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Abstract: The extent to which early weight loss in behavioral weight control interventions predicts
long-term success remains unclear. In this study, we developed an algorithm aimed at classifying
weight change trajectories and examined its ability to predict long-term weight loss based on weight
early change. We utilized data from 667 de-identified individuals who participated in a commer-
cial weight loss program (Instinct Health Science), comprising 69,363 weight records. Sequential
polynomial regression models were employed to classify participants into distinct weight trajectory
patterns based on key model parameters. Next, we applied multinomial logistic models to evaluate
if early weight loss in the first 14 days and prolonged duration of participation were significantly
associated with long-term weight loss patterns. The mean percentage of weight loss was 7.9 ± 5.1%
over 133 ± 69 days. Our analysis revealed four main weight loss trajectory patterns: a steady decrease
over time (30.6%), a decrease to a plateau with subsequent decline (15.8%), a decrease to a plateau
with subsequent increase (46.9%), and no substantial decrease (6.7%). Early weight change rate and
total participating duration emerged as significant factors in differentiating long-term weight loss
patterns. These findings contribute to support the provision of tailored advice in the early phase of
behavioral interventions for weight loss.

Keywords: weight loss; weight trajectory; longitudinal data; early prediction; sequential modeling

1. Introduction

The prevalence of obesity has increased by over 50% globally in the past 35 years and
now affects approximately 13% of the world’s population [1]. The United States has one
of the highest rates of obesity, over 40% [2] of the adult population. Behavioral lifestyle
interventions are recommended as the first-line treatment for individuals with obesity and,
in adherent participants, can support >5% weight loss [3–6]. A range of 5–10% weight loss
has been found to be associated with significantly improving metabolic function [7], blood
pressure, and HDL cholesterol [8], as well as the potential reversal of type 2 diabetes [9].
However, many participants have low adherence and mean weight loss in nationally scaled
programs has been only 3.5% [10]. These findings highlight the need to identify participants
who have low adherence early on to add program elements to support further success.

A growing body of research has employed trajectory modeling approaches, such
as latent class and growth mixture modeling [11–14], to classify participants with over-
weight or obesity into distinct groups based on their weight loss trajectory patterns. This
approach can potentially be used to predict longitudinal weight loss patterns among indi-
viduals while accounting for individual variability in response to different interventions.
In addition, weight loss patterns identified in studies have been found to be associated
with characteristics like age, starting BMI [14], and diet adherence [15,16] with weight
change patterns. However, commonly used trajectory analyses in previous body weight
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studies are based on data from research studies and are not compatible with the typical
real-world experience of weight monitoring in commercial and community intervention
programs, where individuals have varying durations, irregularities, and frequencies of
weight recording.

While investigations have shed light on the correlation between initial weight loss and
long-term outcomes, the precise duration of the “early” phase or the “early weight loss
response” remains unclear [17]. Most studies have found a link between weight loss during
the first month of an intervention and weight loss over 3–12 months [18–21]. However,
investigations of the longer-term impact of weight loss within the earliest one or two weeks
remain relatively scarce in the literature. To our knowledge, only one study found that
very early weight loss within two weeks can predict weight loss up to 6 months but failed
to predict weight loss beyond one year [22]. Importantly, this specific study exclusively
focused on veterans, and its approach relied on 0.5% and 5% thresholds to define early
responders and successful weight loss. However, this method lacked the incorporation of
individual heterogeneity and the intricate, non-linear changes in weight loss over extended
periods. While the significance of timely intervention adjustment has been recognized, the
optimal time threshold to predict subsequent weight loss patterns has yet to be determined.

The primary aim of this study was to develop an algorithm to identify common
patterns of weight change and classify participants’ weight trajectories with a method
enabling accommodation of variable intervention duration and variable frequency of self-
reporting, using 69,363 weight records over one year from 667 participants enrolled in a
commercial weight loss program. We also used the approach we developed to examine
whether weight records in the first 14 days can predict long-term weight loss patterns.

