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Abstract: We previously reported that proinflammatory cytokines, particularly tumor necrosis factor
(TNF)-α, promoted tumor migration, invasion, and proliferation, thus worsening the prognosis of
glioblastoma (GBM). Urolithins, the potent metabolites produced by the gut from pomegranate
polyphenols, have anticancer properties. To develop an effective therapy for GBM, this study aimed
to study the effects of urolithins against GBM. Urolithin A and B significantly reduced GBM migration,
reduced epithelial–mesenchymal transition, and inhibited tumor growth. Moreover, urolithin A
and B inhibited TNF-α-induced vascular cell adhesion molecule (VCAM)-1 and programmed death
ligand 1 (PD-L1) expression, thereby reducing human monocyte (HM) binding to GBM cells. Aryl
hydrocarbon receptor (AhR) level had higher expression in patients with glioma than in healthy
individuals. Urolithins are considered pharmacological antagonists of AhR. We demonstrated that the
inhibition of AhR reduced TNF-α-stimulated VCAM-1 and PD-L1 expression. Furthermore, human
macrophage condition medium enhanced expression of PD-L1 in human GBM cells. Administration
of the AhR antagonist attenuated the enhancement of PD-L1, indicating the AhR modulation in
GBM progression. The modulatory effects of urolithins in GBM involve inhibiting the Akt and
epidermal growth factor receptor pathways. The present study suggests that urolithins can inhibit
GBM progression and provide valuable information for anti-GBM strategy.

Keywords: urolithins; AhR; glioblastoma; VCAM-1; PD-L1

1. Introduction

GBM is a serious primary malignant central nervous system tumor in adults because
of its rapid growth rate and extensive invasion of surrounding tissue [1]. A heteroge-
nous tumor microenvironment (TME) and the adaptive nature of GBMs are the major
contributors to treatment ineffectiveness [2]. The TME comprises both cancerous and non-
cancerous cells that contribute to the progression of GBM [3]. The majority of noncancerous
TME constituents are microglia and peripheral monocytes/macrophages (so-called tumor-
associated macrophages (TAMs)), which constitute as many as 30–50% of cells in GBM
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tissue [4]. A study demonstrated a positive correlation between the expression of CD11b-
positive myeloid cell populations and tumor proliferation in human glioma, suggesting the
regulatory role of TAMs in tumor progression [5]. In addition, tumor-infiltrating myeloid
cells contribute to the expression of immune checkpoint programmed death ligand 1 (PD-
L1), which negatively regulates T-cell functions in GBM [6]. Patients with GBM have higher
levels of PD-L1 in their peripheral blood monocytes and tumor-infiltrating macrophages,
which induce autologous T-cell apoptosis [7]. Clinically, the increased PD-L1 expression in
patients with GBM correlates with poor prognosis. Patients with GBM express higher levels
of PD-L1 than those with grade I, II, or III glioma [8]. Therefore, targeting the suppression
of tumor growth and management of monocyte/macrophage infiltration would benefit the
development of therapeutic strategies for GBM.

Pomegranate has strong antioxidative and anti-inflammatory effects and can be used
to treat various chronic diseases [9–11]. Pomegranate contains several phytochemical
compounds such as hydrolysable tannins (ellagitannins and gallotannins), condensed
tannins, flavonoids, and phenolic acids that confer therapeutic effects [12].Urolithins are
metabolites obtained from gut microbiota following the consumption of ellagic acid or
ellagitannin obtained from pomegranate [13,14]. Urolithin A and urolithin B are a class of
secondary polyphenolic metabolites produced by the gut microbiota–mediated degradation
of ellagitannins and ellagic acid-abundant foods such as pomegranates [15]. Urolithin A can
repair damaged neurons, suppress the apoptosis of hippocampal cells, and reduce amyloid
β levels [16]. Urolithin A has neuroprotective effects against Parkinson’s disease and brain
aging [17,18]. Urolithin B reduced inflammatory cytokines in the small intestine of aging
mice [19] and in a mouse model of D-gal-induced Alzheimer’s disease [20]. Urolithin A
also strongly suppresses the cell proliferation of a variety of cancers [21–25]. Although
numerous reports have shown the inhibitory effects of urolithin A against different tumors,
the inhibition of GBM proliferation by urolithins has rarely been explored.

Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, responds to
endogenous signals, xenobiotic chemicals, and the toxicity of dioxin-like chemicals [26,27].
AhR regulates downstream genes through transcriptional expression that modulates critical
cellular activities, such as the induction of metabolizing enzymes and embryonic develop-
ment [28,29]. AhR may be constitutively active in tumors and promote their development
because it is overexpressed in various tumor types [30,31]. Moreover, AhR controls cancer
cell survival and tumor-associated immune system functions [26]. Urolithins are considered
an AhR antagonist [32]. Treatment with urolithin A reduces colitis through the AhR recep-
tor [33]. Urolithin A also ameliorated experimental autoimmune encephalomyelitis [34]
and carrageenan-induced paw edema in mice models [35] by targeting the AhR receptor.

This study elucidated the modulatory mechanism explaining the effects of urolithins
on GBM motility and proliferation, and the effects of urolithins on the TME of GBM. We
also assessed the inhibitory regulation of AhR in GBM progression.

2. Materials and Methods
2.1. Materials

Urolithin A, urolithin B, phorbol 12-myristate 13-acetate (PMA), 6,2′,4′-trimethoxyflavone
(TMF), and primary antibodies against vimentin, α-tubulin, and GAPDH were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Primary antibodies against β-catenin, VCAM-1, and
PD-L1 were obtained from Abcam (Cambridge, UK). Primary antibodies against N-cadherin,
p-AKT, and p-STAT3 were acquired from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
The primary antibody against EGFR was obtained from Cell Signaling Technology (Danvers,
MA, USA). BCEFC/AM was purchased from Invitrogen (Carlsbad, CA, USA).

2.2. Cell Culture

U251 human glioma cells were obtained from the JCRB NO. IFO50288, Japan. U87
human glioma, ALTS1C1 mouse glioma, and THP-1 human monocytes were obtained
from the Bioresource Collection and Research Center (BCRC No. 60360, 60430 and 60582;
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Hsinchu, Taiwan). U251 and U87 cells were cultured in Minimum Essential Medium (MEM)
supplemented with 10% FBS and 1% PS. THP-1 was cultured in RPMI-1640 medium with
10% FBS (fetal bovine serum), 1% PS, and 2-Mercaptoethanol. ALTS1C1 was cultured in
Dulbecco’s MEM. All cell lines were cultured at 37 ◦C in a humidified incubator containing
5% CO2 and 95% air.

2.3. Migration Assay

U251 and ALTS1C1 GBM cells were pretreated with urolithin A or urolithin B for 24 h.
Then, 1.5 × 104 cells were seeded in the Culture-Insert (Ibidi, München, DE, Germany).
The insert was removed after 4 h of culture. Cell migration was detected and photographed
using a light microscope and a digital camera at 0 and 24 h after the removal of the insert.
Transmigration was performed according to our previous study [36]. Briefly, 5 × 104 cells
were plated in the Costar transwell insert (Costar, NY, USA). The migrated cells were
stained with crystal violet and photographed using a microscope with digital camera.

2.4. Western Blotting

To prepare total protein lysates, radioimmunoprecipitation assay (RIPA) cell lysis
buffer, containing protease and phosphatase inhibitor cocktails, was added to the cells.
Then, cells were collected using a cell scraper and kept on ice for 10 min. The samples were
centrifuged for 20 min at 12,000 rpm and 4 ◦C. Supernatants were collected and stored
at −20 ◦C. Protein samples (30 µg) were denatured in Laemmli buffer at 95 ◦C for 5 min,
separated using SDS-page electrophoresis, and transferred to polyvinylidene difluoride
(PVDF) membranes (Millipore, Bedford, MA, USA). The membranes were blocked with 5%
non-fat milk in tris-buffered saline buffer with tween 20. Membranes were washed three
times and incubated with primary antibodies at 4 ◦C overnight followed by secondary
antibodies at room temperature for another 1 h. The antibodies were removed and washed
several times. The blots were visualized by ECL and Kodak X-OMAT LS film (Eastman
Kodak, Rochester, NY, USA). The quantitative results were obtained using ImageJ software
1.53t (National Institutes of Health, Bethesda, MD, USA).

