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Abstract: Polyphenols, a class of bioactive compounds with phenolic structures, are abundant in
human diets. They have gained attention in biomedical fields due to their beneficial properties,
including antioxidant, antibacterial, and anti-inflammatory activities. Therefore, polyphenols can
prevent multiple chronic or infectious diseases and may help in the prevention of oral diseases.
Oral health is crucial to our well-being, and maintaining a healthy oral microbiome is essential for
preventing various dental and systemic diseases. However, the mechanisms by which polyphenols
modulate the oral microbiota and contribute to oral health are still not fully understood, and the
application of polyphenol products lies in different stages. This review provides a comprehensive
overview of the advancements in understanding polyphenols’ effects on oral health: dental caries,
periodontal diseases, halitosis, and oral cancer. The mechanisms underlying the preventive and
therapeutic effects of polyphenols derived from dietary sources are discussed, and new findings from
animal models and clinical trials are included, highlighting the latest achievements. Given the great
application potential of these natural compounds, novel approaches to dietary interventions and
oral disease treatments may emerge. Moreover, investigating polyphenols combined with different
materials presents promising opportunities for developing innovative therapeutic strategies in the
treatment of oral diseases.

Keywords: polyphenols; oral microbiota; functional food; oral caries; periodontal diseases; halitosis;
oral cancer

1. Introduction

Oral and periodontal diseases such as periodontitis are among the most common
human diseases worldwide, leading to tooth loss and many other oral health complica-
tions [1]. As reported by the WHO, the population suffering from untreated dental caries,
severe periodontitis, and oral diseases has reached 3.5 billion worldwide [2,3]. Oral health
affects the quality of life significantly since poor oral health can affect one’s ability to eat,
speak, and socialize comfortably [4]. Therefore, the prevalence of oral diseases has become
a major global public health concern. During the past decade, intensive research has been
conducted to prevent and treat oral diseases with nutrients, including identifying nutrients
as dietary supplements and developing functional foods with health-promoting benefits.

Functional foods contain natural components that have been shown to prevent dis-
eases and promote overall health. Modern diets such as ultra-processed foods and fruit
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juice beverages can reduce the influence of nutrients and their components in the oral
cavity because they need to stay in the mouth for a longer period to exert their beneficial
effects [5]. Many fruits, vegetables, and other food sources have been found to contain
these beneficial components. Among these, polyphenols, which are a group of chemical
compounds containing at least one phenol moiety, have been found to play a significant
role in promoting human oral health and overall well-being [6–8]. These compounds have
been extensively studied for their potential in preventing and treating dental issues.

Polyphenols are bioactive compounds that are naturally produced by plants, and
essential in a wide range of plant functions. They contribute to the coloration of flowers,
fruits, and seeds, which helps attract pollinators and seed dispersers [9]. Polyphenols
also act as signal molecules that mediate plant-microbe interactions and help to defend
against pathogens and predators. They are secondary metabolites that are commonly found
in all human diets such as fruits, vegetables, and beverages such as tea and cocoa [10].
Polyphenols are well known for their potential health benefits for humans, including an-
tioxidant, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial
effects [7,8,11]. They come into direct contact with oral tissues before being absorbed and
metabolized, demonstrating great benefits for oral health directly and indirectly.

Due to the rapid accumulation of polyphenols’ functions studies in the field of oral
health, several informative reviews have been published recently. The work of Flemming
et al. provided a thorough introduction to the sources, and metabolic pathways of polyphe-
nols, and their preventive effects in dentistry [10]. However, they did not mention the
treatment application of these molecules. Kovac et al. reviewed the therapeutic potential of
flavonoids and tannins, which are two major active compounds of polyphenols. The article
focused on the origins of the molecules and their effects on the microorganism that causes
oral infectious disease [9]. Some reviews emphasized the anticancer effect of polyphenols.
For example, Trisha et al. discussed the benefits of tea polyphenols and covered a broad
range of cancer types for their preventive functions [12], whereas Angellotti and colleagues
selectively introduced the role of resveratrol in oral squamous cell carcinoma [13]. However,
no review discusses the prevention and treatment effect of polyphenols in different types
of oral disease and discusses the mechanism and progression of animal or clinical trials for
the commercialization of functional food products.

In this review, progressions regarding the effects of polyphenols on four types of oral
health, dental caries, periodontal diseases, halitosis, and oral cancer, were summarized. The
mechanisms for the prevention and treatment effect of food-based polyphenols were listed,
and the studies of oral disease in animal models as well as human patients were discussed,
demonstrating recent achievements in the field. As these natural nutrients showed great
commercial potential, new approaches to dietary interventions and oral disease treatments
might be found. Safe and long-term oral health management based on polyphenol products
of different formats might be beneficial to the overall well-being of humans.

1.1. Dietary Polyphenols

Dietary polyphenols refer to a class of natural compounds found in food that exhibit
various biological activities and health benefits. Dietary polyphenols constitute a large
group of compounds encompassing thousands of different substances. They are mainly
categorized into flavonoids, phenolic acids, lignans, and stilbenes [14]. Each category
includes numerous individual compounds that are present in various types of foods, such
as fruits, vegetables, tea, red wine, and nuts (Table 1). Flavonoids are secondary metabolites
derived from chalcones and fall into various subcategories, including flavanols, flavanones,
flavonols, flavones, isoflavones, anthocyanins, proanthocyanidins, etc. [15]. Non-flavonoids
contain phenolic acids (like caffeic acid), lignans, and stilbenes (e.g., resveratrol). Tannins
can be further divided into hydrolyzable tannins and condensed tannins [16].
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Table 1. Classification and chemical structure of major classes of dietary polyphenols.

Polyphenols Subclasses and Examples Food Sources

Lignans

e.g., secoisolariciresinol, matairesinol
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Table 1. Cont.

Polyphenols Subclasses and Examples Food Sources

Flavanones: hesperidin, naringenin, erioclictyol
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One of the primary functions of dietary polyphenols is their antimicrobial [17] and
antioxidant activity, which contributes to overall health. They can neutralize free radicals,
reduce oxidative damage to cells and tissues [18], and help prevent chronic diseases
such as cardiovascular diseases [19], cancer [20], and inflammatory conditions [21]. Some
polyphenols, such as flavonoids, are believed to be particularly beneficial for cardiovascular
health. They can lower blood pressure, improve blood vessel function, and reduce the
risk of heart disease and stroke [22]. Previous studies suggest that dietary polyphenols
may have potential benefits in cancer prevention and treatment. They can inhibit the
growth and migration of tumor cells while supporting the healthy functioning of the
immune system [23]. These compounds also show anti-inflammatory effects and facilitate
alleviating symptoms of inflammatory conditions [21]. Moreover, dietary polyphenols
may have positive effects on blood sugar control, cognitive function, digestive health, and
weight management, among other areas of health [24].

1.2. Oral Microbiota, Polyphenols, and Oral Health

Oral microbiota refers to the community of microorganisms that reside in the mouth. It
is an essential component of the human microbiota and consists of hundreds to thousands
of diverse species, including bacteria, fungi, viruses, and other microorganisms [25,26].
These microorganisms colonize different areas of the mouth, such as the teeth, gums,
tongue, and saliva, forming a complex ecological community that influences oral and
systemic health [25,27]. In the past century, medical research has primarily focused on
studying bacteria in their planktonic phase. However, it is now widely recognized that
oral microorganisms form biofilms [28,29]. Dental plaque, which forms on non-shedding
surfaces in the oral cavity, meets all the criteria for a microbial biofilm and undergoes a
process called succession [26]. When the delicate balance of the oral ecosystem is disrupted
either due to an overload of microorganisms or a weakened immune system, a threat can
be posed to local and systemic health.

The oral microbiota plays a crucial role in maintaining oral health by contributing to
the digestion of food, protecting against harmful pathogens, and modulating the immune
response [30]. Certain bacteria in the oral produce acids that help regulate the pH and
prevent the growth of harmful bacteria that thrive in acidic environments [31]. Imbalances
or dysbiosis in the oral microbiota can lead to oral diseases such as dental caries, periodontal
disease, and oral infections. A significant alteration in the diversity and relative abundance
of bacteria was found in the saliva of oral squamous cell carcinoma (OSCC) patients. These
alterations can be used as biomarkers for the monitoring of the development, progression,
and recurrence of oral cancer [32]. Moreover, increasing evidence supports that many
systemic diseases are associated with disturbances in the oral ecosystem, such as diabetes,
cardiovascular diseases, and tumors [33].