2. Materials and Methods
2.1. Study Population

A commercial weight loss program offering clinically impactful behavioral support
provided weight data for unrestricted use to Tufts University (Instinct Health Science,
www.theidiet.com, accessed on 11 April 2024). The iDiet was developed by co-author SBR,
and detailed descriptions of this program are given elsewhere [23,24]. In brief, the iDiet
program targets a weight loss of 0.5–1 kg of weight per week by reducing energy intake by
500–1000 calories per day. In addition, it has the specific goal of reducing hunger and food
cravings by providing menus and recipes relatively high in dietary fiber and protein and
low in energy density and carbohydrate glycemic index. Each program block was 11 weeks
long, but individuals could choose to continue with one or more additional blocks. Each
11-week program was implemented as a small group program that met once a week for
an hour to learn about nutrition and weight management, discuss it, and support one
another. Participants were encouraged but not required to enter their weight records via
the program website. The analysis of the iDiet data was approved by the Institutional
Review Board at Tufts University.

The original dataset comprised 305,248 weight records from 2520 participants who
were enrolled in the program between 2012 and 2019. To ensure data quality, we conducted
initial data screening by excluding records based on the following criteria: (1) weight
records without reporting the type of unit (kg or lb.), (2) weight values recorded as 0, and
(3) weight values lower than 40 kg or higher than 250 kg. Subsequently, the screened dataset
contained 302,373 weight records from 2494 participants. For algorithm development and
subsequent analysis, we focused on participants who recorded their weight for at least
11 weeks (77 days) and limited the duration between the first and last records to at most
one year (365 days), even if they recorded weight for over one year. Additionally, we
excluded participants if two consecutive weight records were more than 30 days apart and
if they recorded fewer than five weights throughout their program participation. These
selection criteria resulted in a study sample of 667 participants, with a total of 69,363 weight
records. The process of data selection is depicted in the consort diagram (Figure 1), and
comprehensive summary information for both the original and the study sample is given
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in Table 1. We did not include gender, age, and height information in our data analysis,
as these variables had more than 40% missingness in the original datasets, which resulted
in less than 50% of participants with complete demographical data. Detailed summary
statistics of age and sex information are listed in Table 2.
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Figure 1. Consort diagram illustrating the selection of study participants.

Table 1. Summary statistics for weight change characteristics in whole and study samples.

Mean SD Q1 Median Q3 Min Max

Whole Sample a

Duration (days) 265 377 49 89 333 1 2537
Number of records 121 184 25 64 137 1 2090

Longest interval (days) 86.5 187 5 12 56 0 2030
Initial weight (kg) 89.4 24.4 73 85.3 100 44.9 250
Weight loss (kg) 4.7 6.9 1 3.4 7 −126 99.7
Weight loss (%) 5.1 7 1.3 4 8.1 −134 56.2

Study Sample b

Duration (days) 133 68.7 83 101 168 77 365
Number of records 104 60.7 67 84 127 15 357

Longest interval (days) 9.8 7.6 3 8 14 1 29
Initial weight (kg) 89.4 22.5 74 85.7 99.7 48.1 243
Weight loss (kg) 7.1 5.3 3.7 6.3 9.5 −3.7 52.3
Weight loss (%) 7.9 5.1 4.4 7.2 10.3 −3.9 32.3

a: Whole sample: 2494 participants and 302,373 records. b: Study sample: 667 participants and 69,363 records.
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Table 2. Summary statistics for age and sex in whole and study samples.

Whole Sample a Study Sample b

Age (years)

Mean 52.6 53.3
SD 12.7 12.5
Q1 43.0 45.3

Median 54.0 54.0
Min 21.0 22.0
Max 87.0 81.0

NA’s c 1171 (47.0%) 381 (57.1%)

Sex (n, %)
Female 1242 (49.8%) 259 (38.8%)
Male 240 (9.6%) 56 (8.4%)

NA’s c 1012 (40.6%) 352 (52.8%)
a: Whole sample: 2494 participants and 302,373 records. b: Study sample: 667 participants and 69,363 records.
c: NA’s refer to missing values within the dataset.

