. days predicted

0.750
0.725
0.700

0.675

RMSE

0.650

04 0.5 0.6 0.7 0.8 0.9
Training dataset (%)

Figure S5. RMSE decreases with increasing training dataset percentage.

References

1. Ruineihart, D.E.; Hint, G.E; Williams, R.J. LEARNING INTERNAL REPRESENTATIONS BERROR
PROPAGATION Two; 1985;

2. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Qverfitting; 2014; Vol. 15;.

3. Pachitariu, M.; Sahani, M. Regularization and Nonlinearities for Neural Language Models: When Are They

Needed? 2013.