As the human diet undergoes major shifts throughout evolution, a significant change
was identified in the composition of the oral microbiota. The diet provides nutritional
resources for the oral microbiota and also acts as a selective pressure, favoring the growth
of organisms that are best adapted to utilize specific dietary resources derived from the
host [34]. Recent studies have been focused on exploring the potential of foods and diets in
promoting oral health and preventing diseases. This has resulted in the development of
foods and beverages that contain “functional ingredients”, which offer additional benefits
for maintaining oral health or preventing the onset and progression of dental issues. In the
process of research, more and more studies have found that polyphenols play a critical role
in oral health. Research on the relationship between diet polyphenols and oral health is
essential for promoting oral health by targeting oral bacteria and biofilms, understanding
the impact of food processing on polyphenol effectiveness, and exploring the potential
systemic health benefits of maintaining good oral health.
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2. Method for Literature Search

A comprehensive search of the literature was performed using PubMed, Web of Science,
Embase, and Google Scholar. We focused on the articles examining the effects of polyphenols
on various aspects of oral health, including dental caries, periodontal diseases, halitosis,
and oral cancer. The keywords used for searching were: ‘(polyphenols[Title/Abstract])
AND (dental caries[Title/Abstract])’, ‘(polyphenols[Title/Abstract]) AND (periodontitis [Ti-
tle/Abstract])’, ‘(polyphenols[Title/Abstract]) AND (gingivitis [Title/Abstract])’, ‘(polyphe-
nols [Title/Abstract]) AND (halitosis [Title/Abstract])’ and ‘(polyphenols[Title/Abstract])
AND (oral cancer [Title/Abstract])’. After the removal of the duplicates, reviews, comments,
non-English articles, and those without full text, 188 research papers were obtained. The
quality of these studies was evaluated and studies with insufficient experimental evidence or
not closely related to the scope of this review were excluded. Finally, a total of 72 studies were
selected for this review (Figure 1).
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3. Polyphenols and Oral Health

Oral health is essential for preventing dental problems, maintaining overall health,
and ensuring a good quality of life. To provide a comprehensive understanding of the
impact of polyphenols on oral health, we will delve into the effects of these compounds
on four aspects, including dental caries, periodontal diseases, halitosis, and oral cancer
(Figure 2).
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Figure 2. Polyphenols in dental caries, periodontal diseases, halitosis, and oral cancers. In dental
caries, polyphenols have been investigated for their antibacterial properties, effectively suppressing
bacterial growth and adhesion. They also inhibit glycosyltransferase enzyme (GTF) activity, reduce
the cariogenic impact of exopolysaccharides (EPS), and disrupt biofilm formation. In conditions in-
volving inflammation, bleeding, and gum recession, polyphenols offer antimicrobial effects, enhance
immunomodulation, and exhibit anti-inflammatory properties. They help mitigate oxidative stress, a
critical factor in periodontal diseases. For halitosis, polyphenols possess antibacterial and antioxidant
properties. In the meantime, they help reduce the volatile sulfur compounds (VSC), the primary
source of halitosis. Regarding oral cancers, polyphenols have a multifaceted impact on oral cancer
cells, including the inhibition of growth and division, decreased invasion and migration, enhanced
apoptotic activity, and reduced expression of inflammatory cytokines such as IL-1β, IL-6, and IL-8.
The small blue arrows indicate the upregulation/promotion or downregulation/inhibition of the
biomarkers or behaviors.
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3.1. Polyphenols and Dental Caries

Dental caries, also known as tooth decay or cavities, is a chronic oral disease with high
prevalence among children and adolescents. It’s a bacterial infectious disease that affects
the hard tissues of the teeth and is caused by the interaction between bacteria, sugars, and
carbohydrates in the mouth [35]. Dental caries is caused by a microecological imbalance in
the biofilm of dental caries pathogens, with Streptococcus mutans (S. mutans) particularly
involved [29,36]. S. mutans is a Gram-positive bacterium and is recognized as the most
important cariogenic bacteria in the oral cavity, secreting exopolysaccharides (EPS) to
form a three-dimensional biofilm structure [37]. Dental plaque biofilm appears where the
bacteria attach and aggregate, protecting the bacteria and making them highly resistant to
drugs and host immune defenses [38].

It is widely recognized that the consumption of dietary sugars, especially sucrose, is di-
rectly linked to the development of dental caries. The cariogenic bacteria metabolize sugars
in the food and rapidly produce a large amount of organic acids, leading to microecological
dysbiosis [39]. The acid production resulting from the metabolism of sugars in the biofilm
leads to a decrease in environmental pH, which is responsible for the demineralization of
hard dental tissues [40]. The bacteria produce acids that erode the enamel and dentin of
the teeth, leading to the formation of cavities Therefore, effective methods to prevent the
development of dental caries involve inhibiting the growth of pathogenic bacteria in the
mouth, reducing the formation of EPS, and decreasing the content of biofilm.

Numerous studies have shown that polyphenols exhibit antibacterial activity against
the S. mutans (Figure 2, Table 2) [8,41–43]. Babaeekhou and Ghane demonstrated that
extracts of ginger have high antibacterial activity against S. mutans and S. sobrinus [44].
Ethanolic extract of Polish propolis inhibits the growth of S. mutans and demonstrated
the MIC value for tested strains at the range of 25–50 µg/mL [41]. Polyphenols also
inhibit the growth and activity of other cariogenic bacteria such as Lactobacillus rhamnosus
(L. rhamnosus), Candida albicans (C. albicans), and Fusobacterium nucleatum (F. nucleatum)
(Table 2) [45–47].

As reported above, biofilms play a crucial role in the survival of S. mutans. Polyphe-
nolic compounds can also interfere with the formation of biofilms, and protect the tooth
from bacteria adherence [36,46,48,49]. Catechins identified from hot steeping green or black
tea showed inhibitory effects on biofilm formation and cell viability of S. mutans. and
S. sobrinus [50]. It was demonstrated that tart cherry (Prunus cerasus L.) fractions had a
dose-dependent inhibitory effect on biofilm formation. Additionally, they also reduced the
adherence of C. albicans and S. mutans to a hydroxylapatite surface as well as the adherence
of F. nucleatum to oral epithelial cells [46].

The EPS-rich matrix plays a crucial role in bacterial adhesion to tooth surfaces and
provides mechanical stability for acidogenic and aciduric bacteria [29,38]. Therefore, EPS
formation is essential for the pathogenesis of dental caries. Polyphenols have been reported
to reduce the cariogenic effect of EPS in biofilm (Figure 2, Table 2) [47,51]. Recently, a
study showed that Lonicera caerulea fruit polyphenols (LCP) affect the characteristics of EPS
produced by L. rhamnosus. Specifically, the addition of LCP increases galactose in EPS and
disrupts the original aggregation state of EPS [45]. However, LCP does not significantly
affect the molecular weight and functional group composition of EPS. This suggests that
LCP can alter the surface morphology, content, and composition of EPS produced by
L. rhamnosus [45]. These changes in EPS may contribute to reducing the cariogenic effect of
EPS and biofilm formation. Schneider-Rayman et al. found that epigallocatechin-3-gallate
(EGCG) exhibited the antibacterial and antibiofilm activity of S. mutans in a dose-dependent
manner [52]. At concentrations of 2.2–4.4 mg/mL, significant reductions were observed
in S. mutans biofilm formation, DNA content, and EPS production. Furthermore, EGCG
reduced the expression of genes involved in EPS production (gtfB, gtfC, and ftf) as well as
genes involved in protection against oxidative stress (nox and sodA) [52].
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In addition, polyphenols could inhibit the formation of glucan and biofilm from
S. mutans by suppressing the activity of glycosyltransferase enzymes (GTF) (Figure 2,
Table 2) [53–55]. Goto et al. illustrated that Roasted Green Tea (RGT)-specific polyphe-
nols had GTF inhibitory activity and a strong inhibitory effect on biofilm formed by
S. mutans [53]. A study in rats found that cranberry Proanthocyanidins (PAC) showed sig-
nificantly less caries severity on smooth surfaces and sulcal surfaces. Furthermore, A-type
PAC oligomers have shown effective inhibition of insoluble glucan synthesis by GtfB on
saliva-coated apatitic surfaces. These PAC oligomers also had an impact on bacterial glycol-
ysis [56]. Additionally, polyphenols may inhibit S. mutans-mediated acidification. It reduces
the glycolytic pH drop and lactate production thus protecting from dental caries [57].