2.2. Sequential Modeling

We employed a sequential polynomial regression modeling approach to analyze
individual weight trajectories. This involved fitting three models for each trajectory, starting
with a linear term, followed by the addition of a quadratic term, and finally incorporating a
cubic term. The model equations for the linear (m1), quadratic (m2), and cubic (m3) models
are presented below:

m1 : yi,m1,t = β0,i,m1 + β1,i,m1 ∗ t + εi,m1 (1)

m2 : yi,m2,t = β0,i,m2 + β1,i,m2 ∗ t + β2,i,m2 ∗ t2 + εi,m2 (2)

m3 : yi,m3,t = β0,i,m3 + β1,i,m3 ∗ t + β2,i,m3 ∗ t2 + β3,i,m3 ∗ t3 + εi,m3 (3)

where yi,t represents the weight value for i-person, recorded on t-day from the start of indi-
vidual recording, with t ranging from 1 to the last day (tz) of recording of each participant;
β0,i represents the intercept for the i-person, β1,i represents the coefficient of the linear term
t for the i-person, β2,i represents the coefficient of the quadratic term t2 for the i-th person,
and β3,i represents the coefficient of the cubic term t3 for the i-person; εi is the error term in
the model for the i-person.

2.3. Weight Trajectory Classification Algorithm

The first step in classifying weight trajectory is to determine the optimal model for
each participant. We extracted the adjusted R2 of the linear, quadratic, and cubic models
to compare the models’ performance for each individual trajectory. A threshold of a 5%
change in adjusted R2 was applied to assess the superiority of a more complex model over
a simpler one. If the percentage change in adjusted R2 when comparing the more complex
model to the simpler model exceeded 5%, we considered the trajectory to be better fitted by
the more complex model. Conversely, if the change did not surpass the 5% threshold, the
trajectory was classified using the simpler model.

Subsequently, we estimated a set of key parameters to facilitate further classification:
Total duration is denoted as ttotal,i = t1,i − tz,i, where t1,i and tz,i represent the first day and
the last day of weight recording for the i-person.

Predicted weight values on the first day are denoted as y∗m1,t1,i
, y∗m2,t1,i

, y∗m3,t1,i
, and on

the last day are denoted as y∗m1,tz,i
, y∗m2,tz,i

, y∗m3,tz,i
, for model m1, m2 and m3, respectively.

For a quadratic model m2, the nadir point of the trajectory curve is calculated as:

nadiri =
−2β2,i,m2

β1,i,m2

The predicted weight at the nadir is denoted as y∗m2,tnadir,i
.
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For a cubic model m3, the ∆ of the derivative of the cubic model is calculated as:

D i = 4 ∗ β2,i,m3
2 − 12(β 1,i,m3

∗ β3,i,m3

)
.

When ∆ > 0, there are two vertex points,

x1,i =
−β2,i,m3 −

√
β2,i,m3

2 − 4 ∗ β3,i,m3 ∗ β1,i,m3

3 ∗ β3,i,m3

, x2,i =
−β2,i,m3 +

√
β2,i,m3

2 − 4 ∗ β3,i,m3 ∗ β1,i,m3

3 ∗ β3,i,m3

,

and the predicted weight of the two vertex points are y∗m3,x1,i
and y∗m3,x2,i

, respectively.
After the participant data were grouped into the optimal models, we developed

different criteria for the linear, quadratic, and cubic models, respectively, by applying those
key parameters above together with the model coefficients to further group participants’
trajectories according to the shape of the individual trajectories. Detailed descriptions of
the criteria are listed in Table 3.

Table 3. Annotated formulas of classification criteria by models.