2.5. Colony Formation

A total of 1 × 103 GBM cells were seeded on the 3.5 cm dish and treated with urolithin
A or urolithin B for 14 days. Medium containing urolithins was renewed every three days.
Cells were stained with 0.1% crystal violet for 1 h. Then, cell colony formation was detected
and photographed using a digital camera.

2.6. Cell Viability Assay

Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. The procedure of MTT assay was performed according to our
previous report [37].

2.7. Monocyte Binding Assay

The procedure of monocyte binding assay was performed according to our previous
report [38]. Briefly, GBM cells were treated with urolithin A or urolithin B for 24 h. THP-1
cells were stained with 200 ng/mL BCEFC/AM for 1 h at 37 ◦C. The excess of BCEFC/AM
was washed twice using a fresh culture medium. The monolayer of GBM cells were added
to the BCEFC/AM-labeled THP-1 (3 × 105 cells) and incubated at 37 ◦C for 30 min. Then,
the medium and non-binding monocyte cells were removed and washed gently with
fresh culture medium twice. The adherent THP-1 cells were captured by a fluorescence
microscope and analyzed by the Image J software.

2.8. Human Macrophage Conditioned Medium (HMCM) Collection

THP-1 monocytes (5 × 105) were seeded on 3.5 cm dishes and treated with 100 nM
PMA for 3 days. The spent medium was replaced with fresh medium. Cells were allowed



Nutrients 2023, 15, 4854 4 of 17

to rest for 1 day. After 3 days of culture, the conditioned medium was assembled and stored
at −80 ◦C for future treating of GBM cells.

2.9. Cell Transfection

GBM cells were seeded on 6-well plate (3× 105 cells/well). The smart pool siRNA against
non-targeting control or AhR were premixed with serum-free medium and DharmaFECT
transfection reagents (Dharmacon, Lafayette, CO, USA) and then applied to the cells.

2.10. ELISA Assay

A human soluble VCAM-1 DuoSet ELISA kit was purchased from R&D Systems
(Minneapolis, MN, USA) and used for the quantification of soluble VCAM-1 protein
secreted to the supernatant of GBM culture. The assay was performed according to the
manufacturer’s instructions. The results were determined using the EPOACH2 microplate
reader (Bio-Tek, Winooski, VT, USA) at OD 450 nm.

2.11. Tumor Xenograft

All animal studies were performed in accordance with the Institutional Animal
Care and Use Committee (IACUC) of China Medical University. Male C57BL/6 mice
(10-week-old) were obtained from the National Laboratory Animal Center (Taipei, Tai-
wan), and kept with water and food consumption ad libitum under standard laboratory
conditions. A total of 1 × 107 mouse ALTS1C1 GBM cells were dissociated in 100 µL
PBS, and were subcutaneously inoculated into the rear flank. Urolithin A (40 mg/kg) and
vehicle were orally administered once per day. Tumor volume was measured 7 days after
tumor transplantation.

2.12. Statistics

Results are displayed as the mean ± S.E.M. All the data were performed with at least
three biologically independent replicates. The significant difference between two samples
was assessed using a Student’s t-test. * p-values < 0.05 were supposed significant and
indicated in the figure legends. Statistical analysis was implemented by using SigmaPlot
software (version 10.0, Systat Software Inc., San Jose, CA, USA).