It is worth mentioning that the following investigations report that polyphenols can
prevent the development of dental caries in humans. An in vivo study was performed
using saliva and dental biofilm samples collected from 75 healthy subjects. The use of
polyphenolic mouthwash resulted in a significant reduction in bacterial taxa associated
with oral diseases in both the refined sugar group and the unrefined sugar group [58]. A
one-year prospective human intervention study used fermented lingonberry juice (FLJ) as
a mouthwash for 6 months, followed by a 6-month washout period. FLJ efficiently reduced
visible plaques, S. mutans, and Candida levels, as well as caries risk [59]. A randomized
blinded clinical study with 60 healthy children of age 9–14 found that 0.5% Camellia sinensis
extract exhibited antiplaque activity over the 2-week experiment period. In the treatment
group, the salivary pH increase was sustained and significant, and oral hygiene was well
improved [60]. However, conventional anti-caries agents often exhibit limitations such as
poor stability, low efficacy, or short residence time in the oral environment. It is critical
to develop novel long-term strategies for the prevention of dental caries, especially for
children and teenagers.
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Table 2. Effects of polyphenols on dental caries.

Study Group Active Components Study Design Pathogens Cells/Tissues/Animals Results

Ren. et al., 2023 [45] Lonicera caerulea fruit
polyphenols In vitro L. rhamnosus (RYX-01) N/A

Inhibition of RYX-01 growth
Reduction of EPS and biofilm formation

Inhibition of quorum sensing and biofilm
formation-related gene expression

Pärnänen et al., 2023 [59] Fermented Lingonberry Juice A One Year Prospective Human
Intervention Study (25 patients)

S. mutans
Candida

Lactobacilli
N/A

Reduction of S. mutans and Candida counts
Increased Lactobacilli counts significantly

Reduction in decayed surfaces (DS) index,
bleeding on probing (BOP), and visible plaque

index (VPI)
No effect on probing pocket depths(DDPs)

Goto et al., 2023 [53] Roasted Green Tea (RGT)-specific
polyphenols In vitro S. mutans N/A Inhibition of S. mutans biofilm formation and

GTF activity

Chhaliyil et al., 2022 [58] Polyphenolic mouthwash

in-vivo study was performed
using saliva and dental biofilm

samples collected from
75 healthy subjects.

N/A N/A
Reduction in bacterial taxa associated with oral
diseases in refined sugar group and unrefined

sugar group

Nomura et al., 2021 [43] Flavedo, albedo, fruits, and
leaves of Citrus unshiu extracts In vitro S. mutans N/A Inhibition of S. mutans

Yabuta et al., 2021 [57] Backhousia citriodora (lemon
myrtle) extract In vitro S. mutans N/A

Reduction of the glycolytic pH drop
Inhibition of lactate production

No effect on lactate dehydrogenase activity

Xu et al., 2021
[61] EGCG–phospholipid complex In vitro S. mutans N/A

Strong antibacterial activity on S.mutans
Reduction of acid production and tooth

surface adhesion
Inhibition of glucan and biofilm formation by

suppressing the
GTF activity

Schneider-Rayman et al.,
2021 [52]

Green tea polyphenol,
epigallocatechin gallate (EGCG) In vitro S. mutans N/A

Inhibition of the planktonic growth and the
biofilm formation

Reduction of S. mutans EPS production
Reduction in gtfB, gtfC, and ftf genes involved in

EPS production, and the nox and sodA genes
involved in the protection against oxidative stress

Magacz et al., 2021 [42]
Acetone extracts of Reynoutria.

japonica, R. sachalinensis, and R. x
bohemica

In vitro S. mutans N/A Modulated the activity of the
lactoperoxidase system

Goyal et al., 2021 [54] Polyphenols gallic acid and
tannic acid In vitro S. mutans N/A Inhibition of dextransucrase activity
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Table 2. Cont.

Study Group Active Components Study Design Pathogens Cells/Tissues/Animals Results

Babaeekhou et al., 2021 [44]
N-hexane, ethyl acetate,

methanol, and aqueous extracts
of Ginger

In vitro S. mutans
S. sobrinus N/A Inhibition of S. mutans and S. sobrinus

Selvaraj et al., 2020 [62] Toothpaste containing probiotics
and Neem

In vivo
(60 patients) S. mutans N/A Reduction of bacterial count

Kim et al., 2020 [50] Green or black tea extracts In vitro S. mutans
S. sobrinus N/A

Inhibition of biofilm formation, cell viability, and
GTF activity

Maintained the pH

Ben Lagha et al., 2020 [46] Tart cherry (Prunus cerasus L.)
extract In vitro

C. albicans
S. mutans

F. nucleatum

Oral epithelial cell line
GMSM-K, human oral
epithelial cell line B11

Inhibition of biofilm formation
Attenuated the adherence of C. albicans and S.

mutans to a hydroxylapatite surface as well as the
adherence of F. nucleatum to oral epithelial cells.

Veloz et al., 2019 [36] Polyphenolic compounds in
Chilean Propolis In vitro S. mutans N/A Inhibition of bacterial growth and

biofilm formation

Philip et al., 2019 [51]

Extracts of cranberry, blueberry,
and strawberry, and a

combination of the three berry
extracts (Orophenol)

In vitro S. mutans N/A
Reduction in biofilm metabolic activity, acid

production, and EPS biovolumes
No bactericidal on S. mutans

Farkash et al., 2019 [47] Padma hepaten and a polyphenol
extraction from green tea In vitro S. mutans

C. albicans N/A
Inhibition of biofilm formation without affecting

the planktonic growth
Reduction in EPS secretion

Yabuta et al., 2018 [48] Extract from Lemon myrtle
(Backhousia citriodora) In vitro S. mutans N/A Inhibition of S. mutans biofilm

Damiano et al., 2017 [49] Ziziphus jujuba Mill fresh leaves In vitro S. mutans N/A Inhibition of biofilm bioactivity

Hambire et al., 2015 [60] 0.5% Camellia sinensis extract
A randomized blinded controlled
trial with 60 healthy children of

age 9–14 years
N/A N/A More effective compared to 0.05% sodium fluoride

and 0.2% chlorhexidine gluconate mouth rinses

Koo et al., 2010 [56] Cranberry PAC fraction In vivo S. mutans Sprague-Dawley rats

Reduction of biofilm formation and
smooth-surface caries

Diminished the synthesis of insoluble glucans by
GtfB adsorbed on a saliva-coated

hydroxyapatite surface
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3.2. Polyphenols and Periodontal Diseases

Periodontal disease, including gingivitis and periodontitis, is a chronic inflammatory
condition that affects the tissues surrounding and supporting the teeth, including the
periodontal ligament, connective tissue, and alveolar bone [63]. It is caused by the accumu-
lation of dental plaque, a sticky film of bacteria, on the teeth and gingiva. Gingivitis is the
early stage of periodontal disease, which is characterized by red, swollen, and bleeding
gingiva [64]. Untreated gingivitis can progress to periodontitis, a more severe form of
gingival disease.

Periodontitis is a complex disease that involves ongoing interactions between bacteria
and the immune and inflammatory responses of the host, which are influenced by genetic
and environmental factors. The homeostasis or symbiosis of oral microbiota plays a
crucial role in periodontal health, which is characterized by a state of dynamic equilibrium
between periodontal microflora and a controllable immune/inflammatory response of the
host [65]. Dysregulation of the inflammatory response or stimulation of an imbalanced
microbial community can disrupt the homeostasis in periodontal tissues. This dysbiosis
results in an overgrowth of pathogenic bacteria and a decrease in beneficial bacteria,
leading to a dysregulated and hyperinflammatory immune response [66]. Pathogenic
bacteria such as Porphyromonas gingivalis (P. gingivalis), are reported to be associated with
periodontal diseases. These bacteria produce virulent factors such as gingipains and trigger
the activation of host-derived proteolytic enzymes such as matrix metalloproteinases
(MMPs) [67]. The hyperinflammatory response is accompanied by the release of interleukin-
1 (IL-1) superfamily members and the degradation of the extracellular matrix, which leads
to chronic inflammation in the gingiva and the loss of alveolar bone [67,68].

