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Abstract: The evidence suggests that diet can modulate endogenous microRNA (miRNA) expression.
Changes in miRNA expression may affect metabolic processes and consequently be involved in
health status and disease development. The aim of this systematic review was to summarize the
evidence of the role of diet and specific food components in the regulation of miRNA expression
and discuss its implications for human health and disease development. The PubMed, Embase
and Web of Science databases were searched in accordance with the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) guidelines for relevant studies. A total of
32 interventional and 5 observational studies performed in adults and evaluating dietary modulation
of miRNA expression were included. Energy- and fat-controlled diets along with plant-based foods
show substantial evidence of modulating endogenous miRNA levels. Plasma, serum and periph-
eral blood mononuclear cells (PBMCs) are the main sources used to measure miRNAs. A total of
108 miRNAs modulated by diet were identified. We confirmed that dietary habits are closely as-
sociated with the modulation of endogenous miRNAs. Particularly, energy content and fat intake
appeared to be key factors influencing miRNA levels. Furthermore, since miRNAs are involved in
the regulation of several biological processes, this modulatory process may affect health status and
lead to metabolic disorders.

Keywords: miRNAs; diet; dietary habits; metabolic diseases

1. Introduction

Noncommunicable diseases (NCDs) such as obesity, type 2 diabetes and cardiovas-
cular disorders have become a health problem of epidemic proportions. According to the
World Health Organization (WHO), they are responsible for 71% of all deaths worldwide,
corresponding to 41 million people per year, of which 15 million are premature deaths
between the ages 30 and 69 [1]. Cardiovascular disease, cancer, respiratory diseases and
diabetes are among the NCDs with the highest incidence [1]. Regarding the associated risk
factors, along with tobacco, alcohol and physical inactivity, unhealthy dietary habits play a
critical role, yet it is worth mentioning that all of these are preventable lifestyle aspects [2].
In recent decades, traditional diets have undergone a westernized shift toward overeating
and the abuse of highly processed foods and added sugars, leading consequently to the
exacerbation of NCDs [3]. On the other hand, NCD risk can be minimized or prevented
by following healthy dietary habits, particularly when they are focused on normocaloric
plant-based patterns [4], including a Mediterranean diet [5].

One of the reasons why diet influences the development of diseases is the participation
of certain food components in the regulation of the metabolic processes involved [6,7].
Besides providing energy and nutrients, diet also contains bioactive compounds which
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can modulate biological processes, having an impact on health status. Recent data show
that vitamins, polyphenols and fatty acids, as well as specific dietary patterns, regulate
metabolism according to mechanisms involving the modulation of endogenous microRNAs
(miRNAs) [8] and their expression [9–11]. Besides that, the evidence suggests that miRNAs
contained in foods can also be absorbed during the digestive process and consequently
interact with host gene expression [12,13]. A study assessing the presence of plant miRNAs
in the serum of Chinese healthy adults, whose diet primarily consists of rice, has reported
the detection of 30 exogenous miRNAs. Among these, significant levels of ath-miR-156a,
ath-miR-166a and osa-miR-168a have been found, three miRNAs primarily derived from
rice and cruciferous vegetables [12]. In another study that conducted bioinformatics
analysis of data from four human small RNA libraries, 35 exogenous miRNAs have been
detected in human milk exosomes, with the highest abundance levels observed for the
plant-derived miRNAs ath-miR-166a, pab-miR-951, ptc-miR-472a and bdi-miR-168 [13].
Therefore, these studies suggest the potential capability of mature miRNAs to reach human
plasma from the gastrointestinal tract and subsequently regulate the expression of human
target genes. Due to the potential impact of miRNA modulation on human health and
disease development [14–17], a full understanding of the interplay between diet, miRNAs
and their health effects is needed.

miRNAs are endogenous small noncoding RNA sequences of approximately
22 nucleotides in length, which play a key role in the posttranscriptional regulation of
gene expression [18]. During their biosynthesis, most miRNAs are first transcribed in the
nucleus by RNA polymerase II (Pol II) into large pri-miRNA transcripts, which are cleaved
into stem-loops of 70 nucleotides called pre-miRNAs by a complex formed by the RNase
III enzyme DROSHA and the double-stranded RNA binding protein DiGeorge syndrome
critical region gene 8 (DGCR8). Then, the pre-miRNAs are exported to the cytoplasm
by Exportin 5 and cleaved into small double-stranded miRNAs 18–24 nucleotides long
by the RNase III enzyme DICER, which is associated with TAR RNA binding protein
(TRBP). These miRNA duplexes bind to argonaute proteins, assisted by ATP-dependent
chaperone proteins. Subsequently, one of the strands is removed and degraded and the
other one is loaded into the RNA-induced silencing complex (RISC), a ribonucleoprotein
complex that intervenes in the recognition of the targeted mRNA [9,18]. Finally, this mature
form of miRNA is guided to the 3′ UTR of the mRNAs through base pairing, leading to
decreased mRNA stability and the repression of mRNA’s translation of target genes [19].
Potentially, each miRNA can modulate the expression of more than one target mRNA, and
one mRNA can be modulated by several miRNAs, denoting an intricate miRNA–mRNA
interaction network [20]. Additionally, miRNAs can be secreted out of cells and be stably
transported into extracellular fluids associated with several carriers, including extracellular
vesicles, ribonucleoproteins and lipoprotein complexes [21]. Consequently, miRNAs may
have endocrine, paracrine and autocrine regulatory functions, contributing to cell-to-cell
communication and participating in essential regulatory pathways involving apoptosis,
differentiation, development, proliferation or signal transduction processes [19]. Therefore,
disruption of the proper communication carried by miRNAs to cells has been related
to the development of chronic disorders [21], including cardiovascular diseases [22,23],
type 2 diabetes [24,25] and obesity [26,27].

In this context, animal studies have been successful in demonstrating the capacity of
diet to regulate miRNA [28–30]. Although the evidence in humans is not as clear as in
animal models, some studies have established a clear association between food intake and
endogenous miRNAs. The aim of this systematic review is to summarize the evidence of
the role of diet and specific food components in the modulation of miRNA expression and
to discuss its implications for human health and disease development.
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2. Materials and Methods

This systematic review was carried out following the recommendations of the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement guidelines [31].

The PubMed, Embase and Web of Science (WOS) databases were manually searched
on August 2023 to collect human studies which evaluated the impact of diet on miRNA
expression. The search strategy used in PubMed and adapted to Embase and WOS was
as follows: (diet OR dietary pattern* OR food OR intake OR dietary OR exogenous) AND
(mirna* OR microrna*).

An initial selection of the returned articles was made by checking their suitability by
evaluating their titles and keywords and then their abstracts. After this scrutiny, the full
texts of the articles were analyzed to select those meeting the eligibility criteria (Table 1).

Table 1. Eligibility criteria of the systematic review.

Inclusion Criteria Exclusion Criteria

Studies conducted in humans Studies not conducted in humans
Observational or interventional studies Reviews and other design types

Studies evaluating dietary modulation of miRNA expression Studies evaluating supplementation rather than food intake
Studies performed in adults Population age under 18

Studies on healthy population with or without obesity Study population with any other disease

All the articles included in this review were summarized. The most relevant in-
formation was extracted and sorted according to the following items: (a) first author
and publication date, (b) population of the study and (c) health status, (d) study design,
(e) dietary strategy, (f) analytical method used to detect/quantify miRNA, (g) type of
sample analyzed, (h) outcomes of the study.