Model Criteria Criteria− Criteria+

m1 C1.1 y∗m1,tz,i
− y∗m1,t1,i

≤ 1 y∗m1,tz,i
− y∗m1,t1,i

> 1

m1 C1.2 β1,m1 ,i ≤ 0 β1,m1 ,i > 0

m2 C2.1
∣∣∣y∗m2,t1,i

− y∗m2,tnadir,i

∣∣∣ ≤ 1 and
∣∣∣y∗m2,tz,i

− y∗m2,tnadir,i

∣∣∣ ≤ 1
∣∣∣y∗m2,t1,i

− y∗m2,tnadir,i

∣∣∣ > 1 or
∣∣∣y∗m2,tz,i

− y∗m2,tnadir,i

∣∣∣ > 1

m2 C2.2 β2,i,m2 ≤ 0 β2,i,m2 > 0

m2 C2.3 nadiri ≤ 0 nadiri > 0

m2 C2.4 nadiri ≤ ttotal,i/2 nadiri > ttotal,i/2

m3 C3.1
∣∣∣y∗m3,t1,i

− y∗m3,tz,i

∣∣∣ ≤ 1 and
∣∣∣y∗m3,x1,i

− y∗m3,x2,i

∣∣∣ ≤ 1
∣∣∣y∗m3,t1,i

− y∗m3,tz,i

∣∣∣ > 1 or
∣∣∣y∗m3,x1,i

− y∗m3,x2,i

∣∣∣ > 1

m3 C3.2 β3,i,m3 ≤ 0 β3,i,m3 > 0

m3 C3.3 Di ≤ 0 Di > 0

m3 C3.4 ttotal,i ≤ x1,i ttotal,i > x1,i

m3 C3.5 x1,i ≤ 0 x1,i > 0

m3 C3.6 y∗ i,m3,t1
− y∗ i,m3,tz

≤ 0 y∗ i,m3,t1
− y∗ i,m3,tz

> 0

m3 C3.7 x1,i−x2,i≤ ttotal,i/3 x1,i−x2,i> ttotal,i/3

m3 C3.8 y∗m3,x1,i
− y∗m3,tz,i

≤ 0 y∗m3,x1,i
− y∗m3,tz,i

> 0

m3 C3.9 y∗m3,t1,i
− y∗m3,x1,i

≤ 0 y∗m3,t1,i
− y∗m3,x1,i

> 0

m3 C3.10 y∗m3,x1,i
− y∗m3,tz,i

≤ 0 y∗m3,x1,i
− y∗m3,tz,i

> 0

Next, we created a multi-panel scatter plot to visually compare the similarities within
the same pattern and the differences among different patterns. The scatter plot depicted the
individuals’ weight change compared to their previous weight records over time, from the
participant’s first day of records and up to one year. The participants classified into the same
pattern were grouped into the same panel, so the different panels represented different
weight trajectory patterns. The points on the scatter plot are the individuals’ weight records.
We also added a Loess smooth curve to each pattern to represent the overall weight change
pattern over time. To enhance the utilization of our sequential modeling and its associated
parameters, we developed a growth chart-style plot that incorporates additional percentile
lines. These percentile lines, namely the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and
99th, are dynamically determined based on the values of the model coefficients within
each pattern. This visualization effectively portrays the predicted weight trajectory over a
14-week period in seven distinct patterns.
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2.4. Early Prediction Modeling

To examine the association between weight change rate in the first 14 days and the
individuals’ trajectory patterns, we applied a multinomial logistic regression adjustment
for the number of records in the first 14 days and the total participated durations.

log
( pj(x)

pJ(x)

)
= β0,j + β1,j ∗ X1,i + β2,j ∗ X2,i + β3,j ∗ X3,i

where j represents a defined weight trajectory pattern, and j = 1, X1,i represents the weight
change in the first 14 days (difference divided by 14 days), X2,i is number of records
collected in the first 14 days, and X3,i is the duration, or the number of participated days
for i-participant.

To examine if early weight change characteristics differ in different trajectory patterns,
we extracted the estimates of beta coefficients and standard error from the model output
for each pattern compared to a reference, Pattern 1, and exponentiated model coefficients
to calculate the odds ratio and 95% confidence interval. The odds ratio estimates the ratio
of the likelihood of being in one pattern to the likelihood of being in a reference pattern
for every one-unit increase in weight change rate in the first 14 days, adjusting for the
number of records in the 14 days of the total participated duration. To improve the model
sensitivity, we combined the patterns with low representation.

2.5. Model Validation and Sensitivity Analysis

To validate our sequential model, we employed 10-fold cross-validation across all the
linear, quadratic, and cubic models. The data were randomly partitioned into 10 equal-sized
folds, with 9 folds used for training the model, and the remaining fold used for testing. This
process was repeated 10 times, with each fold as the testing set once. We report the root
mean squared error (RMSE), and R squared as our primary performance metric. To evaluate
the robustness of our classification methodology, we conducted sensitivity analyses. These
analyses involved varying the threshold number of classification criteria to examine the
stability of the participants’ weight trajectory groupings. Specifically, we tested threshold
values 0.5, 1.5, and 2 for C1.1, C2.1, and C3.1, values 1.5 and 2.5 for C2.4, and 2.5 and 3.5 for
C3.7. The percentage of the participants who changed their weight trajectory groups was
represented as the sensitivity metric. We further conducted a sensitivity analysis to assess
the potential impact of age and sex on the prediction model. We additionally included the
variables age and sex in the model and compared the change of coefficient among other
predictor variables.