3. Result
3.1. Urolithins Inhibit Migration Ability and Cell Proliferation in GBM

During the development of GBM, cancer cells can migrate to distant areas and exhibit
metastatic activity caused by the epithelial–mesenchymal transition (EMT) proteins [39].
In this study, we demonstrated that human GBM cells exhibited increased motility at 24 h
post-culture compared with at 0 h in a wound healing assay (Figure 1A,C). Moreover,
treatment with urolithin A (Figure 1A,B) and urolithin B (Figure 1C,D) for 24 h markedly
reduced the migration ability of GBM cells. Furthermore, the transmigration ability of GBM
cells was suppressed by urolithin A treatment as well (Figure 1E,F and Supplementary
Figure S1A,B). We examined the expression of EMT-associated proteins as a contributors
to cell motility in GBM cells following urolithin treatment. As shown in Figure 1G,H, the
protein expression of vimentin, N-cadherin, and β-catenin was substantially reduced by
treatment with urolithin A (Figure 1G,H and Supplementary Figure S1C,D). Treatment
with urolithin B also attenuated vimentin, N-cadherin, and β-catenin protein expression
(Figure 1G,H and Supplementary Figure S1C,D). Effects of urolithin A on GBM proliferative
activity was further determined. In Figure 2A,B, the colony formation in human GBM cells
without any treatment was greater than in GBM cells treated with urolithin A. Furthermore,
the colony formation was inhibited by urolithin A in mouse GBM cells (Figure 2C,D).
In addition, urolithins also suppressed the GBM cells proliferation after 72 h treatment
(Figure 2E). This indicates that urolithins effectively reduce cell motility and viability in
GBM cells.
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Figure 1. Inhibition of GBM migration and epithelial–mesenchymal transition by urolithin A and
urolithin B. U251 cells were incubated with urolithins for 24 h. Migration ability was determined
by a wound healing assay and visualized using a digital camera following treatment with urolithin
A (A,B) and B (C,D). Transmigration ability was determined using a transwell assay and visual-
ized using a microscope following treatment with urolithin A (E,F). Vimentin, N-cadherin, and
β-catenin protein expression levels were determined by Western blotting (G,H). Each bar represents
the mean ± standard error of the mean (n = 3). * p < 0.05 compared with the control group.
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Figure 2. Urolithin A and urolithin B inhibit GBM cell growth. U251 human (A) and ALTS1C1 mouse
(C) GBM cells were administrated with urolithin A for 14 days. Medium containing urolithin A was
replaced every 3 days. Cells were incubated with 0.1% crystal violet for 1 h. Colony formation was
captured using a microscope. Quantitative results shown in (B,D). (E) U251 human GBM cells were
treated with various concentrations of urolithin A (2, 5 and 10 µM) for 24, 48, and 72 h. The cell
viability was detected by MTT assay. Each bar represents the mean ± standard error of the mean
(n = 3). * p < 0.05 compared with the control group.

3.2. Urolithins Reduce Expression of VCAM-1 and PD-L1 in GBM Cells

We previously have reported that proinflammatory cytokines, which are abundantly
produced in the TME, regulated the expression of VCAM-1, thus promoting the inva-
sion of monocytes or macrophages to GBM cells and worsening GBM outcomes [38,40].
Here, we used tumor necrosis factor (TNF)-α to promote the expression of VCAM-1 in
GBM cells to evaluate the anticancer effects of urolithins. TNF-α stimulates the expres-
sion of VCAM-1 protein in U251 human GBM cells (Figure 3A,C) and U87 GBM cells
(Supplementary Figure S2A). Treatment with urolithin A (Figure 3A) and B (Figure 3C)
sharply reduced TNF-α-enhanced VCAM-1 protein expression in U251 and U87
(Supplementary Figure S2A) GBM cells. Furthermore, TNF-α markedly enhanced the
expression of PD-L1 proteins in U251 (Figure 3A,C) and U87 (Supplementary Figure S2A)
GBM cells, which was reversed following treatment with urolithin A (Figure 3A) or
urolithin B (Figure 3C). We also detected soluble VCAM-1 in U251 human GBM. Stimula-
tion of TNF-α expression significantly enhanced soluble VCAM-1 expression (Figure 3B).
Urolithin A administration also reduced the enhancement of soluble VCAM-1 expression
(Figure 3B). Subsequently, the ability of monocytes to bind to GBM was determined us-
ing a monocyte-binding assay. Stimulation of TNF-α enhanced monocyte adhesion on