Next, a network analysis was performed to characterize the biological functions of
the miRNAs identified with further evidence on their association with diet. The miRNet
2.0 software [32] was used for the identification of target genes and, subsequently, for
the determination of miRNA–function and miRNA–disease interactions. miRNAs with
evidence in at least two studies were included in the network analysis, all of them with
the prefix corresponding to the Homo sapiens (hsa-) species: hsa-mir-19b (MI0000074), -
mir-19b-3p (MIMAT0000074), -mir-20a-5p (MIMAT0000075), -mir-21-5p (MIMAT0000076),
-mir-29a-3p (MIMAT0000086), -mir-29b-3p (MIMAT0000100), -mir-92a (MI0000093), -mir-
99a (MI0000101), -mir-99b (MI0000746), -mir-106a (MI0000113), -mir-106b (MI0000734),
-mir-122 (MI0000442), -mir-122-5p (MIMAT0000421), -mir-130b (MI0000748), -mir-142-3p
(MIMAT0000434), -mir-142-5p (MIMAT0000433), -mir-181a-5p (MIMAT0000256), -mir-
181b-5p (MIMAT0000257), -mir-192 (MI0000234), -mir-192-5p (MIMAT0000222), -mir-221
(MI0000298), -mir-223 (MI0000300), -mir-328 (MI0000804), -mir-339-5p (MIMAT0000764),
-mir-375 (MI0000783), -mir-411 (MI0003675), -mir-935 (MI0005757), -mir-1260b (MI0014197),
-let-7b (MI0000063), -let-7c (MI0000064), -let-7f-5p (MIMAT0000067. The level of significance
was set at p < 0.05.

3. Results
3.1. Characterization of the Included Studies

A total of 17,006 records were initially identified through the database search. The
removal of records with a poor match with the search strategy turned out 10,148 entries.
After the title and abstract screening, 216 manuscripts were considered suitable for eligibility.
Finally, 37 articles met the inclusion criteria and were selected for this systematic review
(Table 2). The detailed selection strategy is shown in Figure 1.
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Table 2. General characteristics of included studies.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Giardina, 2019 [33] 103 adults (82/21),
30–60 years

With
overweight/obesity

(27–35 kg/m2)

Randomized,
parallel-group,
controlled trial

6-month study, three groups of
energy-restricted diets

(500 kcal/day restriction):
moderate-carbohydrate and

low-glycemic-index diet (LGI),
moderate-carbohydrate and

high-glycemic-index diet (HGI)
and low-fat and

high-glycemic-index diet (LF)

Array screening and
validation using

qPCR
Plasma

LGI vs. HGI:
↓ hsa-miR-361

After LGI:
↓ hsa-miR-139-3p
↓ hsa-miR-411
↓ hsa-miR-432
↓ hsa-miR-99b
↓ hsa-miR-340

↓ hsa-miR-423-5p
↓ hsa-miR-361
↓ hsa-let-7c
After HGI:

↓ hsa-miR-139-3p
↓ hsa-miR-340

After LF:
↓ hsa-miR-139-3p
↓ hsa-miR-432

↓ hsa-miR-423-5p

Margolis, 2017 [34] 16 men, 60–75 years With overweight
(25–35 kg/m2)

Randomized,
parallel-group,

triple-blinded trial

35-day study: 7-day weight
maintenance and 28-day 30%

energy restriction periods
qPCR Serum

Energy restriction:
↑ miR-133a-3p
↑ miR-133b

Assmann, 2020 [35] 103 adults

Intervention groups
with obesity

(30–40 kg/m2) and
control group with

normal weight

Randomized,
parallel-group trial

16-week weight loss
intervention, three groups with

30% energy restriction:
moderately high-protein diet

(n = 38, 40% carbohydrate, 30%
protein, 30% fat), low-fat diet

(n = 40, 60% carbohydrate, 18%
protein, 22% fat) and control

(n = 25)

qPCR array Plasma

Responders vs.
non-responders to

low-fat diet:
↓ hsa-miR-130a-3p
↓ hsa-miR-142-5p
↓ hsa-miR-144-5p
↓ hsa-miR-15a-5p
↓ hsa-miR-221-3p
↓ hsa-miR-29c-3p
↑ hsa-miR-22-3p
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Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Duggan, 2022 [36] 192 postmenopausal
women, 50–75 years

With
overweight/obesity

Randomized,
parallel-group,
single-blinded,
controlled trial

12-month weight loss
intervention in four groups:

restricted diet, exercise,
diet + exercise and control

(no intervention)

NanoString nCounter
technology Plasma

Weight loss
intervention vs.

control:
↓ miR-122

Heianza, 2022 [37] 495 adults Healthy and with
overweight Randomized trial

2-year study, four groups of
weight loss diets: low-fat

average-protein diet, low-fat
high-protein diet, high-fat
average-protein diet and
high-fat high-protein diet

RNA-seq Plasma

High-fat and
high-protein vs.

low-fat and
average-protein:

↓ hsa-miR-128-1-5p

Hess, 2020 [38] 85 adults (55/30),
18–60 years

With
overweight/obesity

(28–45 kg/m2)

Randomized,
parallel-group,

double-blinded trial

12-week study, two weight loss
intervention groups, both with

an energy deficit of
500 kcal/day: fiber

supplementation (20 g/day) and
control (no supplement)

qPCR array Serum

After both diets:
↓ hsa-miR-122-5p
↓ hsa-miR-193a-5p
↑ hsa-miR-126a-3p
↑ hsa-miR-222-3p

Jayasooriya, 2022 [39] 27 adults, 18–60 years With overweight
(25–34.9 kg/m2)

Interventional
single-arm
pilot study

6-week weight loss intervention:
diet (250 kcal/d energy
restriction) and exercise

miRNA sensor
iLluminate Serum

Post vs. pre:
↓ hsa-let-7b

↓ hsa-miR-99a

Kristensen, 2017 [40] 19 adults (10/9) With morbid obesity
(≥40 kg/m2) Interventional study

15-week weight loss
intervention: exercise and

hypocaloric diet

Array screening and
validation using

qPCR

Subcutaneous
adipose
tissue

↑ hsa-miR-29a-3p
↑ hsa-miR-29a-5p
↓ hsa-miR-20b-5p

Milagro, 2013 [41] 10 women With obesity (35.6
kg/m2) Interventional study

8-week weight loss intervention
(800–880 kcal/day). Two groups:

responders (weight loss > 5%)
and non-responders (weight loss

< 5%)

RNA-seq screening
and validation using

qPCR
PBMC

Non-responders:
↑ hsa-miR-935

↑ hsa-miR-4772-3p
↓ hsa-miR-223
↓ hsa-miR-224
↓ hsa-miR-376b

Müller, 2020 [42] 46 adults (26/20),
18–72 years

With obesity
(>30 kg/m2) Interventional study

3-month weight loss
intervention: 800 kcal/day (only

protein shake)

RNA-seq screening
and validation using

qPCR
Plasma

↓ hsa-miR-25-3p
↓ hsa-miR-93-5p

↓ hsa-miR-106b-3p
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Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Parr, 2016 [43] 40 adults (26/14),
35–59 years

With obesity
(27–40 kg/m2)

Randomized,
parallel-group,
controlled trial

16-week weight loss
intervention: 250 kcal/day

energy restriction and exercise.
Two groups: HiRes (>10% body

mass loss, n = 22) and LoRes
(<5% body mass loss, n = 18)

qPCR array Plasma

LoRes vs. HiRes:
↑ hsa-miR-935
Both groups:

↑ hsa-miR-221-3p
↑ hsa-miR-223-3p

Tabet, 2016 [44] 47 men, 20–65 years With obesity
(32 kg/m2)