Treatment for periodontal disease typically involves professional dental cleaning tech-
niques to remove plaques and calculuses, scaling and root planing to remove bacteria from
the periodontal pockets, as well as minimally invasive nonsurgical therapy (MINST) [65,68].
In advanced cases, surgical procedures may be necessary to repair damaged tissues and
restore oral health. Traditional treatments such as mechanical debridement and antimi-
crobial strategies suffer from limitations and adverse effects. Thus, there is a growing
interest in exploring alternative adjunctive therapies for the prevention and treatment of
periodontal disease.

Studies have shown that polyphenols possess antimicrobial properties against peri-
odontal pathogens, including P. gingivalis, Aggregatibacter actinomycetemcomitans (A. acti-
nomycetemcomitans), Staphylococcus aureus (S. aureus), Streptococcus mitis (S. mitis) and Fu-
sobacterium nucleatum (F. nucleatum) (Figure 2, Table 3) [69–74]. In vitro studies have demon-
strated the inhibition of bacterial growth, adhesion to oral cells, and enzymatic activity
of polyphenols such as chlorogenic acid [75], prenylated flavonoids [76], theaflavins [77],
baicalein [78,79] and proanthocyanidins [70]. These polyphenols contribute to reducing
the colonization and virulence of pathogens in the oral cavity, which is crucial for the
prevention and treatment of periodontal disease.

In addition to their antimicrobial properties, polyphenols are also crucial in balancing
oxidative stress and antioxidant activity in the oral cavity, which prevents the deterioration
of periodontal tissue (Figure 2, Table 3) [80–82]. Polyphenols derived from berries (Brand
name: Orophenol®) showed inhibitory effects on the growth of P. gingivalis and reduced its
hemolytic activity. Additionally, Orophenol® suppressed the production of reactive oxygen
species (ROS) by oral keratinocytes stimulated with P. gingivalis. and exhibited a protective
effect against damages caused by P. gingivalis [81]. A polyphenolic mixture extracted
from the pomace of the Croatina grape variety also demonstrated antioxidant properties,
downregulating inflammation in macrophages [80]. A study focused on human gingival
fibroblasts (HGFs) revealed that treatment with a polyphenolic fraction of L. caerulea berries
(10–50 µg/mL) resulted in a decrease in ROS production, intracellular glutathione (GSH)
depletion, and lipid peroxidation in lipopolysaccharide (LPS)-treated cells [82].
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Polyphenolic components exhibit immunomodulatory and anti-inflammatory ef-
fects in periodontitis as well (Table 3). They modulate the host immune response, lead-
ing to a decrease in pro-inflammatory cytokines and an increase in anti-inflammatory
cytokines [6,83,84]. Several inflammatory mediators such as interleukin-8 (IL-8), IL-6, tu-
mor necrosis factor α (TNF-α), nuclear factor Kappa-B(NF-κB), and histamine are involved
in this process along with the LPS produced by periodontal pathogens [85,86]. PAC are rich
in cranberry, wild berry, (Vaccinium angustifolium Ait.), blueberry, grape apples, cocoa, and
green tea [71,87]. Studies have reported that PAC can suppress inflammation by reducing
the level of IL-1β, IL-6, IL-8, and TNF-α through the downregulation of the MAPK/AP-1
signaling pathway, and the inhibition of the transcription function of NF-κB. Similarly, the
secretion of MMP-3, MMP-8, and MMP-9 was also inhibited in a dose-dependent man-
ner [87–91]. The research of Farzanegan et al. reported that the combination of resveratrol
and silymarin effectively reduced the inflammatory effects of histamine on cultured HGFs
through a decrease in the levels of IL-6, IL-8, TPA-1, and TNF-α [84]. Ben Lagha and
Grenier showed that the aflavins, and black or green tea extracts all inhibited the activation
of NF-κB and caspase-1 as well as the release of IL-1β by monocytes/macrophages. Tea
polyphenols have anti-inflammatory properties and help reduce gingival epithelial barrier
dysfunction caused by TNF-α [83]. Apple and hop bract polyphenols also inhibit P. gingi-
valis-mediated pMMP-9 activation and OSCC cellular invasion. Furthermore, polyphenols
reduced the activation of heat shock protein 27 and Ets1 and NF-κB [92]. The administration
of resveratrol-quercetin reduced the inflammatory process in apical periodontitis, periapical
bone resorption, and altered the expression of osteoprotegerin, IL-10, and tartrate-resistant
acid phosphatase in rats [93]. These findings indicate that the modulation of the immune
response helps alleviate inflammation and promote tissue healing in periodontal disease.

Several clinical studies have investigated the effects of polyphenols on periodontal
health (Table 3). These studies reported higher attachment levels, reduced inflammation,
and decreased bone loss when treated with polyphenolic compounds. It is suggested that
the specially formulated FLJ mouthwash may help relieve mild inflammation and prote-
olytic burden in the oral mucosa and periodontal tissues [59]. A randomized clinical study
in patients with periodontitis (stage III–IV) showed that combined use of PAC in MINST
resulted in better clinical outcomes for moderate pockets. Moreover, MMP-3 concentra-
tion in saliva was increased when PAC was incorporated, compared with MINST alone.
These results indicated that MMP-3 concentration in saliva can be used as a biomarker
for the assessment of periodontal health [94]. Additionally, a prospective, double-blind,
randomized clinical trial conducted by Sánchez et al. also identified that oligomeric PAC
can affect the condition of periodontal tissue [95]. Despite the promising clinical findings,
the heterogeneity of studies makes it difficult to determine the clinical applicability of
polyphenols in periodontal disease treatment.

Overall, the ability of polyphenols to inhibit bacterial growth, reduce inflammation,
and promote tissue healing makes them promising materials for the prevention and ad-
junctive therapies of periodontal disease (Figure 2). However, further research is needed to
standardize the dosage, delivery methods, and formulations of polyphenols to optimize
clinical outcomes. The exploration of polyphenols provides new options for therapeutic
approaches in the management of periodontal disease.
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Table 3. Effects of polyphenols on periodontal disease.

Study Group Plants/Active
Components Study Design Pathogens Cells/Tissues/Animals Results

Ullah et al., 2023 [69] Cistus × incanus L.,
Scutellaria lateriflora L. In vitro P. gingivalis Human keratinocyte

epithelial cells HaCaT

Inhibition of P. gingivalis growth
Reduction in P. gingivalis HaCaT invasiveness
and biofilm

Pärnänen et al.,
2023 [59]

Fermented lingonberry
juice (FLJ)

One-year prospective
clinical intervention study
(25 patients)

S. mutans
Candida
Lactobacilli

N/A

Reduction of S. mutans and Candida counts
Increased Lactobacilli counts
Reduction in decayed surfaces (DS) index, bleeding on
probing (BOP), and visible plaque index (VPI)
No effect on probing pocket depths(DDPs)

Alkimavičienė et al.,
2023 [94]

Proanthocyanidins
(PACs)

Clinical study in 46
patients with
periodontitis

N/A N/A

Inhibition of S. mutans biofilm formation and
GTF activity
Better clinical outcomes for moderate pockets
Improved MMP-3 concentration in saliva

Vaillancourt et al.,
2022 [81]

A berry polyphenolic
fraction (Orophenol®)
composed of extracts
from cranberry, wild
blueberry, and strawberry

In vitro P. gingivalis Human oral keratinocyte
cell line B11

Inhibition of P. gingivalis growth
Decreased P. gingivalis hemolytic activity, its adherence
to a basement membrane matrix model, and its
proteinase activities
Reduction in production of ROS by oral keratinocytes
stimulated with P. gingivalis

Qi et al., 2022 [96]

Turkish Gall’s effective
constituent was prepared
into nanoparticles (T-NPs)
by the principle of
oxidative
self-polymerization.