Nutrients 2023, 15, 4854 7 of 17

GBM cells (Figure 3D,E). Treatment with urolithin A significantly reduced TNF-α-induced
monocyte adhesion to GBM cells (Figure 3D,E). These results indicate that urolithins effec-
tively attenuate VCAM-1 and PD-L1 expression, thereby reducing monocyte adhesion to
GBM cells.
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Figure 3. Urolithins inhibit tumor necrosis factor (TNF)-α-induced expression of vascular cell
adhesion molecule (VCAM)-1 and programmed death ligand (PD-L1) and reduce monocyte adhesion
in GBM. U251 human GBM cells were treated with urolithins for 30 min and stimulated with TNF-
α for another 24 h. Expression of VCAM-1 and PD-L1 were determined using Western blotting
following treatment with urolithin A (A) and B (C). (B) After 24 h of TNF-α stimulation, fresh serum-
free medium was replaced and cultured for another 24 h. Supernatants were collected. sVCAM-1
expression was determined by using ELISA assay. (D) U251 GBM cells were pretreated with urolithin
A for 30 min and stimulated with TNF-α for another 24 h. Then BCECF-AM-labeled THP-1 cells
were added to GBM cells for 30 min. Quantitative results shown in (E). Each bar represents the
mean ± standard error of the mean (n = 3). * p < 0.05 compared with the control group. # p < 0.05
compared with the TNF-α group.
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3.3. Involvement of Adhesion Molecules in AhR Regulation of GBM Progression

First, we assessed whether the modulatory effects of urolithins in GBM involve AhR
expression. First, we analyzed AhR gene expression using the human glioma microarray
data set GSE4290. AhR expression in patients with all grades of glioma (grades II and III and
GBM) was higher than that of patients without tumors and the level of expression correlated
with the clinical grades (Figure 4A), indicating the regulatory role of AhR in GBM. Subse-
quently, we used an AhR-selective pharmacological antagonist, 6,2′,4′-trimethoxyflavone
(TMF), to study the effects of AhR on GBM progression. As shown in Figure 4B, treatment
with TMF markedly reduced the enhancement of VCAM-1 protein expression induced
by TNF-α. TMF treatment also reduced TNF-α-induced soluble VCAM-1 expression in
both human U251 and U87 GBM (Figure 4C). The administration of TMF alone did not
affect monocytes binding to GBM cells (Figure 4D,E). TNF-α-enhanced monocyte GBM
adhesion was reduced following TMF treatment (Figure 4D,E). The cell viability of GBM
was not changed with urolithin A, TMF, or cotreatment until 48 h (Figure 4F). But the cell
viability was decreased when GBM cells were treated with urolithin A, TMF, or cotreatment
at 72 h (Figure 4F). In addition, cotreatment of urolithin A and TMF did not exacerbate
the GBM death (Figure 4F). Moreover, treatment of urolithin A or TMF also reduced the
migration of GBM cells, but the treatment of urolithin A and TMF did not reduce mi-
gration more than the treatment alone group (Figure 4G,H). Additionally, we used small
interfering RNA (siRNA) against AhR to confirm the anti-GBM effects of urolithins. The
TNF-α-induced VCAM-1 and PD-L1 expression were reduced when transfected with AhR
siRNA (Supplementary Figure S2B). In addition, the GBM migration were also inhibited
by transfection with AhR siRNA or urolithin A treatment (Supplementary Figure S2C,D).
However, the inhibitory effects of AhR siRNA with GBM migration did not affect urolithin
A cotreatment (Supplementary Figure S2C,D). Furthermore, we previously reported that
the secreted factors from macrophages may modulate the TME of GBM. We discovered that
PD-L1 is expressed in GBM through a contact-free mechanism [41]. In the present study, we
assemble the human macrophage condition medium (HMCM) and used it to treat human
GBM and assess PD-L1 expression. Treatment with HMCM enhanced PD-L1 expression in
both human U251 (Figure 5A,C) and U87 (Figure 5B,C) GBM cells. Treatment with TMF
decreased HMCM-promoted PD-L1 expression in U251 GBM cells (Figure 5A,C). A similar
result was observed in U87 GBM cells (Figure 5B,C). In addition, the administration of TMF
alone did not affect expression of PD-L1 in GBM (Figure 5A–C). Our results suggest that
AhR is a critical modulator in GBM progression, and urolithins may act on AhR to regulate
the TME of GBM.