All the statistical analyses were conducted using R version 4.2.0. ANOVA was em-
ployed to test for differences among groups. Tukey’s honestly significant difference test
was used to determine pairwise differences between groups. Statistical significance was
established at p < 0.05.

3. Results
3.1. Pattern Classification

We developed a sequential classification process that integrates sequential model-
ing and classification based on the model parameters. The comprehensive workflow is
illustrated in Figure 2. By applying a series of specific criteria, we identified seven dis-
tinct weight change patterns, which were sequentially classified. This means that the
specific patterns were not determined at the final step of the process but rather through a
predetermined sequence of stages and branches during the classification process.

In this process, each individual trajectory underwent rigorous testing against specific
criteria in order to assign the pattern with the best fit. For instance, the simple linear fit
of Pattern 1, characterized by a steady decline, was detected at the earliest stages of the
modeling. The quadratic term, or second-order polynomial, representing a monotonic
acceleration or deceleration, required additional verification steps. The cubic, or the third-
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order polynomial term, was needed to detect patterns with varying trajectories, where
more steps were required to complete the classification.
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Figure 2. The classification flow diagram demonstrates the sequential classification based on the
developed criteria. This diagram illustrates the sequential decision process implemented by our
classification algorithm. The first classification step is based on the model’s performance, followed
by the customization of criteria for the three different models. The arrows and boxes show how
participants are distributed in each step according to the specific criteria employed. Detailed criteria
can be found in Table 2. To facilitate clarity, three distinct colors are used to differentiate participants
classified into three different models. The light green quadratic represents the classification steps
for the linear model, the yellow color corresponds to the quadratic model, and the light orange-pink
color represents the cubic model. The number and percentage displayed within each box denote
the absolute count and proportion of participants classified into that specific box from the previous
upper-layer box. A pattern label is assigned to a box when it reaches a final step that sufficiently
identifies a distinct pattern, indicating that the participants within that pattern share a common
weight trajectory shape.

The branching process reflects the likelihood or sufficiency of a select component (lin-
ear, quadratic, or cubic) to depict the complexity of an individual trajectory. The branching
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process within the classification reflects the likelihood or sufficiency of a particular compo-
nent (linear, quadratic, or cubic) in capturing the complexity of an individual trajectory.

We grouped participants by identifying their trajectories according to the emergent
patterns and summarized the weight trajectory characteristics in these patterns. Figure 3
shows the individual trajectories and their representative weight trajectory for each detected
pattern. To ease the comparison across the patterns, we plotted the individual weight
change over time in multi-panel plots. As our classification criteria are based on the
similarity in the shape of the individual’s weight loss trajectories, we observe that each panel
shows a distinct change pattern. The density of the records indicates that most participants
were grouped into the first three patterns, all of which had a decreased weight over time.
The participants in Pattern 1 had the most significant weight loss, and participants in
Pattern 3 had the most prolonged participation duration. The last four patterns had much
fewer weight records and shorter durations, and people comprising Pattern 6 had the
shortest duration of weight recording.
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Figure 3. A multi-panel graph describing the weight trajectories among the seven patterns. This is an
eight-panel graph in which we grouped participants into seven patterns, according to our sequential
classification algorithm, and combined Patterns 4−7 due to low representation. We plotted individual
daily weight records in gray dots and a Loess smooth line colored in blue to depict the similar weight
change curve within each pattern. The horizontal red dashed line shows zero change over time.

The summary of how participants grouped into different patterns based on the fitted
model results is shown in Table 4. The seven patterns were defined as follows: Pattern
1—steady decrease over time (30.6%); 2—decrease to a plateau with the subsequent decline
(15.4%); 3—decrease to a plateau with subsequent increase (47.2%); 4—short-term increase
at the start followed by a decrease (1.9%); 5—decrease with a prominent increase at the
end (3.0%); 6—no detectable increase or decrease (1.5%); and 7—steady increase over time
(0.3%). Patterns 1, 2, and 3 accounted for more than 90% of the participants. The trajectories
in Pattern 1 and Pattern 7 were classified as such using primarily the results of Model 1, as
described by the classification flow diagram (Figure 2).
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Table 4. Weight trajectory pattern description and assignment based on sequential polynomial regression.