In vitro P. gingivalis N/A

Stronger antibacterial activity on oral pathogens
T-NPs induced bacteria lysis by promoting the
excessive production of ROS without periodontal
tissue damage

He et al., 2022 [97] Tea polyphenols (TP) and
AdipoRon (APR) In vitro and in vivo N/A

Bone marrow stromal
cells BMSCs and RAW
264.7 cells
Sixty 8-week-old male
C57BL/6 mice

Programmed core-shell nanofibers for sequential and
controlled release of tea polyphenols and AdipoRon
Reduction of proinflammatory cytokines levels in vitro
Promoted osteogenic differentiation in an inflammatory
microenvironment in vitro
Alleviated periodontal tissue inflammation and
enhanced the regeneration of alveolar bone in vivo
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Table 3. Cont.

Study Group Plants/Active
Components Study Design Pathogens Cells/Tissues/Animals Results

Iviglia et al., 2021 [80]

A polyphenolic mixture
extracted from the
pomace of the Croatian
grape variety

In vitro N/A Human osteoblast-like
SAOS2 cells

Anti-inflammatory and antioxidant properties
Reduction of acid production and tooth
surface adhesion

Dal-Fabbro et al.,
2021 [93]

Red wine consumption or
its polyphenols In vivo N/A 3-month Wistar rats with

apical periodontitis
Reduction of the inflammatory process in apical
periodontitis and periapical bone resorption

Torre et al., 2020 [98] Polyphenol-rich grape
pomace extracts In vitro N/A Human bone marrow

stromal cells hMSC

Decreased receptor activator of nuclear factor
κ-B ligand
Enhanced expression of genes involved in
osteoblast differentiation

Galarraga-Vinueza
ME, et al., 2020 [87]

Cranberry concentrates at
25, 50, and 100 µg/mL In vitro N/A

THP-1 cells (monocytic
line, Human gingival
fibroblasts (HFIB-G
cell line)
osteosarcoma-derived
osteoblasts SAOS-2
cell line

Downregulated the expression of IL-8 and IL-6 in
LPS-stimulated macrophages with cranberry
concentrates at 50 and 100 µg/mL
Upregulated the expression of IL-10 in LPS-stimulated
macrophages by cranberry concentrates at 100 µg/mL

Ben Lagha, et al.,
2020 [70]

Highbush blueberry
proanthocyanidins In vitro P. gingivalis

Gingival keratinocyte cell
line B11
In vitro gingival
keratinocyte barrier
model

Reduction in bacterial growth

Tsou et al., 2019 [75]
Coffee extract and its
primary phenolic acid,
chlorogenic acid

In vitro P. gingivalis N/A Inhibition of P. gingivalis viability
Reduction of associated protease activity.

Ben Lagha et al.,
2019 [83]

Green and black tea
extracts in distilled water
10 mg/mL EGCG,
theaflavin fraction in
95% ethanol

In vitro N/A

U937 human monocytes,
human monoblastic
leukemia cell line
U937-3xκ B-LUC, gingival
keratinocyte cell line B11

Inhibited the activation of NF-κB and caspase-1 as well
as IL-1β secretion by monocytes/macrophages
Protected keratinocytes against the TNF-α-mediated
breakdown of barrier integrity.
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Table 3. Cont.

Study Group Plants/Active
Components Study Design Pathogens Cells/Tissues/Animals Results

Jekabsone et al.,
2019 [71]

Pelargonium sidoides DC
root extract (PSRE),
proanthocyanidin fraction
from PSRE (PAC)

In vitro

P. gingivalis, S.
salivarius, S. aureus, S.
epidermidis, A.
actinomycetemcomitans
and E. coli.

Human primary gingival
fibroblasts HGF,
Human peripheral blood
mononuclear cells PBMCs

Strong antibacterial, anti-inflammatory, and gingival
tissue-protecting properties under
periodontitis-mimicking conditions

Farzanegan et al.,
2019 [84]

Silymarin or resveratrol
(100 µg/mL) and a
combination of these two
polyphenols

In vitro N/A Human gingival
fibroblast cell line HGF-3

Inhibited inflammatory effects of histamine on cultured
HGFs by reduction of IL-6, IL-8, TPA-1, and TNF-α

Ben Lagha, et al.,
2019 [99]

Cranberry
Proanthocyanidins (PAC) In vitro A.

actinomycetemcomitans U937 human monocytes
Reduction of leukotoxin (LtxA) gene expression
Neutralized the cytolytic and pro-inflammatory
responses of human macrophages

Khalil et al., 2019
[72]

Methanolic extract of
Salvadora persica In vitro S. aureus and

Streptococcus sp. N/A Inhibition of bacterial growth

Kariu et al., 2017
[76]

Prenylated flavonoids
isolated from Epimedium
species plant

In vitro P. gingivalis N/A
Inhibition of gingipains activity in a
non-competitive manner
Inhibition of P. gingivalis growth and biofilm formation

Díaz Sánchez et al.,
2017 [95]

New nutritional
supplement made of
oligomeric
proanthocyanidins (PAC)

A prospective,
double-blind,
randomized, controlled
clinical trial in 20 patients

N/A N/A
Oligomeric PAC affects periodontal tissue health but
has no effect on the accumulation of plaque on the
tooth surface

Ben Lagha et al.,
2017 [100]

EGCG from green tea and
theaflavins from black tea In vitro F. nucleatum N/A

Inhibited the bacterial adhesion and F.
nucleatum-induced hemolysis
No effects on bacterial growth at
antiadhesive concentrations

Ben Lagha et al.,
2017 [101]

Theaflavins from
black tea In vitro P. gingivalis U937-3xκB-LUC

monocyte cell line

Inhibition of Arg- and Lys-gingipain and
bacterial adhesion
Enhanced tight junction integrity of
gingival keratinocytes

Tipton et al., 2016
[88]

Cranberry high molecular
weight non-dialyzable
material (NDM)

In vivo N/A

Normal human gingival
fibroblasts from a healthy
patient with
noninflamed gingiva

Inhibition of IL-6 and MMP-3 production by human
gingival fibroblasts
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Table 3. Cont.

Study Group Plants/Active
Components Study Design Pathogens Cells/Tissues/Animals Results

Inaba et al., 2016
[92]

Apple polyphenol (AP),
Hop bract polyphenol
(HBP), EGCG, KYT-1
(Arg-gingipain inhibitor);
and KYT-36
(Lys-gingipain inhibitor)
in combination

In vitro P. gingivalis OSCC cells

Inhibition of protease activated receptor 2 (PAR2) and
PAR4 mRNA expressions, pMMP-9 activation, and
cellular invasion
Reduced activation of heat shock protein 27 and Ets1
and nuclear translocation of nuclear
factor-kappa B (NFκ-B)

Widén et al., 2015
[73]

Blackcurrant and sea
buckthorn juices In vitro

S. mitis, S. mutans
S. sanguinis, S.
gordonii,
S. aureus,
S. epidermidis and
P. aeruginosa.

N/A Inhibition of bacterial growth

Shahzad et al.,
2015 [74]

Forty-eight purified
(HPLC grade) Polyphenol
compounds

In vitro

S. mitis
A.
actinomycetemcomitans
F. nucleatum
P. gingivalis

N/A
Antibacterial activities against periodontopathic
bacteria in both planktonic and biofilm
modes of growth

Kong et al., 2015
[77] Theaflavins In vitro P. gingivalis

Human gingival
fibroblasts (HGFs) from
healthy gingival tissue.

Antimicrobial effects against both planktonic culture
and biofilm of P. gingivalis
Inhibition of the proteinase activities of P. gingivalis
collagenase and gingipains
Reduction in the secretion and mRNA expression of
MMP-1 & MMP-2 by HGFs stimulated with P. gingivalis

Ben Lagha et al.,
2015 [89]

Wild Blueberry
(Vaccinium angustifolium
Ait.) Polyphenols

In vitro F. nucleatum U937-3xκB cells

Inhibition of F. nucleatum growth and biofilm formation
Inhibited the activation of NF-κB induced by
F. nucleatum
Inhibited the secretion of IL-1β, TNF-α, IL-6,
MMP-8 & MMP-9

Tipton et al., 2014
[90]

Cranberry high molecular
weight non-dialyzable
material (NDM)

In vitro N/A
Human gingival
epithelial cells
[Smulow-Glickman (S-G)]

Decreased nuclear levels of IL-1b-activated NF-jB (p65)
& AP-1 (phospho-c-Jun), inhibited IL-6 production.



Nutrients 2023, 15, 4384 18 of 32

Table 3. Cont.