3.4. Akt and Epidermal Growth Factor Receptor Signaling Pathways Are Involved in Urolithin A
Inhibition of GBM Progression

Our previous study demonstrated that Akt [36,38] and epidermal growth factor re-
ceptor (EGFR) [36,40] pathways are critical in TME and GBM progression. We further
examined the signaling pathways involved in the inhibition of GBM by urolithins. In this
study, we demonstrated that treatment of GBM cells with urolithin A caused a reduction in
phosphorylated Akt and EGFR protein expression in a time-dependent manner (Figure 6A).
Urolithin A also reduced TNF-α-induced Akt phosphorylation (Figure 6B). We further
determined whether urolithin A regulated VCAM-1 and PD-L1 through the Akt signaling
pathway. Treatment with Akt inhibitor MK2206 reduced the expression of TNF-α-induced
VCAM-1 and PD-L1 (Figure 6C,D). Taken together, our results suggest that urolithins
inhibit GBM progression by modulating Akt and EGFR signaling pathways.
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Figure 4. Aryl hydrocarbon receptor (AhR) expression in GBM is correlated with pathologic grades
of human glioma and involves adhesion molecule expression. (A) AhR mRNA levels of patients’
specimens from human glioma microarray data set GSE4290. (B) U251 human GBM was treated with
AhR antagonist 6,2′,4′-trimethoxyflavone (TMF) and stimulated with tumor necrosis factor (TNF)-α
for another 24 h. Vascular cell adhesion molecule (VCAM)-1 expression was evaluated by Western
blotting. (C) U251 and U87 GBM cells were treated with TMF for 30 min and stimulated with TNF-α
for another 24 h. The cultured medium was replaced with fresh serum-free medium. Supernatants
were collected after 24 h. Soluble VCAM-1 expression was determined using enzyme-linked im-
munosorbent assay. (D) U251 GBM cells were pretreated with TMF for 30 min and stimulated with
TNF-α for another 24 h. BCECF-AM-labeled THP-1 cells were added to GBM cells and cultured
for 30 min. THP-1 adhesion to GBM cells was observed under a fluorescence microscope. Quanti-
tative results are shown in (E). (F) U251 human GBM cells were treated with urolithin A (10 µM),
TMF (10 µM), or cotreatment for 24, 48, and 72 h. Cell viability was performed using MTT assay.
(G,H) U251 human GBM cells were treated with urolithins and TMF for 24 h; cell migration was
detected by using transwell assay. Each bar represents the mean ± standard error of the mean.
* p < 0.05 compared with the control group. # p < 0.05 compared with the TNF-α group.
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Figure 5. Inhibition of aryl hydrocarbon receptor using 6,2′,4′-trimethoxyflavone (TMF) represses
human macrophage condition medium (HMCM)-induced programmed death ligand (PD-L1) ex-
pression in GBM cells. U251 (A) and U87 (B) human GBM were treated with TMF for 30 min and
stimulated with HMCM for another 24 h. PD-L1 expression was determined using Western blotting.
Quantitative results are shown in (C). Each bar represents the mean ± standard error of the mean
(n = 3). * p < 0.05 compared with the control group. # p < 0.05 compared with the HMCM group.
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Figure 6. Urolithin A inhibits Akt/epidermal growth factor receptor (EGFR) activation in GBM cells.
(A) U251 human GBM cells were treated with urolithin A for indicated time periods (4, 8, 12, or 24 h).
Expression of p-Akt and EGFR proteins was determined using Western blotting. (B) U251 cells were
treated with tumor necrosis factor (TNF)-α for 1, 2, or 4 h. Thirty minutes before the end of each
time point, urolithin A was added to the cells. Levels of p-Akt and p-EGFR proteins were quantified
using Western blotting. (C) U251 GBM cells were treated with Akt inhibitor MK2206 (1 µM) for
30 min and TNF-α for another 24 h. Vascular cell adhesion molecule 1 and programmed death ligand
protein expression were evaluated by Western blotting. Quantitative results are shown in (D). Each
bar represents the mean ± standard error of the mean (n = 3). * p < 0.05 compared with the control
group. # p < 0.05 compared with the TNF-α group.
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3.5. Treatment with Urolithins Suppress the GBM Growth in Xenograft Mouse Model