Pattern Description m1 m2 m3 Total Percentage

1 Steady decrease over time 204 - - 204 30.6%

2 Decrease to a plateau with subsequent decline - - 103 103 15.4%

3 Decrease to a plateau with subsequent increase - 269 46 315 47.2%

4–7 No substantial decrease 3 10 32 45 6.7%

Total (Patterns 1–7) 207 279 181 667 100.0%

4 Short-term increase at the start followed by decrease - 7 14 13 1.9%

5 Decrease with a prominent increase at the end - - 12 20 3.0%

6 No detectable increase or decrease 1 3 6 10 1.5%

7 Steady increase over time 2 - - 2 0.3%

Patterns 4–7 were consolidated into a single category, referred to as “no substantial
decrease” (6.7%) due to low representation. The weight loss characteristics for each pattern
are summarized in Table 5. The first three patterns exhibited trajectories with weight
loss exceeding 5%. Among these, Pattern 1 displayed the most significant weight loss,
accounting for approximately 10% of the initial weight, with an average absolute weight
loss of 9.4 kg. In comparison to Pattern 1, Pattern 3 demonstrated a notably longer total
duration and a higher number of weight records, with an additional duration of approxi-
mately 40 days and approximately 30 more weight records than Pattern 1. Additionally,
Pattern 3 exhibited significantly longer gaps between two consecutive weight records when
compared to Pattern 1. Pattern 4 experienced <1% mean weight loss, anticipating little or
no clinical benefit from reduced body fatness.

Table 5. Summary of weight loss, initial weight, participating duration, and number of weight records
by pattern.

Pattern Mean SD Q25 Median Q75 Min Max

Weight loss (%)
Pattern 1 10.3 5.4 6.7 9.2 13 1.5 32.3
Pattern 2 6.4 * 3.1 4.2 5.7 7.9 0.7 18.5
Pattern 3 7.8 * 4.7 4.4 7.1 10.1 −1.6 28.3
Pattern 4 3.0 * 2.1 1.2 2.9 4.5 0.5 6.9
Pattern 5 −0.2 * 1.3 −0.9 −0.1 0.4 −3.9 1.8
Pattern 6 1.0 * 1.1 0.5 1.3 1.5 −1.0 2.9
Pattern 7 −2.9 * 0.5 −3.1 −2.9 −2.8 −3.3 −2.6

Patterns 4–7 0.9 * 2.2 −0.4 0.5 1.8 −3.9 6.9

Weight loss (kg)
Pattern 1 9.4 6.2 5.5 7.7 11.1 1.2 52.3
Pattern 2 5.8 * 3 3.8 5 7.6 0.5 15.6
Pattern 3 7.1 * 4.7 3.8 6.2 9.3 −1.0 26.2
Pattern 4 2.3 * 1.5 0.9 2.6 3.4 0.4 4.6
Pattern 5 −0.2 * 1.2 −0.9 −0.1 0.3 −3.7 1.5
Pattern 6 0.9 * 1 0.3 0.9 1.3 −0.5 2.9
Pattern 7 −2.4 * 0.2 −2.5 −2.4 −2.3 −2.5 −2.3

Patterns 4–7 0.6 * 1.7 −0.3 0.5 1.4 −3.7 4.6

Initial weight (kg)
Pattern 1 89.8 22.8 73.9 84.3 100.4 51.7 186
Pattern 2 91 21.3 77.6 88 101 55.6 163.1
Pattern 3 89.9 23 74.7 86.6 99.9 50.3 242.5
Pattern 4 80.6 19.7 63 73.9 96.4 60.3 114.8
Pattern 5 84.5 17.3 72.3 79.2 92.2 63.5 116.1
Pattern 6 71.7 18 54.9 73.6 85 48.1 98.4
Pattern 7 82.6 8.3 79.6 82.6 85.5 76.7 88.5

Patterns 4–7 80.5 18.1 67.3 77.3 91.2 48.1 116.1
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Table 5. Cont.