Randomized,
parallel-group,
controlled trial

12-week weight loss
intervention. Two groups of

hypocaloric diets: high-protein
diet (30% of energy, n = 20) and

normal-protein diet (20% of
energy, n = 27)

qPCR

HDL-
fraction of

serum
samples

High-protein diet:
↓ miR-223

Lilja, 2021 [45] 54 adults (35/16),
23–75 years Healthy Interventional study

5-day study, two groups: fasting
(5 days of only liquids) and

control (non-fasting)
qPCR Stool

Fasting:
↑ let-7b-5p

↓ miR-34a-5p

Ravanidis, 2021
[46]

32 adults (10/22),
18–70 years

With
overweight/obesity

(28 kg/m2)

Interventional
single-arm study

10-day fasting period
(250 kcal/day) qPCR Plasma

↓ hsa-miR-19b-3p
↓ hsa-miR-22-3p
↓ hsa-miR-142-3p
↓ hsa-miR-143-3p
↓ hsa-miR-145-5p
↑ hsa-miR-122-5p
↑ hsa-miR-126-3p



Nutrients 2024, 16, 770 7 of 31

Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Saini, 2022 [47] 9 older adults (6/3),
≥65 years With overweight Interventional

single-arm study
4 weeks with 16 h per day

of fasting RNA-seq Serum

After intervention:
↑ miR-623
↑ miR-4303

↑ miR-7162-3p
↑ miR-411-5p
↑ miR-5682
↑ miR-4513

↓ miR-4649-5p
↓ miR-2467-3p
↓ miR-543

↓ miR-301a-3p
↓ miR-3132
↓ miR-19a-5p
↓ miR-495-3p
↓ miR-4761-3p

Lopez, 2018 [48] 9 men, 18–23 years Healthy
Randomized,

crossover,
double-blinded trial

A single high-saturated-fat meal
(800 kcal, 77% fat, 23%

carbohydrate)

Array screening and
validation using

qPCR
PBMC

Postprandial:
↓ hsa-miR-613

↓ hsa-miR-629-3p
↓ hsa-miR-24-2-5p
↓ hsa-miR-555

↓ hsa-miR-148a-5p
↓ hsa-miR-621

↓ hsa-miR-875-3p
↓ hsa-miR-513c-5p
↓ hsa-miR-1226
↑ hsa-miR-653

↑ hsa-miR-19b-1-5p
↑ hsa-miR-363-5p
↑ hsa-miR-885-3p
↑ hsa-miR-339-3p
↑ hsa-miR-938

↑ hsa-miR-148b-5p
↑ hsa-miR-593-5p
↑ hsa-miR-200b-5p



Nutrients 2024, 16, 770 8 of 31

Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Quintanilha, 2022
[49]

12 adults (7/5),
25–45 years Healthy Randomized,

crossover trial

A single high-fat
high-carbohydrate

meal + water/orange
juice/isocaloric beverage with

1-week washouts

qPCR Plasma

Meal + orange juice
vs. water:

↑ hsa-miR-375
Meal + glucose vs.

water:
↓ hsa-miR-205-3p

Quintanilha, 2020
[50]

11 women,
20–40 years Healthy Interventional trial A single high-fat high-saturated

meal (1067 kcal) qPCR array Plasma

Postprandial:
↑ hsa-miR-200c-3p
↑ hsa-miR-143-5p
↑ hsa-miR-200b-3p
↑ hsa-miR-143-3p
↑ hsa-miR-375

↑ hsa-miR-145-5p
↓ hsa-miR-1260a
↓ hsa-miR-92b-3p
↓ hsa-miR-205-5p

Gil-Zamorano, 2022
[51] 8 adults, 63–79 years Healthy

Randomized,
parallel-group,
single-blinded,
controlled trial

1-year study, two groups:
walnut supplementation

(30–60 g/day) and control
(abstaining from walnuts)

Array screening and
validation using

qPCR
Serum ↑ hsa-miR-551a

López de las Hazas,
2021 [52]

211 subjects,
63–79 years Healthy

Randomized,
parallel-group,
single-blinded,
controlled trial

1-year study, two groups:
walnut supplementation

(n = 101, 30–60 g/day) and
control (n = 110, abstaining from

walnuts)

Screening in 40 pools
of samples and

validation using
qPCR

Plasma
Walnuts:

↑ hsa-miR-32-5p
↑ hsa-miR-29b-3p
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Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Ortega, 2015 [53] 30 adults (22/8),
30–50 years

With obesity
(30–35 kg/m2) Interventional study

8-week study: normocaloric diet
enriched with PUFA (30 g/day

almonds and walnuts)

Array screening and
validation using

qPCR
Plasma

↓ miR-328
↓ miR-330-3p
↓ miR-221

↓ miR-125a-5p
↑ miR-192

↑ miR-486-5p
↑ miR-19b
↑ miR-106a
↑ miR-130b
↑ miR-18a

↑ miR-769-5p

Reis, 2019 [54] 54 women,
18–55 years

With
overweight/obesity

(≥27.5 kg/m2)

Randomized,
parallel-group,
controlled trial

2-month study. Two groups:
Brazil nut (1 Brazil nut/day,

n = 29) and control (no Brazil
nuts, n = 25)

qPCR Plasma
Brazil nut intake:
↑ miR-454-3p
↑ miR-584-5p

Salas-Huetos, 2018
[55] 98 men, 18–35 years Healthy

Randomized,
parallel-group,
single-blinded,
controlled trial

14-week study, two groups: nuts
(Western diet + 60 g/day nuts)

and control (Western diet
avoiding nuts)

Array for screening
and validation Sperm Nuts:

↓ hsa-miR-34b-3p

Daimiel, 2020 [56] 12 adults (6/6),
22–60 years Healthy

Randomized,
crossover,

double-blinded,
controlled trial

30 mL of 3 polyphenol-enriched
EVOOs after 12 h of fasting:

low-EVOO (250 mg/kg of oil),
medium-EVOO (500 mg/kg)
and high-EVOO (750 mg/kg)

diets

qPCR array Plasma

EVOO:
↓ l hsa-let-7e-5p

↓ hsa-miR-328a-3p
↓ hsa-miR-10a-5p
↓ hsa-miR-21-5p
↓ hsa-miR-26b-5p
↑ hsa-miR-17-5p
↑ hsa-miR-20a-5p
↑ hsa-miR-192-5p
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Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

D’Amore, 2016 [57] 24 adults (12/12)
12 healthy and

12 with metabolic
syndrome

Interventional study

Two interventions: single intake
of high-polyphenol EVOO and
low-polyphenol EVOO (50 mL)
after 12 h fasting and a 1-week

washout with no olive oil intake

Array screening and
validation using

qPCR
PBMC

High-polyphenol
EVOO in healthy

adults:
↑ miR-23b-3p
↑ miR-519b-39
↓ miR-146b-5p
↓ miR-19a-3p
↓ miR-181b-5p
↓ miR-107