To verify the influences of urolithins on GBM progression in vivo, we implanted mouse
ALTS1C1 GBM cells into mice and treated with urolithins. We observed that treatment with
urolithin A decreased the tumor growth compared to the vehicle group (Figure 7A). The
tumor volume in the vehicle group was markedly increased but only mild increased with
urolithin A treatment (Figure 7B). These findings suggest that urolithins treatment reduces
tumor growth and exerts anti-GBM effects.
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Figure 7. Urolithins inhibit the GMB growth in xenograft mouse model. (A) Mice ALTS1C1 GBM cells
(1 × 107 cells) were injected subcutaneously into the flank of each mouse. Urolithin A (40 mg/kg)
and vehicle were intraperitoneally injected once per day. (B) Tumor volumes were measured and
calculated every day after tumor injection. Quantitative data are presented as mean ± SEM. * p < 0.05
compared with the vehicle control (Student’s t-test).

4. Discussion

In the TME, the proinflammatory cytokine TNF-α is mainly produced by macrophages
and other immune cells, including dendritic cells, B cells, natural killer cells, and T-cells [42].
TNF-α is closely related to tumor metastasis. It stimulates the expression of several angio-
genic factors such as interleukin-8, basic fibroblast growth factor, and vascular endothelial
growth factor that contribute to the progression and expansion of tumors [43]. In addi-
tion, TNF-α was reported to induce EMT and promote the metastasis and invasion of
colorectal cancer [44]. Accumulating evidence suggests that TNF-α is involved in the
expression of VCAM-1 and GBM metastasis [45]. We previously found that TNF-α pro-
moted the adhesion molecule expression and supported monocyte binding to GBM [40].
Urolithin A was shown to ameliorate TNF-α-stimulated endothelial cell migration and
reduce monocyte adhesion to endothelial cells [46]. Moreover, GBM is considered to have
immunosuppressive effects because of the inhibition of immune cell functions caused by
endogenous immunosuppressive checkpoints produced such as PD-L1 [47,48]. Targeting
the PD-1/PD-L1 signaling pathway enables blocking of this inhibitory signal and enables
T-cells to attack tumor cells. The beneficial effects of urolithin A in cancer therapy are evi-
dent; it strongly enhances antitumor T-cell (CD8+) immunity in colorectal cancer, making it
an effective immune checkpoint blockade treatment option for cancer [49]. Our results sup-
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port previous studies demonstrating that urolithin treatment inhibits the TNF-α-enhanced
VCAM-1 expression and prevents monocytes from adhering to GBM. The present study
also supports these findings by demonstrating that urolithins reduce the induction of PD-L1
expression, thus inhibiting GBM progression.

Extensive tumor proliferation and infiltrative expansion to neighboring tissues are
among the major clinical hallmarks of GBM [50]. EMT has emerged as a contributor to
the invasiveness of cancer cells. EMT transformation results in the alteration of epithelial
and mesenchymal markers, particularly E-cadherin, N-cadherin, vimentin, and fibronectin,
which promote the ability of tumor cells to migrate and spread to nearby or distant ar-
eas [51]. Several effective anticancer drugs target the relative molecules of cancer cell
growth and motility [52–54]. The use of phytochemicals as an anticancer agent has gained
increased attention because of their accessibility, patient safety, and efficacy [55]. In par-
ticular, urolithin B was reported to inhibit the progression of hepatocellular carcinoma by
inactivating the β-catenin signaling pathway [56]. In this study, we demonstrated that
treatment with urolithin A or B markedly suppressed the cell motility factors such as colony
formation and migration ability of GBM cells. Urolithin A and B treatment in GBM cells
may prevent the expression of mesenchymal molecules.