Pattern Mean SD Q25 Median Q75 Min Max

Duration (days)
Pattern 1 114.6 52.4 82 91 124.5 77 354
Pattern 2 116.4 55.7 81 90 131.5 77 336
Pattern 3 153.0 * 76.5 89.5 125 195 77 365
Pattern 4 105.6 47.7 80 86 108 77 244
Pattern 5 141.9 81.6 80.5 97 176.5 77 336
Pattern 6 83.6 6.3 80.5 82 82.8 77 95
Pattern 7 178 135.8 130 178 226 82 274

Patterns 4–7 120.1 68.3 80 85 131 77 336

Longest interval (days)
Pattern 1 7.4 6.6 3 5.5 10 1 29
Pattern 2 9.2 6.7 4 8 13 1 28
Pattern 3 10.8 * 7.7 5 10 15 1 29
Pattern 4 9.2 7.8 2 10 13 1 29
Pattern 5 18.2 * 9.6 9.5 20 26.3 1 29
Pattern 6 8.9 8.6 3 6.5 12 1 29
Pattern 7 25.0 * 5.7 23 25 27 21 29

Patterns 4–7 13.8 * 9.9 5 13 25 1 29

Number of records
Pattern 1 95 49.4 69.8 80 106.3 15 348
Pattern 2 88.3 46.9 62 78 100 20 290
Pattern 3 118.5 * 68.9 71 96 155 22 357
Pattern 4 79.2 30.7 54 76 100 39 132
Pattern 5 90.4 65.8 40 68 122.8 18 242
Pattern 6 60.1 17.1 46 66 73.3 32 81
Pattern 7 56.5 58.7 35.8 56.5 77.3 15 98

Patterns 4–7 78.9 49.3 46 68 98 15 242
* Indicates statistical significance: p < 0.05, reference group: Pattern 1.

3.2. Early-Term Prediction

For each pattern, we generated predicted weight loss trajectories for the initial 14-week
period to serve as a reference growth chart-style plot. To provide a comprehensive repre-
sentation of the uncertainty in the predictions, we added confidence interval lines for the
1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentiles (Figure 4).
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Figure 4. A multiple-panel line graph showing the weight trajectory prediction in four different
patterns over the first 14 weeks. The x-axis is the weight record time and the time participating in
the program in weeks. The y-axis is the individual’s daily weight in kilograms. The prediction line
is graphed based on the model parameter of the cubic model for each pattern. We further added
the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentile confidence interval lines to provide
referenced distribution information.
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We employed a multinomial logistic model to investigate whether early weight change,
the number of records, and participating duration could predict the weight loss trajectory
patterns over an extended duration, with Pattern 1 serving as the reference category. Our
multinomial logistic model analysis yielded several key results. The weight change within
the first 14 days is statistically indistinguishable for Patterns 1, 2, and 3. The early change,
however, allowed us to differentiate consolidated Patterns 4–7 from Pattern 1. A prolonged
duration of participation is a significant distinct feature of Pattern 3 compared to Pattern 1.
This suggests that participation in the program for an extended period helps to maintain
weight loss. The summary of model results is shown in Table 6.

Table 6. Results of the multinomial logistic regression.

Pattern Term OR Lower CI Upper CI

2

Weight change rate the first 14 days 0.7319 0.2630 2.0369

Number of records in the first 14 days 0.9703 0.9000 1.0462

Duration 1.0005 0.9959 1.0052

3

Weight change rate in the first 14 days 0.3775 0.0874 1.6305

Number of records in the first 14 days 1.0183 0.9574 1.0830

Duration 1.0094 1.0061 1.0126

4–7

Weight change rate in the first 14 days 0.0004 <0.0001 0.0159

Number of records in the first 14 days 1.0567 0.9402 1.1876

Duration 1.0001 0.9932 1.0071

In validating our sequential model through 10-fold cross-validation, we extracted
the mean RMSE and R-squared of the 10-fold cross-validation from the best of the three
models of all the participants, with each participant having a mean RMSE and a mean
R-squared value. Across all the participants, the average mean RMSE was 0.56, and the
average standard deviation of RMSE was 0.16. Moreover, the average mean R-squared
was 0.86, and the average standard deviation of R-squared was 0.08. In assessing the
model’s sensitivity, the threshold values tested for 0.5 (C1.1, C2.1, and C3.1), 1.5 (C1.1, C2.1,
and C3.1), and 2 (C1.1, C2.1, and C3.1) yielded percentage changes in weight trajectory
groupings of 2.9%, 6.0%, and 11.4%, respectively. For criterion C2.4, the tested threshold
values of 1.5 and 2.5 resulted in changes of 7.3% and 0.3%. For C3.7, the threshold values of
2.5 and 3.5 were associated with changes of 1.0% and 0%. Lastly, the inclusion of age and
sex did not significantly change the model results of other variables.