↓ miR-769-5p
↓ miR-192-5p

Cannataro, 2019 [58] 36 adults (18/18),
31–58 years

With obesity
(>30 kg/m2) Interventional study 6 weeks of a ketogenic diet NanoString nCounter

technology Serum

Ketogenic diet:
↑ hsa-let-7b-5p

↑ hsa-miR-143-3p
↓ hsa-miR-504-5p

Desgagné, 2016 [59] 9 men, 20–59 years Healthy

Randomized,
crossover,

double-blinded,
controlled trial

Three 4-week interventions with
3-week washout periods:

high-iTFA (10.2 g industrial
TFA/2500 kcal, 3.7% energy),
high-rTFA (10.2 g dairy and
meat TFA/2500 kcal, 3.7%

energy) and low-TFA
(2.2 g/2500 kcal, 0.8% energy)

qPCR
HDL

plasma-
fraction

No significant results

Ferrero, 2021 [60] 120 adults (72/48) Healthy Observational study
Equal % of vegans, vegetarians

and omnivores, diet > 1 year.
Food frequency questionnaires

RNA-seq Plasma No significant results

Liu, 2020 [61] 96 adults (53/43),
≥60 years Healthy Observational study

31 non-vegetarians, 15 vegans,
32 lacto-vegetarians and

18 semi-vegetarians. Food
frequency questionnaires

RNA-seq Plasma

Vegetarians:
↑ hsa-miR-3661
↑ hsa-miR-320c
↑ hsa-miR-29a-3p
↑ hsa-miR-320b
↑ hsa-miR-204-3p
↓ hsa-miR-132-5p
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Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Tarallo, 2014 [62] 24 adults (15/9),
21–60 years Healthy Observational study 8 vegans, 8 vegetarians,

8 omnivorous qPCR Stool and
plasma

Vegan/vegetarian:
↑ hsa-miR-92a

Tarallo, 2022 [63] 120 adults (72/48) Healthy Observational study
Vegan, vegetarian and

omnivorous, diet >1 year. Food
frequency questionnaires

RNA-seq Plasma
and stool

No significant results
in plasma

Vegan/vegetarians:
↓ hsa-miR-636

↓ hsa-miR-4488-3p
↓ hsa-miR-4739

Fontalba-Romero,
2021 [64] 58 adults (41/17) With morbid obesity

(≥40 kg/m2) Observational study
MEDAS questionnaire to

determine the adherence to a
Mediterranean diet

Array screening and
validation using

qPCR
Serum

High Med diet
adherence:
↑ miR-590

Humphreys, 2014
[17]

23 adults (6/17),
50–75 years Healthy

Randomized,
crossover, controlled

trial

Two 4-week interventions with
4-week entry and washouts:
HRM (300 g/day meat) and
HRM + HAMSB (300 g/day
meat + 40 g/day butyrylated

high amylose starch)

qPCR Rectal
mucosa

HRM:
↑ hsa-miR-19a-3p
↑ hsa-miR-19b-3p
↑ hsa-miR-21-5p
HRM + HAMSB:
↓ hsa-miR-17-5p
↓ hsa-miR-19a-3p
↓ hsa-miR-19b-3p
↓ hsa-miR-20a-5p
↓ hsa-miR-92a

Ramzan, 2019 [65] 31 men, ≥70 years Healthy
Randomized,

parallel-group,
single-blinded trial

10-week study, two groups:
RDA (0.8 g protein/kg body

weight/day) and 2RDA
(1.6 g/kg body weight/day)

RNA-seq screening
and validation using

qPCR
Plasma

2RDA:
↓ hsa-miR-125b-5p
↓ hsa-miR-100-5p
↓ hsa-miR-99a-5p
↓ hsa-miR-23b-3p
↓ hsa-miR-203a
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Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Shin, 2020 [66] 10 women,
50–60 years

With overweight
25–30 kg/m2)

Randomized,
parallel-group trial

2-week study. Two groups:
k-diet (traditional Korean diet)

and control (Westernized
Korean diet)

Array screening and
validation using

qPCR

Plasma
and saliva

K-diet, plasma:
↓ hsa-miR-26a-5p
↓ hsa-miR-126-3p
Control, plasma:
↓ hsa-miR-25-3p

K-diet, saliva:
↓ hsa-miR-92-3p
↓ hsa-miR-122a-5p

Control, saliva:
↓ hsa-miR-31-5p

Tutino, 2021 [67] 40 adults (29/11),
30–65 years

With overweight
(25–30 kg/m2)

Randomized,
parallel-group,
single-blinded,
controlled trial

21-day study. Two groups:
grape group (5 g/day fresh
grape/kg body weight) and

control (abstaining from grapes)

qPCR array Serum

Grape group:
↑ hsa-miR-208a-3p
↑ hsa-miR-33a-5p
↓ hsa-miR-181a-5p
↓ hsa-miR-30e-5p
↓ hsa-miR-30d-5p
↓ hsa-miR-335-5p
↓ hsa-miR-222-3p
↓ hsa-miR-15a-5p
↓ hsa-miR-421

↓ hsa-miR-339-5p
↓ hsa-miR-378a-3p
↓ hsa-let-7f-5p

↓ hsa-miR-29b-3p
↓ hsa-miR-106b-3p
↓ hsa-miR-324-5p
↓ hsa-miR-1260a
↓ hsa-miR-365a-3p
↓ hsa-miR-155-5p
↓ hsa-miR-335-3p
↓ hsa-miR-200c-3p
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Table 2. Cont.

Author and
Publication Date Population (F/M) Health Status Study Design Dietary Strategy Method of Analysis Sample

Analyzed Outcomes

Capetini, 2023 [68] 20 women,
18–40 years

With overweight
(25–29.9 kg/m2) Interventional study 4 weeks consuming 500 mL/d of

blood orange juice

Array screening and
validation using

qPCR

Plasma
and

PBMC

Plasma:
↑ hsa-miR-144-3p

PBMC:
↑ hsa-miR-144-3p
↑ hsa-miR-424-5p
↑ hsa-miR-130b-3p
↓ hsa-let-7f-5p

↓ hsa-miR-126-3p

Legend: F/M, female/male; PBMC, peripheral blood mononuclear cell; HDL, high-density lipoprotein; PUFA, polyunsaturated fatty acids; EVOO, extra virgin olive oil; TFA, trans fatty
acids; MEDAS, Mediterranean Diet Adherence Score; HRM, high red meat; HAMSB, supplementation with butyrylated resistant starch; RDA, recommended dietary allowance; ↓,
decreased level; ↑, increased level.
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Figure 1. PRISMA flow diagram of the study selection process.

Among the 37 studies included in this review, 32 are interventional and 5 observational.
Apart from that, 18 evaluate the association between certain dietary strategies and miRNA
expression in healthy individuals, whereas the other 19 are focused on subjects with
overweight or obesity. Most of the studies quantify the miRNAs in blood components
(21 in plasma, 9 in serum and 4 in PBMCs [peripheral blood mononuclear cells]), but,
beyond that, other specimens are used (3 studies analyze stool samples, 1 rectal mucosa,
1 subcutaneous adipose tissue, 1 sperm and 1 saliva). Quantitative PCR (qPCR) is the most
common technique used to analyze miRNA expression; a total of 15 studies exclusively
perform qPCR or a qPCR array, and 13 conduct a first screening followed by validation of
the results using qPCR. The screening step is carried out using arrays (11 studies), RNA
sequencing (2 studies) and performing qPCR with pooled samples (1 study). Additionally,
five studies use only RNA sequencing, two the NanoString nCounter technology and one
the miRNA sensor iLluminate.

Concerning the dietary strategies researched, the studies can be classified into four
groups—energy-controlled diets [33–47], fat-related interventions [48–59], observational
studies [60–64] and other dietary strategies [17,65–68]—which are further developed in the
next sections. Articles examining the uptake of exogenous miRNAs from dietary sources
were deemed insufficient for inclusion in the review. Nonetheless, given the emerging
potential of food-derived miRNAs, their implications for health have been discussed below.