Study Group Plants/Active
Components Study Design Pathogens Cells/Tissues/Animals Results

Jang et al., 2014 [78] Baicalein In vitro

S. mitis
S. mutans
S. sanguinis
S. sobrinus
S. oralis
Streptococcus ratti
F. nucleatum
A.
actinomycetemcomitans
P. gingivalis

N/A Inhibition of bacterial growth

Tipton et al., 2013
[91]

Cranberry high molecular
weight non-dialyzable
material (NDM)

In vitro N/A
Human gingival
epithelial cells and human
gingival fibroblasts

Inhibition of constitutive and IL-17-stimulated IL6 &
IL-8 production by epithelial cell and
gingival fibroblasts

Zdarilová et al.,
2010 [82]

Polyphenolic fraction of L.
caerulea berries In vitro P. gingivalis

Human gingival
fibroblasts from healthy
donors free of periodontal
disease.

Reduction of ROS production, intracellular glutathione
(GSH) depletion, and lipid peroxidation
Inhibited LPS-induced up-regulation of IL-1β, IL-6 and
TNF-α Suppressed expression of
cyclooxygenase-2 (COX-2)
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3.3. Polyphenols and Halitosis

Halitosis, commonly known as bad breath, is a dental condition characterized by an
unpleasant and offensive odor emanating from the oral cavity. Halitosis is highly prevalent,
including physiological or pathological halitosis. The latter can be classified further into
oral or extraoral halitosis, depending on the source of the odor [102]. Pathological halitosis
is mainly caused by the presence of Gram-negative bacteria in the oral cavity that pro-
duces volatile sulfur compounds (VSC) such as hydrogen sulfide (H2S), methyl mercaptan
(CH3SH), and dimethyl sulfide (C2H6S) [103,104]. Other factors contributing to halitosis in-
clude poor oral hygiene, tongue biofilm, food impacts, gum diseases, dental abscesses, dry
mouth, oral ulcers, respiratory infections, and other oral or systemic conditions [102,105].
Treatments for halitosis include the improvement of oral hygiene, utilization of antibacterial
mouthwashes, and medicinal plants with antimicrobial properties.

Polyphenolic compounds have been found to play an important role in the treatment
of halitosis (Table 4). These compounds, which are naturally present in fruits, vegetables,
and medicinal plants, possess antimicrobial properties and can help inhibit the bacteria
that contribute to the unpleasant odor [103]. Studies have shown that polyphenol-rich
plant extracts, such as those from pomegranate, cinnamon, rosemary, and other medicinal
plants, exhibit antibacterial activity against oral microorganisms, including those involved
in VSC production [103,106]. These extracts have been found to inhibit the growth of
bacteria in the oral cavity and reduce the formation of VSC, addressing the root cause of
halitosis. Liu et al. found that thinned-young apple polyphenols (YAP) exerted antibacterial
effects by destroying the cell membrane of halitosis-related bacteria, including P. gingivalis,
P. intermedius, and F. nucleatum [107].

The exact mechanisms by which polyphenols exert their antibacterial and anti-halitosis
effects are still being investigated. However, their antioxidant properties are believed to
play a role. Polyphenols can neutralize harmful free radicals and oxidative stress, which are
known to contribute to oral health problems, including halitosis (Figure 2, Table 4) [103,108].
Additionally, these compounds may interfere with bacterial metabolism and disrupt the
formation of VSC. Morin et al. reported that green tea extract and its major constituent
EGCG inhibited the growth of S. moorei by eradicating its pre-formed biofilms. Furthermore,
the activity of β-galactosidase in S. moorei, which is crucial for VSC production, was
inhibited in a dose-dependent manner by EGCG in green tea [106]. According to the
findings of a double-blinded and placebo-controlled clinical trial, the use of green tea
mouthwash (green tea extract contains more than 80% of total catechins) for 4 weeks
resulted in a significant reduction in VSC levels in individuals with gingivitis [109]. Lodhia
et al. demonstrated that green tea powder significantly reduced the concentration of both
H2S and CH3SH gases in subjects after administration [110]. Polyphenol-rich extracts from
medicinal plants as an alternative treatment for halitosis offer a natural and safer approach
compared to conventional mouthwashes that may have potential side effects. However,
further research is needed to determine the optimal concentrations and formulations of
these extracts for halitosis treatment, as well as their long-term effects. Incorporating
polyphenols into oral care products or dietary supplements may provide a natural and
effective solution for individuals suffering from bad breath.
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Table 4. Effects of polyphenols on halitosis.

Study Group Active
Components Study Design Pathogens Cells/Tissues Results

Liu. et al.,
2021 [107]

Thinned young
apple
polyphenols
(YAP)

in vitro
P. gingivalis,
P. intermedius,
F. nucleatum

N/A

Inhibition of halitosis-related bacteria
growth
Destroyed integrity and permeability of the
cell membrane

Veloso et al.,
2020 [103]

Crude extracts
obtained from
Jucá, Cinnamon,
Mallow,
Pomegranate,
Rosemary,
Macassá, Clove,
and Tamarind

in vitro

P. gingivalis,
P. intermedia,
F. nucleatum,
P. micra

N/A
Pomegranate extract was the only extract
that inhibited all the evaluated
microorganisms

Morin et al.,
2015 [106]

EGCG from
green tea in vitro S. moorei N/A

Inhibited S. moorei growth and bacterial
adherence
Reduction of the biofilm formation
Suppression of bacterial β-galactosidase
activity

Rassameemasmaung
et al., 2008 [109]

Green tea
mouthwash

Double-blinded
and
placebo-controlled
clinical trial in 60
gingivitis patients

N/A N/A Reduced VSC level in gingivitis subjects
after rinsing for 4 weeks

Lodhia et al.,
2008 [110]

Green tea
powder

In vitro and in vivo
studies;
Analyze the
concentration of
both H2S and
CH3SH gases

N/A N/A
Green tea exhibited significant temporary
Reduced oral malodor due to its disinfectant
and deodorizing properties

3.4. Polyphenols and Oral Cancer

Oral cancers, particularly OSCCs, account for approximately 90% of head and neck
cancers [111]. OSCCs are characterized by the development of malignant cells in the
squamous cells that line the oral cavity, including the lips, tongue, gums, lining of the
cheeks, and floor of the mouth. The progression of OSCCs typically starts with changes
in the normal oral mucosa, leading to the formation of precancerous lesions such as
leukoplakia or erythroplakia [112]. The development of these tumors is influenced by
multiple factors, starting with the cancerous lesions of the normal mucosa and eventually
progressing to metastasis. Among the main risk factors, excessive alcohol consumption
and tobacco use are considered leading causes due to their proinflammatory effects [113].
Despite advancements in therapeutic strategies such as chemotherapy, radiotherapy, and
surgery, the 5-year survival rate of OSCCs was less than 50% [114]. Therefore, novel relief
agents and treatment approaches for OSCCs are a critical need.

In the past decade, the potential preventive and therapeutic effects of various polyphe-
nols against OSCCs have been reported. Polyphenols interfere with the cell cycle and
inhibit the invasion of cancer cells into other tissues and organs [12]. They have been
shown to have anti-inflammatory, antioxidant, and anti-carcinogenic effects as well [7]
(Figure 2, Table 5).

Polyphenolic compounds found in green and black tea, such as catechins, theaflavins,
polymeric thearubigins, and EGCG, suppress the growth and division of oral cancer cells
in vitro [49,115–117]. Studies on hamsters and rats also showed similar effects. Admin-
istration of black tea polyphenols significantly decreased tumor incidence in the buccal
pouch of male Syrian hamsters [118]. Srinivasan et al. demonstrated that the treatment
of green tea polyphenols declined the number of tumors, tumor volume, and OSCCs in
4-nitroquinoline-1-oxide -induced rats [119]. Sharma et al. reported that the polyphenolic
flavonoids found in defatted seeds of Azadirachta indica and Momordica charantia exhibited
antiproliferative activity against Human oral epidermal carcinoma KB cells [120]. A study
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by King et al. showed the dose-dependent inhibition of cellular proliferation in OSCC
cells with grape seed PAC. In addition, the administration of PAC reduced the increased
proliferation of OSCCs after transfection with HPV 16 (human papillomavirus 16) [121].