AhR regulates the expression of cytochromes P450, which are the major enzymes
responsible for tumor formation, metastasis, and prevention [26,27,57]. AhR has been a
target of cancer therapy drug development [58]. AhR inhibition using pharmacological
agents and gene silencing reduced clonogenic survival and invasiveness of glioma cells [27].
A study also showed that AhR modulated GBM migration ability [59]. Endogenous AhR
activity is positively correlated with cell migration in human GBM cells [59]. Generally, hu-
mans and animals are exposed to both synthetic and natural AhR ligands mostly through
their diet. Several natural dietary compounds were reported to activate or inhibit the
AhR signaling pathways [60]. Urolithin A is an antagonist of AhR [32]. Kujawska et al.
demonstrated that urolithin A attenuates the chemically induced stimulation of CYP1A1
mRNA, which is involved in antagonizing AhR [61]. In this study, we demonstrated that
treatment with the AhR antagonist TMF ameliorated TNF-α-enhanced VCAM-1 protein
levels, monocyte binding ability, and HMCM-stimulated PD-L1 protein expression on hu-
man GBM cells. Analysis of the human glioma microarray dataset GSE4290 demonstrated
a positive correlation between AhR expression and pathological glioma grade. In addition,
the GBM migration were also inhibited by knockdown of AhR in GBM. Our results suggest
a role of AhR in the development of GBM and provide a regulation of urolithins that may
inhibit GBM progression by modulating the AhR signaling pathway.

We have recently reported that Akt signaling is critical for GBM progression [38].
Wang et al. have reported that expression of PD-L1 in human colon and prostate cancers
was stimulated by TNF-α through the activation of Akt signaling [62]. It has also been
reported that urolithin A inhibits the progression of pancreatic cancer [24] and glioma [63]
by blocking the phosphorylation of Akt. EGFR alteration occurs in more than half of
patients with GBMs [64,65] and is also correlated with GBM progression [66,67]. High
EGFR expression in patients with GBM is associated with poor outcomes [68–70]. In clinical
studies, treatment with gefitinib and erlotinib, EGFR tyrosine kinase inhibitors, produced
promising results in patients with GBM [71]. Zheng et al. [72] and our team [40] have also
reported that the activation of EGFR modulates the expression of VCAM-1 in GBM. We
previously demonstrated that TNF-α-induced EGFR activation is important for modulating
the TME of GBM [40]. Recently, a network pharmacology analysis suggested that urolithins
may act on the EGFR and Akt signaling for anti-abnormal uterine bleeding effect [73]. The
present study corroborated that urolithins reduce the TME and inhibit tumor progression
in GBM cells by regulating Akt and EGFR signaling pathways (Figure 8).
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Figure 8. Schematic diagrams of urolithin A signaling pathways that inhibit GBM progression. Tumor
necrosis factor (TNF)-α promotes the vascular cell adhesion molecule (VCAM)-1 levels and promotes
monocyte binding to GBM. Furthermore, TNF-α promotes the programmed death ligand (PD-L1)
expression. Urolithin A and aryl hydrocarbon receptor antagonist 6,2′,4′-trimethoxyflavone suppress
TNF-α-enhanced expression of VCAM-1 and PD-L1. Urolithin A modulates the Akt signaling
pathway to prevent tumor migration and growth.

5. Conclusions

This study investigated the inhibitory role of urolithin, the bioactive gut metabo-
lite from natural polyphenols, against GBM. We demonstrated that urolithins suppress
GBM colony formation and cell migration. Urolithins further reduced TNF-α-stimulated
VCAM-1 and PD-L1 expression, thereby lessening monocyte binding to GBM. We also
demonstrated that urolithin A regulates the inhibition of GBM progression through Akt
activation and EGFR expression. In addition, the TNF-α-induced expression of VCAM
and PD-L1 was reduced when AhR signaling was inhibited. These results indicate that
TNF-α may induce the expression of VCAM and PD-L1 through the regulation of AhR.
Finally, administration of urolithin A inhibited the tumor growth in vivo. Consequently,
our findings indicate that urolithins could be used as a promising strategy for the effective
management of GBM.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15234854/s1, Figure S1: Inhibitory effects of GBM migration and
epithelial–mesenchymal transition by urolithins in ALTS1C1 GBM cells; Figure S2: Knockdown of aryl
hydrocarbon receptor downregulates the expression of VCAM-1 and PD-L1.
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