Regarding the miRNA nomenclature, some articles refer to the precursor miRNA and
others to the mature form. Besides that, some authors do not use a letter after the number
of the miRNA, which differentiates members of the same family, or the suffixes -3p and
-5p to indicate from which double-stranded RNA the mature sequence comes. For these
reasons, the miRNAs included in this review have been analyzed by family, grouping
miRNAs with a similar structure and evolutionary origin [69]. Following this criterion,
there is evidence that 108 miRNA families are modulated by diet. Despite that, only 37 of
them report significant results in more than one study. The most relevant ones are shown
in Table 3.
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Table 3. Overview of human endogenous miRNAs modulated by diet in ≥2 studies indicating the source used to measure miRNA expression. The most relevant
dietary patterns are included. miRNAs are grouped by family.

miRNA Energy
Restriction Fasting High-Fat Meal Nuts EVOO Vegetarian Diet Grape Orange Juice Red Meat

let-7 ↓ plasma [33]
↓ serum [39] ↑ stool [45] ↓ plasma [56] ↓ serum [67] ↓ PBMC [68]

miR-19 ↓ plasma [46]
↓ serum [47] ↑ PBMC [48] ↑ plasma [53] ↓ PBMC [57] ↑ rectal mucosa

[17]

miR-29 ↓ plasma [35]
↑ adipose tissue [40] ↑ plasma [52] ↑ plasma [61] ↓ serum [67]

miR-92 ↓ plasma [50] ↑ plasma [62]

miR-122 ↓ serum [38]
↓ plasma [36] ↑ plasma [46]

miR-126 ↑ serum [38] ↑ plasma [46] ↓ PBMC [68]

miR-20 ↓ adipose tissue [40] ↑ plasma [56]

miR-99 ↓ plasma [33]
↓ serum [39]

miR-106 ↓ plasma [42] ↑ plasma [53] ↓ serum [67]

miR-130 ↓ plasma [35] ↑ plasma [53] ↑ PBMC [68]

miR-143 ↓ plasma [46] ↑ plasma [50]

miR-192 ↑ plasma [53] ↑ plasma [56]
↓ PBMC [57]

miR-200 ↑ PBMC [48]
↑ plasma [50] ↓ serum [67]

miR-221 ↓ plasma [35]
↑ plasma [43] ↓ plasma [53]

miR-223
↓ PBMC [41]

↓ serum HDL [44]
↑ plasma [43]

miR-15 ↓ plasma [35] ↓ serum [67]

miR-21 ↓ plasma [56] ↑ rectal mucosa
[17]

miR-22 ↑ plasma [35] ↓ plasma [46]

miR-34 ↓ stool [45] ↓ sperm [55]
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Table 3. Cont.

miRNA Energy
Restriction Fasting High-Fat Meal Nuts EVOO Vegetarian Diet Grape Orange Juice Red Meat

miR-142 ↓ plasma [35] ↓ plasma [46]

miR-144 ↓ plasma [35] ↑ PBMC [68]

miR-145 ↓ plasma [46] ↑ plasma [50]

miR-181 ↓ PBMC [57] ↓ serum [67]

miR-205 ↓ plasma [50]
↓ plasma [49]

miR-222 ↑ serum [38] ↓ serum [67]

miR-328 ↓ plasma [53] ↓ plasma [56]

miR-339 ↑ PBMC [48] ↓ serum [67]

miR-375 ↑ plasma [50]
↑ plasma [49]

miR-411 ↓ plasma [33] ↑ serum [47]

miR-769 ↑ plasma [53] ↓ PBMC [57]

miR-935 ↑ PBMC [41]
↑ plasma [43]

miR-1260 ↓ plasma [50] ↓ serum [67]

Legend: EVOO, extra virgin olive oil; ↓, down-regulation; ↑, up-regulation; PBMC, peripheral blood mononuclear cell; HDL, high-density lipoprotein.
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3.2. Modulation of miRNA Expression by Energy-Controlled Diets

A total of 15 studies evaluate the impact of energy-restricted diets on miRNA expres-
sion [33–47], of which 2 are energy-restricted diets without a weight loss purpose [33,34],
10 are weight loss interventions [35–44] and 3 consider fasting periods [45–47]. The charac-
terization of the effects of energy-restricted diets on miRNA expression is mainly performed
in healthy adults with overweight or obesity, although three studies also include subjects
of a normal weight [35,37,45]. Regarding the experimental design, most of the studies
include an intervention period of dietary restriction greater than 8 weeks, except for the
three fasting studies [37,45,46], which lasted 5, 10 and 28 days, and two energy restriction
studies of 4 and 6 weeks [34,39]. Although there were important differences between the
diets implemented and their caloric content, they all agreed on caloric restriction, varying
the range of restriction from a reduction of 30% or 500 kcal/day to periods of fasting for
several days.

A total of 46 miRNAs have been linked to energy-restricted diets, although only 12 of
them have been studied in more than one article (miR-19, miR-22, miR-29, miR-99, miR-122,
miR-126, miR-142, miR-221, miR-223, miR-411, miR-935, let-7). In this respect, miR-19
is down-regulated in two fasting studies [46,47] and miR-99 in two energy restriction
programs [33,39]. Additionally, miR-142 is down-regulated in responders to a low-fat
diet [35] and after a 10-day fasting period [46]; the up-regulation of miR-126 is found
after a fasting period [46] and also after a 12-week weight loss diet with a deficit of
500 kcal/day [38]. Interestingly, the subjects who lost less weight after an energy-restricted
diet [41,43] were the ones who showed higher levels of miR-935.

Studies involving the remaining miRNAs showed a more complex pattern of regula-
tion. miR-22 is up-regulated in responders (weight loss > 5%) to a 16-week intervention
with a low-fat diet [35] but down-regulated after a 10-day fasting period with a daily intake
of 250 kcal [46]. miR-122 is down-regulated in subjects who follow a 12-week weight-loss
diet with a deficit of 500 kcal/day [38] and after a 12-month weight loss program [36] but
also up-regulated in adults who have undergone a 10-week fasting intervention [46]. Con-
currently, miR-411 and the let-7 family are down-regulated by energy-restricted diets [33,39]
but up-regulated after a fasting period [45,47].

Concerning miR-29 and miR-221, both were down-regulated in the plasma of respon-
ders to a weight loss low-fat diet of 16 weeks [35], but other studies show up-regulation
related to weight loss diets; miR-29 is up-regulated in the subcutaneous adipose tissue
after a 15-week intervention [40], and miR-221 is induced in the plasma of both responders
and non-responders after a 16-week intervention [43]. Different outcomes are reported on
miR-223 after a weight loss diet depending on sex and the sample analyzed; this miRNA
is up-regulated in the plasma after 16 weeks of intervention regardless of the sex of the
population [43] but also down-regulated in the serum HDL fraction of men after 12 weeks
of intervention [44]. Lower levels of this miRNA have also been seen at baseline in the
PBMCs of women who do not respond to 8 weeks of dietary intervention [41].

3.3. Modulation of miRNA Expression by Fat Intake

Twelve studies analyze the impact of different fat-related diets [48–59]. Three of them
consist of a single high-fat meal [48–50], five evaluate nut intake [51–55], two analyze
extra virgin olive oil (EVOO) intake [56,57], one a ketogenic diet [58] and one the intake
of trans fatty acids [59]. The last report is the only one with no significant results. These
studies measure the miRNAs in blood components, except one article about miRNAs
in sperm [55]. The method used to analyze miRNAs was qPCR, with an initial screen-
ing in some of them [48,51–53,55,57], except for one study, which used the NanoString
nCounter technology [58].