The effect of polyphenols on apoptosis in oral cancer cells has also been studied
(Table 5). Treatment of OSCC cells with cranberry and grape seed extracts partially up-
regulated the expression of apoptosis-specific molecules, such as caspase-2 and
caspase-8 [116]. Specifically, treatment with PAC ranging from 50 to 70 µg/mL for OSCCs
was found to increase caspase-2 and caspase-8 expression [122]. Black tea polyphenols were
also found to reduce the incidence of DMBA (7,12-dimethylbenz [a]anthracene)-induced
hamster buccal pouch carcinogenesis by modulating biomarkers of cell proliferation, an-
giogenesis, and apoptosis [118]. These results demonstrate that polyphenol-associated
apoptosis is mitochondria-targeted and caspase 8 dependent.

Polyphenols interfere with the signaling pathways involved in oral cancer develop-
ment and progression (Table 5). Fan et al. illustrated that anthocyanins from a species
of black rice have the potential to inhibit the metastasis of CAL 27 cells. This nutrient
reduces the expression of MMP-2, MMP-9, and NF-κB p65 through the suppression of
the PI3K/Akt pathway and the inhibition of NF-κB [123]. A study found that EGCG
demonstrated a dose-dependent inhibitory effect on the invasion and migration of OC2
cells without causing cytotoxicity (ref). Additionally, EGCG was found to decrease the
expression levels of MMP-2, MMP-9, and u-PA in a concentration-dependent manner [124].
Moreover, it significantly inhibits the invasion, motility, migration, and secretion of MMP-2
and u-PA in SCC-9 oral cancer cells by attenuating p-FAK and p-Src. EGCG also inhibited
the tumor growth of SCC-9 cells in vivo via cancer cell xenografted nude mice model [125].
These findings suggest that polyphenols have the potential to inhibit the invasion and
migration of oral cancer cells through the regulation of key proteins involved in these
processes (Figure 2).

Evidence from human studies regarding the function of polyphenols has also accu-
mulated. Recently, a randomized placebo-controlled phase 1 trial of APG-157 (a botanical
drug containing multiple polyphenols, including curcumin) in oral cancer suggested that
the material can be easily absorbed, showing an inhibitory effect on cytokines and tumor-
associated microbes [126]. APG-157 reduced the levels of IL-1β, IL-6, and IL-8 in the saliva
of patients, and the analysis of microbial flora showed a decrease in Bacteroides species [126].
These results illustrated that polyphenols are chemopreventive and are potential thera-
peutic agents against OSCCs. However, the bioavailability and handling of polyphenols
can be challenging due to their unfavorable physicochemical properties. Further research
is needed to develop effective drug delivery systems that can improve the clinical use of
polyphenols in the treatment of OSCCs.
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Table 5. Effects of polyphenols on Oral cancers.

Study Group Active Components Study Design Cells/Tissues/Animals Results

Sharma et al., 2023 [120] Defatted seeds of Azadirachta indica and
Momordica charantia in vitro Human oral epidermal carcinoma KB

cell line

Bioactive extracts had antiproliferative activity and
antioxidant capacity
Suppressed KB cells
Binding efficacy against tumor suppressor gene
regulatory function

Nimbalkar et al., 2022 [127] Polymeric black tea polyphenols
(PBPs)/thearubigins (TRs) in vivo Hamster model of oral carcinogenesis Modulated EGFR pathway associated with cell proliferation,

hypoxia, and angiogenesis.

Liu et al., 2022
[128] Grape seed proanthocyanidins (PAC) in vitro

Oral squamous cell carcinoma cell
lines SCC-4,
Human oral squamous cell carcinoma
cell lines HSC-3

Developed a complex coacervates-based delivery of PAC
Inhibited cell proliferation, migration, and invasion of
cancer cells
Reduction of MMP-2, MMP-9, and MMP-13
Suppressed protein kinase B (Akt) pathway

Basak et al., 2020 [126]
APG-157 (a botanical drug containing
multiple polyphenols,
including curcumin)

Phase I clinical trial (n = 25) N/A

Reduced IL-1β, IL-6, and IL-8 concentrations in the salivary
supernatant fluid of patients with cancer
Reduction in Bacteroidetes species in cancer subjects
Up-regulation of genes associated with differentiation and
T-cell recruitment to the tumor microenvironment.

Sheng et al., 2018 [129] Resveratrol, epigallocatechin gallate
(EGCG), and tannic acid in vitro

Normal human oral keratinocytes
NHOKs, Human oral squamous cell
carcinoma cell lines HSC-2

Resveratrol in combination with doxorubicin additively
augmented doxorubicin cytotoxicity in both types of cells.
EGCG and tannic acid alleviated the toxicity caused by
doxorubicin in keratinocytes, primarily by reducing
doxorubicin-induced necrosis in normal human
oral keratinocytes

Huang et al., 2018 [130] Hydrogels formed ellagic acid (EA)
and EGCG in vitro Human oral cancer cell line CAL-27 Long-term steady-state release of bioactive EA

Reduced viability of CAL-27 human oral cancer cells

Fan et al., 2015
[123]

Anthocyanins from black rice
(Oryza sativa L.) in vitro Human oral cancer cell line CAL-27

Suppression of CAL 27 cell metastasis
Reduction in MMP-2, MMP-9, and NF-κB p65 expression
through the suppression of PI3K/Akt pathway
Inhibition of NF-κB levels

Chang et al., 2012 [115] Black tea polyphenol extracts (BTE) in vitro and
in vivo

Oral squamous cell carcinoma cell
lines SCC-4
5-week-old immunodeficient nude mice

Up-regulation of epithelial markers such as E-cadherin
Inhibition of mesenchymal markers such as snail-1
and vimentin
Inhibition of the tumor growth of SCC-4 cells via cancer cell
xenografted nude mice mode
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Table 5. Cont.

Study Group Active Components Study Design Cells/Tissues/Animals Results

Chen et al., 2011 [125] Green tea polyphenol epigallocatechin-3
gallate (EGCG)

in vitro and
in vivo

Oral squamous cell carcinoma cell
lines SCC-9
5-week-old immunodeficient nude mice

Inhibition of p-focal adhesion kinase (p-FAK), p-Src, snail-1,
and vimentin
Inhibition on the tumor growth of SCC-9 cells in vivo

Chatelain et al., 2011 [116] Cranberry and grape seed extracts in vitro Oral squamous cell carcinoma cell lines
CAL-27 and SCC-25

Inhibition of oral cancer proliferation
Up-regulation of caspase-2 and caspase-8 levels

Kingsley et al., 2010 [122] Proanthocyanidins (PAC) in vitro Oral squamous cell carcinoma cell lines
CAL-27 and SCC-25

Inhibition of oral cancer proliferation
Up-regulation of caspase-2 and caspase-8 levels
Down-regulation of specific cell-cycle regulators

Srinivasan et al., 2008 [119] Green tea polyphenols in vivo Wistar strain male albino rats Reduced the number of tumors, tumor volume, and oral
squamous cell carcinoma

Letchoumy et al., 2008 [131] Black tea polyphenols Polyphenon-B
and BTF-35 in vivo Male Syrian hamsters aged 6–10 weeks

weighing between 90–110 g

Decreased tumor incidence, oxidative DNA damage, phase I
enzyme activities
Reduction in CYP1A1 and CYP1B1
Enhanced phase II enzyme activities in the buccal pouch
and liver

Mohan et al., 2007 [117]
Green and black tea polyphenols alone
and in combination with bovine milk
lactoferrin (bLF)

in vitro
Human tongue squamous carcinoma
CAL-27 and normal human gingival
fibroblast (HGF) cells

Inhibition of CAL-27 cell growth
Transduced the apoptosis signal via the generation of reactive
oxygen species and decrease in the Bcl-2/Bax ratio
Activation of caspase-3

Letchoumy et al., 2007 [118] Black tea polyphenols, Polyphenon-B,
and BTF-35 in vivo Male Syrian hamsters aged 6–10 weeks

weighing between 90–110 g

Reduced the incidence of DMBA-induced hamster buccal
pouch carcinomas by modulating markers of cell proliferation,
cell survival, tumor infiltration, angiogenesis, and apoptosis

King et al., 2007 [121] Proanthocyanidin (PAC) in vitro

Human oral squamous cell carcinoma
CAL 27, human cervical carcinoma Ca
Ski, human cervical adenocarcinoma
GH354, and human foreskin fibroblasts
Hs27 cell lines