Two interventional studies evaluate the impact of a single high-fat and high-energy
meal on postprandial miRNA expression [48,50], but they analyze different miRNAs. One
of them reports nine miRNAs down-regulated (miR-613, miR-629, miR-24-2, miR-555,
miR-148a, miR-621, miR-875, miR-513c, miR-1226) and nine up-regulated (miR-653, miR-
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19b-1, miR-363, miR-885, miR-339, miR-938, miR-148b, miR-593, miR-200b) after a high-fat
meal of 800 kcal [48], and the other one finds three miRNAs down-regulated (miR-1260a,
miR-92b, miR-205) and six up-regulated (miR-200c, miR-143, miR-200b, miR-143, miR-375,
miR-145) after a high-fat meal of 1067 kcal [50]. The miR-200 family is up-regulated after
both single-meal studies. Another study using a similar dietary strategy but adding orange
juice, a glucose drink or water in a crossover model observes the up-regulation of miR-375
after the high-fat meal with orange juice and down-regulation of miR-205 after the meal
with the glucose drink [49].

Regarding the five studies analyzing nut consumption, their interventions lasted at
least 8 weeks, and the study population was healthy adults of a normal weight in three of
them [51,52,55] and with overweight/obesity in the remaining two [53,54]. Daily intake
of 30–60 g of walnuts results in the overexpression of miR-32 [52], miR-29b [52] and miR-
551a [51] when compared with the controls who abstained from walnuts [52]. Additionally,
the down-regulation of miR-328, miR-330, miR-221 and miR-125a and the up-regulation
of miR-192, miR-486, miR-19b, miR-106a, miR-130b, miR-18a and miR-769 are observed
after 8 weeks with an almond and walnut intake of 30 g/day [53]. Furthermore, spermatic
miR-34b is down-regulated after nut intake when comparing a Western diet avoiding nuts
with a Western diet with 60 g/day of nuts [55].

Regarding EVOO intake, both studies evaluate the impact of a single dose of EVOO
on the PBMCs [57] and plasma [56] and observe the modulation of several miRNAs.
Interestingly, one of them reports the underexpression of miR-192 [57] and the other one
overexpression [56]. Beyond that, the ketogenic diet study reports the underexpression of
circulating miR-504 and the overexpression of let-7b and miR-143 after 6 weeks following
this high-fat low-carbohydrate dietary pattern in a cohort of 12 healthy adults [58].

3.4. Dietary Patterns Related to miRNA Modulation in Observational Studies

Among the observational studies [60–64], four of them evaluate differences between
vegan, vegetarian and omnivorous diets [60–63], and the other one is on the Mediterranean
diet [64]. Regarding the differences between vegan, vegetarian and omnivorous diets, one
of the studies does not report significant results [60]. The up-regulation of miR-92a in stool
and plasma [62] and the down-regulation of miR-636, miR-4488 and 4739 in stool [63] are
observed in association with vegan and vegetarian diets [62]. Additionally, in a cohort of
96 healthy adults, miR-3661, miR-320c, miR-29a, miR-320b and miR-204 are overexpressed
and miR-132 underexpressed in the plasma of subjects who follow vegan or vegetar-
ian diets [61]. Concerning the impact of the Mediterranean diet on miRNA expression,
adherence to this dietary pattern is associated with higher levels of miR-590 in adults
with obesity [64].

3.5. Other Dietary Patterns Related to miRNA Modulation

The five remaining studies evaluate the intake of high-red meat [17], protein consump-
tion [65], a Korean diet [66], grape intake [67] and orange juice consumption [68].

A randomized crossover study design, with 23 healthy volunteers, studies the in-
fluence of two 4-week dietary interventions: a high red meat (HRM) diet and an HRM
diet + supplementation with butyrylated resistant starch on miRNA expression in rectal
mucosa. The up-regulation of miR-19a, miR-19b and miR-21 after the HRM diet and down-
regulation of miR-17, miR-19a, miR-19b, miR-20a and miR-92a when adding resistant starch
are reported [17]. Besides that, the association between protein consumption and circulat-
ing miRNA expression is analyzed in a group of three healthy men over the age of 70 [65].
After 2 weeks of study, a high protein intake (1.6 g/kg body weight/day) is associated with
the underexpression of miR-125b, miR-100, miR-99a, miR-23b and miR-203 [65].

Apart from that, a 2-week intervention study evaluates the differences between a
Korean diet and a westernized Korean diet in circulating and salivary miRNA expression in
a group of 10 women with overweight and concludes that the Korean diet down-regulates
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miR-26a and miR-126 in the plasma and miR-92 and miR-122 in the saliva, while the
westernized diet down-regulates miR-25 in the plasma and miR-31 in the saliva [66].

The effects of the intake of 5 g/kg body weight/day of fresh grapes on circulating
miRNA expression are analyzed in a cohort of 40 adults with overweight; the up-regulation
of two miRNAs (miR-208a and miR-33a) and down-regulation of 18 miRNAs (miR-181a,
miR-30e, miR-30d, miR-335, miR-222, miR-15a, miR-421, miR-339, miR-378a, miR-29b,
miR-106b, miR-324, miR-1260a, miR-365a, miR-155, miR-335, miR-200c and let-7f) have
been observed [67]. let-7f, together with miR-126, is also down-regulated in the PBMCs
after 4 weeks of consuming 500 mL of orange juice per day, while miR-144, miR-424 and
miR-130b are up-regulated [68].

4. Discussion

Taking together the results of the included articles, the data confirm the involvement of
several dietary patterns, as well as specific foods, in the modulation of miRNA expression
in human cells, which is mainly reflected in plasma levels. However, the studies collected
are quite heterogeneous. The interventions show large differences in terms of their duration
and dietary strategy, as well as the characteristics of the selected study population, such as
sex and age, with both parameters closely linked to the expression of several miRNAs [70].
The method used to quantify miRNA expression is also worth noting when interpreting the
results, as each one provides different information. Three kinds of quantification methods
have been identified: targeted analysis, sequencing and a combination of both. Targeted
analysis using qPCR is the most used and offers high sensibility and specificity for detect-
ing low levels of miRNAs [71] but has the drawback of quantifying a limited number of
miRNAs, which are chosen by researchers following a hypothesis-driven approach. In
contrast, miRNA sequencing provides extensive information about the entire miRNAome
but has a lower sensibility in detecting those miRNAs expressed in small amounts [72].
Therefore, as some authors have opted for, the development of studies that use a combina-
tion of both methods might be advisable. This involves an initial screening using miRNA
sequencing, followed by a targeted analysis of the selected miRNAs using qPCR to validate
the observations. This approach would bring more reliable results showing not only how
specific miRNAs are influenced by diet but also the entire miRNAome. Notwithstanding
these limitations, the available data provide enough evidence to point out specific dietary
patterns capable of modulating miRNA expression, which are discussed below.

4.1. Influence of Energy Intake on miRNA Regulation

Energy-controlled diets have been widely studied in the context of miRNA regulation,
mainly with weight loss purposes. Regarding its consequences, we should differentiate the
outputs obtained when considering the duration of the intervention from those based on
feeding conditions.

Given the extensive study of hypocaloric diets in miRNA regulation, most of the
miRNAs mentioned in this review were associated with energy restriction, either due to
long-term daily energy restriction or shorter interventions (Figure 2a). For instance, the
up-regulation of miR-126 [38,46] and down-regulation of miR-142 [35,46] have been related
to both intervention models [38,46]. Occasionally, the effects observed on the miRNA
levels vary depending on the duration of the restriction. This, together with the fact
that the experimental designs tend to be quite different, makes it difficult to analyze the
outcomes jointly. That is the case with let-7 [33,39,45], miR-22 [35,46], miR-122 [36,38,46]
and miR-411 [33,47], whose evidence reported both up- and down-regulations associated
with energy restriction. In these cases, some authors reported short-term consequences [46]
and others the opposite, long-term outcomes [35,46]. The durations of the interventions
prevented us from merging the results.
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controlled dietary patterns and (b) plant-based foods. Only miRNAs with significant results in at
least two studies were included. Numbers represent the count of miRNAs modulated by each dietary
pattern. miRNAs modulated by ≥2 dietary patterns are specified.

Regarding the feeding conditions, differences in miRNA levels have been observed
between fasting and the postprandial state. The up-regulation of circulating miR-19,
miR-143, miR-145, miR-200, miR-339 and miR-375 and the down-regulation of miR-92,
miR-205 and miR-1260 have been seen in the postprandial state after a single high-energy
and high-fat meal when compared with the fasting state [48–50]. In line with these results,
another study has reported decreased levels of miR-19, miR-143 and miR-145 after a fasting
period [46,47]. Apart from that, some of the changes in miRNA expression associated with
hypocaloric diets might be influenced by macronutrient content. One example is miR-221,
since it is down-regulated with a hypocaloric and low-fat diet [35] and up-regulated with a
restricted diet which does not take into account fat content [43]. Fat intake may therefore
be implicated in miR-221 modulation and, as the evidence associates miR-221 with insulin
levels, it might also be involved in the development of insulin resistance [73,74]. This is the
same for miR-223 outputs, as it has shown down-regulation in serum HDL fractions after a
weight loss diet high in protein [44] and up-regulation in the plasma after a hypocaloric
diet disregarding protein content [43]. The biological sample selected to measure the
miRNA levels may also influence the differences between the aforementioned findings.
Several miRNAs show tissue specificity, and large differences are found among the miRNA
spectrum of several body fluids [75]. This may imply different tissue-dependent effects
but with a common purpose [76]. In view of the above, the development of further studies
with similar experimental characteristics may help strengthen the evidence available.

Interestingly, miRNA levels have been related to the response to diet-induced weight
loss. Non-responders to a weight loss diet presented overexpression of miR-935 and
miR-4772 and underexpression of miR-223, miR-224 and miR-376 before the dietary inter-
vention [41,43]. These miRNAs may be considered biomarkers of weight loss susceptibility.

Considering the results of these studies, we could say that energy intake was a major
regulatory factor in the human miRNA profile. Changes in the caloric content of the diet
lead to the modification of endogenous miRNA levels, and the effects may vary depending
on the duration of the intervention and the feeding conditions. Furthermore, the influence
of these miRNAs over metabolic pathways and their implication in the development of
metabolic diseases has been proposed. For instance, the evidence shows the involvement
of miR-22 in the control of metabolic homeostasis [77]. Silencing of this miRNA has
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been suggested in the treatment of metabolic diseases, including obesity and hepatic
steatosis [77,78]. Along with this, miR-122 participates in the hepatic metabolism of lipids,
regulating the expression of genes involved in cholesterol and fatty acid synthesis [79].
Additionally, miR-19 and let-7 play a role in insulin signal transduction and have been
related to the development of type 2 diabetes and obesity-induced insulin resistance [79].
miR-143 has also been associated with glucose and lipid metabolism [79,80]. These findings
reinforce our knowledge about the involvement of energy intake-modulated miRNAs in
the regulation of several biological processes [18,81] and their subsequent implications for
the development of metabolic diseases [82–85].

4.2. Influence of a Mediterranean Diet and Plant-Based Foods on miRNA Regulation

The Mediterranean diet is widely known for its health benefits, as most of its char-
acteristic food components have been attributed anti-atherosclerotic, anti-inflammatory
or antioxidant effects [86–88]. It has been seen that the Mediterranean diet modulates the
levels of certain miRNAs that could be involved in the regulation of the aforementioned
biological processes. For example, high adherence to the Mediterranean diet has been asso-
ciated with higher serum levels of miR-590 in adults with morbid obesity [64], a miRNA
which has been related to anti-inflammatory effects, a reduction in lipid accumulation
and the inhibition of atherosclerotic progression [89,90]. Although this was the only study
which evaluated the impact of the Mediterranean diet as a whole, several studies have con-
sidered specific foods included in this dietary pattern, such as EVOO [56,57], nuts [51–55],
grapes [67] and even plant-based diets [61–63]. Those studies showed that the intake of dif-
ferent plant-based foods can modulate the same miRNAs (Figure 2b). For instance, nut and
EVOO consumption up-regulate circulating miR-192 [53,56], a miRNA associated with lipid
and glucose metabolism [64,91,92], and down-regulate circulating miR-328 [53,56], which,
according to the evidence, is related to cardiovascular disease [93,94]. miR-29, miR-106 and
miR-181 are also examples of miRNAs modulated by several plant-based foods, and their
biological effects are discussed below. Although the way miRNAs impact metabolic control
is still not fully understood, their modulation may be one of the mechanisms through
which the Mediterranean diet and plant-based foods improve health and reduce the risk
of diseases.

4.3. Biological Effects of Diet-Modulated miRNAs

Many studies suggest the modulatory role of miRNAs in key physiological processes
and their ensuing impact on health [95]. Particularly, they have been associated with
glucose and lipid metabolism [79], which is fundamental to human homeostasis. Here, we
have revised the potential of foods and diets to influence miRNA levels and, given the
strong involvement of unbalanced diets in the development of metabolic diseases, further
investigation into the physiological role of miRNAs could provide new molecular targets
that contribute to their prevention.

Studies on energy-controlled diets and plant-based foods have substantially shown
their relevance in modulating endogenous miRNA levels. However, large differences
were found regarding the miRNAs affected by different dietary patterns. This might be
attributed to the metabolic effects of dietary nutrients on the body. Each nutrient present in
the diet triggers distinct biological processes related to functions essential to our organism.
The modulation of endogenous miRNA expression might contribute to the mechanisms
underlying the specific functions of each nutrient. Consequently, each dietary pattern might
be linked to a specific miRNA expression profile aimed at optimizing nutrient metabolism.
Additionally, the evidence suggests that some bioactive compounds in food would be
likely to directly change miRNA expression in a positive way, contributing to their health
properties. For instance, curcumin, a flavonoid found in turmeric, has been attributed
to anti-inflammatory and anti-tumorigenic properties, which are potentially mediated
by miRNA activity, including miR-17, miR-20a and miR-27 [96]. The anti-inflammatory
properties of resveratrol have also been linked to miRNA regulation. A study assessing
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resveratrol supplementation in men with type 2 diabetes and hypertension has reported
the modulation of a set of miRNAs involved in the inflammatory response [97]. The
phenolic compounds from nuts and extra virgin oil are also examples of miRNA activity
modulators [96]. Although these findings contribute to our understanding of the role of
miRNAs in the health-related properties of diet, the evidence is not sufficient to clearly
determine how each dietary pattern influences fundamental biological processes through
miRNA modulation. Here, we thoroughly examined the potential physiological functions
of these two sets of miRNAs: energy-controlled patterns (Figure 2a) and plant-based foods
(Figure 2b). To explore them, first, a miRNA–disease interaction network analysis was
performed using the miRNet 2.0 software [32]. Only those miRNAs showing significant
results in more than one study were included. The resulting network diagrams are shown
in Figure 3. Regarding miRNA–disease interactions, the miRNet software displayed
100 outcomes, of which 57 were related to carcinomas and neoplasms. As miRNAs have
been widely studied in relation to cancer and there is strong evidence of this, a large number
of results on cancer were expected. Among the 47 remaining outcomes, cardiovascular
diseases showed the strongest association with miRNAs modulated by energy-controlled
patterns. Obesity, atherosclerosis and stroke also presented a high number of associations
(Figure 3a). This highlights the implication of miRNAs in the mechanisms involved in
cardiovascular disease development and other risk factors for metabolic syndrome and the
need to balance caloric intake to prevent these diseases.