Suppression of cellular proliferation of OSCC
Induced apoptosis in cervical and oral cancer cell lines

Ho et al.,
2007 [124] Epigallocatechin-3-gallate (EGCG) in vitro OC2 cells

Inhibited invasion and migration of OC2 cells
Decreased expressions of MMP-2, MMP-9, and uPA in a
dose-dependent manner
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4. Discussion

Polyphenols have gained significant attention in biomedical fields due to their var-
ious beneficial properties, including antioxidant ability, antibacterial activity, and anti-
inflammatory activity. Moreover, numerous researches have shown that polyphenols play
critical roles in maintaining oral health and oral microbiota, which benefits oral health
and overall well-being for humans. However, it is important to note that the therapeu-
tic activities of polyphenols are limited by their poor bioavailability. Polyphenols are
typically applied in the form of mouthwashes, gels, or tinctures in oral infections, such
as gel containing Scutellaria baicalensis(S. baicalensis) root extract (commercially known
as Baikadent®) widely used in the treatment of oral inflammation (Figure 3). The direct
contact of functional molecules with pathogens on the mucosa or teeth surface allows the
antibacterial effects. However, the penetration of polyphenols into deeper regions of the
oral mucosa may be limited, depending on the mucosal surface type and the duration of
action. Additionally, the poor stability of certain polyphenols, such as EGCG from tea,
further limits their potential application.
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Figure 3. Current approaches and prospects of polyphenols-based oral hygiene. Diverse strategies
are employed in polyphenols-based oral hygiene, ranging from conventional methods to cutting-
edge developments in biomaterials. Current approaches include widely-used products for routine
cleaning, e.g., toothpaste and mouthwash; saliva stimulation, e.g., chewing gum and lozenges;
or even polyphenols-containing gels and tinctures. Emerging trends include the development of
hydrogels, human-like collagen, and other new biomaterials, such as nanoparticles, programmed
core-shell nanofibers, and ceramic granulated biomaterials.
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Further research is needed to explore the bioaccessibility of polyphenols and develop
modern delivery systems to enhance their effectiveness. In addition, the stability and
bioavailability of polyphenols can be improved through techniques such as nanoencapsula-
tion, which protects sensitive ingredients from degradation and enhances their absorption
across biological barriers. Recently, several studies have demonstrated the potential appli-
cations of polyphenols combined with different materials in the treatment of oral diseases
(Figure 3). He et al. developed a programmed core-shell nanofiber that allows the sequential
and controlled release of tea polyphenols and AdipoRon. The nanofibers can alleviate peri-
odontal tissue inflammation and promote bone regeneration to repair periodontitis-related
alveolar bone defects in vivo. These findings suggest that the programmed core-shell
nanofibers have potential applications in the treatment of periodontitis [97]. A ceramic
granulated biomaterial containing phenolic molecules was considered an innovative regen-
erative approach in periodontal therapy [80]. Nanovesicles in-situ gel based on the EGCG
phospholipid complex improved its stability and bioavailability [61]. Polyphenols-linked
hydrogels are also new directions in the treatment of oral diseases for the gradual release of
bioactive components [132,133]. Ellagic acid (EA)-linked hydrogels were found to provide
long-term sustained release of bioactive polyphenols and significantly suppress the CAL-27
human oral cancer cell viability [130]. Using the oxidative self-polymerization principle, Qi
et al. prepared polyphonic nanoparticles, which were encapsulated into thermosensitive
type in-situ hydrogel. The effective constituent can be released continuously for 96 h under
the periodontitis environment [96]. It has been demonstrated that human-like collagen has
properties that contribute to tissue healing and regeneration, including promoting collagen
deposition, regulating growth factors, and reducing inflammation [134,135]. Due to its
outstanding biocompatibility, minimal immunogenicity, and ability of natural degradation
polyphenols combined with human-like collagen have great potential in the treatment of
oral diseases.

Polyphenols have a stimulating effect on host cells. Several studies suggested that
polyphenols, such as EGCG, theaflavin, and resveratrol, can induce human beta-defensin
(hBD) secretion in oral epithelial cells [136–138]. Lombardo et al. found that tea polyphe-
nols induced hBD secretion in gingival epithelial cells and protected hBDs from proteolytic
degradation by P. gingivalis [136]. When oral pathogens invade the oral tissues or biofilms
form on the tooth surface, antimicrobial peptides are released to combat the pathogens
and maintain microbial balance [137]. In addition to their direct antimicrobial effects, an-
timicrobial peptides also have other beneficial functions in oral health, such as modulating
the inflammatory response and promoting wound healing and tissue repair in the oral
cavity [138]. Polyphenol-induced antimicrobial peptides in the oral cavity regulate the oral
microbiota and play a role in oral health. The interaction between polyphenol, pathogen,
and host cells opens up a new research direction in the future.

The potential benefits of polyphenols in managing and treating oral diseases suggest
that these molecules should be carefully evaluated in clinical settings. While there are
many studies conducted in laboratory and animal models that demonstrate the potential
benefits of polyphenols in oral health, strong evidence from well-designed clinical trials
is still limited. Future research should focus on the applications in humans and evaluate
the long-term benefits and safety of polyphenols in preventing and treating oral diseases.
With the advances in precision medicine, there is a growing interest in personalized treat-
ment approaches. Polyphenols, with their diverse pharmacological activities, could be
tailored to individuals based on their specific oral health needs and microbial profiles. This
personalized approach could lead to more targeted and effective oral health interventions.

While dietary polyphenols offer numerous benefits, they are not a panacea but rather
should be part of a balanced diet. Various foods contain different types and amounts
of polyphenols, and incorporating a variety of fruits, vegetables, nuts, and grains into
your diet can maximize the benefits of dietary polyphenols. Additionally, the intake of
dietary polyphenols should be moderate to avoid potential adverse effects, as excessive
consumption may not always be beneficial and may even lead to digestive issues such as
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stomach upset, diarrhea, or constipation. Additionally, some individuals may be sensitive
or allergic to specific polyphenols, resulting in adverse reactions such as skin rashes or
headaches. Moreover, polyphenols can interact with medications, potentially reducing
their effectiveness or causing unwanted side effects. Furthermore, utilizing polyphenolic
lozenges, toothpaste, mouthwash, and other products to maintain good oral hygiene
practices helps remove plaque, balance the oral microbiota, and prevent tooth decay and
other oral disease.

It should be emphasized that tooth decay, gum disease, and bad breath often occur
during aging and further exacerbate our health condition. Polyphenols possessing strong
antioxidant properties can help combat oxidative stress, which is particularly important
for aging. By reducing cellular damage and inflammation, polyphenols may function
to slow the aging process. Several polyphenols such as curcumin, resveratrol, quercetin,
EGCG, and tyrosol, were found to have anti-aging effects and could promote oral health by
combating oxidative stress and inflammation [139]. Therefore, polyphenols as functional
foods might not only serve as a novel strategy to promote oral health but also prevent oral
disease indirectly through their anti-aging effects.

5. Conclusions

Oral and periodontal diseases are primarily caused by an imbalance in the oral mi-
crobiome and the subsequent host immune response [30]. The studies summarized in
this review demonstrated the antimicrobial properties of the polyphenols, which help
in inhibiting the growth of pathogenic microorganisms and maintaining a balanced oral
microbiota. Polyphenols also have antioxidant and anti-inflammatory activities, reducing
inflammation and oxidative stress in the oral cavity [6]. Additionally, polyphenols can in-
hibit the attachment and biofilm formation of bacteria, preventing dental plaque formation
and promoting oral hygiene [140]. Overall, polyphenols are crucial for the maintenance
of oral health and the balance of the oral ecosystem, which is vital for overall human
health. Future studies should aim to reveal more information about the interaction between
polyphenols, pathogens, and host cells. Long-term clinical studies of reliable polyphenol
delivery systems and combination therapy with antibiotics will also be useful.

In summary, research on the functions, working mechanisms, and applications of food-
originated polyphenols in oral health is important for the overall well-being of humans.
The progressions in polyphenol-based microecology control and oral disease prevention
highlight new directions for safe, convenient oral health maintenance. More importantly,
the exploration of polyphenols opens up new avenues for the management of oral disease,
and the achievements in animal studies and clinical trials provide insight to advance
treatments and cost-effective healthcare strategies in the future.
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