Concerning the set of miRNAs modulated by plant-based foods, the miRNet software
also displays 100 diseases interacting with this set of miRNAs, half of them carcinomas and
neoplasms. Among the non-cancer outcomes, diabetes, cardiovascular diseases, atheroscle-
rosis and hypertension were some of the most connected in the network (Figure 3b). A total
of 9,113 target genes were found. miR-20, miR-15, let-7 and miR-181 were the miRNAs
with the strongest interaction. Eight metabolic pathways were significantly influenced by
the miRNAs modulated by plant-based foods; among them, adipocyte differentiation and
regulation of the AKT pathway appeared to be interesting in the context of diet and health
(Figure 4b).

Of note, a few studies have evaluated the intake of animal-based foods, enabling a
comparison with plant-based foods in terms of miRNA modulation. A study assessing
the intake of red meat has found an association with miR-19 and miR-21, two miRNAs
also modulated by nut [53] and EVOO [56,57] intake. Additionally, one article comparing
the effects of plant-based and omnivorous diets reports a trend in miRNA expression,
gradually changing its levels from vegan and vegetarian to omnivorous patterns [62]. This
suggests that animal and plant origin food may modulate a similar set of miRNAs but
in a different way. However, as certain studies evaluating similar dietary patterns obtain
opposite results, a clear interpretation cannot be secured.

The network analysis pointed out the involvement of miRNA regulation in metabolic
health. Particularly, the two sets of miRNAs analyzed were highly related to cardiovascular
health, inflammation and the immune system. Conducting further studies on diet–miRNA
and miRNA–health interactions may contribute to the development of nutritional strategies
focused on preventing diseases through miRNA modulation.
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Figure 3. miRNA–disease interaction network. Network gene analysis was performed using miRNet 2.0 software [32]. Black squares represent the most relevant
miRNAs modulated by (a) energy-controlled dietary patterns and (b) plant-based foods; gray pentagons represent diseases related to these miRNAs; bigger
pentagons show diseases interacting with ≥3 miRNAs, excluding cancer-related diseases. In addition, a miRNA target network analysis was also performed using
miRNet 2.0. A total of 11,928 target genes were found to be associated with miRNAs modulated by energy-controlled patterns, showing the miR-34 and let-7
families had the highest degree of interaction with them. Besides that, this set of miRNAs was significantly involved in 13 metabolic pathways, predominantly in
angiogenesis (Figure 4a).
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4.4. Exogenous miRNAs from Dietary Sources

Apart from the regulatory role of diet in miRNA expression, it is also important to
consider those miRNAs that can be directly ingested through dietary sources. They are
found both in animals and plants, and in both kingdoms, miRNAs can regulate gene
expression [98]. As plant miRNAs have been found in mammalian specimens, the ev-
idence suggests that they can regulate cross-kingdom gene expression through dietary
intake [98–100]. Mature plant-based miRNAs are present not only in raw vegetables but
also in their cooked form (as in rice, wheat or potato) and can survive the gastrointestinal
tract, even the acidic environment of the stomach [12]. Once exogenous miRNAs enter
the intestinal epithelial stem cells, they can be packaged into vesicles and transported
through the bloodstream, potentially affecting endogenous processes [101]. Although there
is increasing evidence of exogenous miRNAs being acquired through dietary sources, their
role as regulators of gene expression is still controversial [102]. Some authors consider
that the presence of plant miRNAs in human samples is due to the contamination and
oversensitivity of sequencing methods and also that the number of exogenous miRNAs is
not enough to affect human gene expression [103,104].

The number of articles was insufficient to include the intake of exogenous miRNAs
in the review. Nevertheless, some studies display their absorbability and their potential
metabolic role; thus, we should not discard them. Researchers have detected significant
levels of ath-miR-156a, osa-miR-168a and ath-miR-166a, three exogenous plant-derived
miRNAs, in human serum [12]. Furthermore, in vitro analysis has shown that osa-miR-
168a, which is abundant in rice and cruciferous vegetables, has a regulatory role in host gene
expression, specifically as a modulator of liver-specific low-density lipoprotein receptor
adapter protein 1 (LDLRAP1), which has a role in the removal of LDL from the plasma [12].
Another in vitro model shows that miR-156a, found in rice and green vegetables, can
modulate the junction adhesion molecule-A (JAM-A), which is related to the inflamma-
tory recruitment of mononuclear cells in the endothelium of atherosclerotic arteries [14].
Moreover, an in silico analysis which has examined four human datasets has identified
35 exogenous miRNAs in human milk exosomes belonging to 25 plant miRNA families [13].

Exogenous miRNAs acquired through the intake of species in the same kingdom are
also noteworthy. Milk is a case in point. This fluid constitutes a relevant source of miRNAs
for lactating progeny since they are transported in exosomes or vesicles and protected
from degradation and digestion [105]. Humans can absorb biologically effective doses of
miRNAs from mammals, as observed with cow milk [8,106]. Considerable amounts of
two milk-based miRNAs (miR-29b and miR-200c) have been detected in the postprandial
plasma of healthy adults after the consumption of bovine milk [106]. The absorbability of
miRNAs from maternal milk has also been proposed [107–109] but is still under debate.
In this context, the miRNA supply during breastfeeding is of great interest due to the
importance of early nutrition to the metabolic programming of babies. Nutrition during
the early stages of life has long-term consequences for health, and the metabolic adap-
tations induced in this critical period of child development can modulate susceptibility
to metabolic disorders in adulthood [110–112]. Breastfeeding plays an important role in
metabolic programming, and the function of miRNAs in metabolic programming should
be considered. The evidence in humans is scarce, but animal models have demonstrated its
involvement [113,114]. miR-148 is the most abundant miRNA in milk [109,115,116] and has
been related to immune regulation, metabolism and development [109,117,118]. Among the
articles included in this review, none of them have analyzed the miR-148 levels in milk, but
in one of them, the intake of a single hypercaloric high-saturated-fat meal has been related
to the PBMC levels of miR-148, that is, the underexpression of miR-148a and the overexpres-
sion of miR-148b [48]. Animal models also demonstrate the ability of diet to modulate miR-
NAs in milk. Higher levels of miR-222 and lower levels of miR-200a and miR-26a have been
observed in milk from rats fed with a cafeteria diet (fat-rich hypercaloric diet) compared
to controls [28].
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In view of the above, further studies are needed to strengthen these data, especially to
support the evidence of miRNAs being significantly absorbed from breast milk due to the
importance of metabolic programming in early life stages.

5. Conclusions

This review underlines the ability of changes in dietary habits to regulate endogenous
miRNA levels. Particularly, energy and fat content appeared to be key factors since they are
the nutritional elements with more evidence supporting their role in miRNA modulation.
However, the current studies are heterogeneous, which hinders the interpretation of the
results jointly. The involvement of miRNAs in the regulation of biological processes and
its potential impact on health have also been exposed. Animal models highlight their
metabolic repercussions [29,30,119], but the evidence in humans is scarce. In this context,
two sets of miRNAs emerged as linked to energy-controlled diets and plant-based foods,
and the network analysis revealed its role in cardiometabolic health. Further studies are
needed to clarify the consequences of diet on human miRNAs and to reliably identify
their relationship with health conditions. Notwithstanding, instead of considering specific
miRNAs separately, it would be interesting to identify miRNA profiles related to particular
metabolic pathways and determine the dietary patterns that could balance them.
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