4. Discussion

In this study, a novel sequential algorithm was developed that was able to identify
four discrete weight trajectory patterns for participants enrolled in a web-based weight
management program. An important feature of the algorithm was that it allowed for
variable weight frequency and variable program length, thus having utility for commercial
and self-determined weight loss initiatives that do not have the regimented data structure
of a research trial. Overall, our analysis found that 90% of the participants were categorized
into the first three weight loss patterns, including the steady decrease over time, the
decrease to a plateau with the subsequent decline, and the decrease to a plateau with
subsequent increase. Using the algorithm classification system, weight measures during
just the first two weeks of weight loss were able to classify individuals as having successful
or unsuccessful weight loss over 12 months, identifying a new potential way to tailor
weight loss recommendations to the individual at an earlier point in the intervention or
program to maximize success.

Previous studies evaluating weight trajectories in randomized controlled trials have
identified between two and seven weight change patterns [11,12,14] or lifestyle interven-
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tions in real-world settings [12,14,15,24–26]. Three patterns of weight loss are commonly
reported: modest, moderate, and substantial weight loss [13,14], with some studies de-
scribing additional patterns related to weight regain; if more than three patterns were
discovered in studies, they were either weight increases or no change in weight [16,25,27].
Our findings are consistent with previous research in that most of our participants fit into
one of the three effective weight loss patterns. In addition, our study delved into a more
intricate weight record data structure, which contained a broader range of weight record
counts, variable participation durations, and irregular time intervals. Nevertheless, our
methodology demonstrated the ability to accommodate substantial and irregular datasets.
Notably, this methodology not only classified participants based on the magnitude of
weight loss but also factored in their temporal engagement with the program.

Several studies have suggested that significant early weight loss predicts long-term
weight loss success 1–2 years after lifestyle intervention programs [14,15,25]. However,
these analyses used weight information in the first 1–3 months of weight loss, when most
weight loss occurs [20,28,29]. Here, we show that weight loss trajectories in just the first
14 days of a behavioral program can predict weight loss patterns. Thus, similar to previous
studies, we found a higher chance of successful weight loss related to a higher weight
loss rate in the early period, but our shorter identification period allows for significantly
more rapid help to address low participant adherence. Specifically, weight loss at 14 days
significantly predicted whether the individual would be categorized in Patterns 1, 2, or 3,
all with clinically impactful weight loss, versus Pattern 4 with <1% mean weight loss. This
observation is consistent with the findings of one prior study reporting that weight loss
within the two-week timeframe predicts weight loss at 6 months [22] and extends that
finding by showing that this categorization successfully predicts weight loss success to
12 months. In addition, our approach demonstrated the potential to predict weight status
at any temporal juncture. This information can help clinicians and counselors offer timely
suggestions to participants and improve the efficacy of weight management programs.

Our study has limitations. First, we developed the algorithm using exclusively weight
records. Further analysis could enhance the approach by including other characteristics of
participants (such as body mass index, age, medical history, diet, smoking habits, alcohol
consumption, etc.) when available [30]. Our classification algorithm could also potentially
be more precise if we had weight pattern information before weight loss program initiation,
or early history of weight fluctuations [31]. This information will allow us to examine
the before- and after-effects using segmented modeling [32], explore seasonal and event-
specific variations over time [33], or consider personalized records. In addition, our sample
data participants were predominantly middle-aged women from a commercial weight loss
program who might have strong motivations to lose weight, reducing the generalizability
of results to other populations and settings. Future research is warranted to validate our
findings across diverse datasets, including those from non-commercial weight loss inter-
ventions and programs with different structures and participant demographics. Further
research could also explore the comparison between the clustering results obtained from
the proposed algorithm and alternative clustering methods, such as growth mixture models
and latent growth models. Specifically, investigating the applicability of different models in
flexibly handling irregular data with varying measurement frequencies and assessing their
effectiveness in classifying and predicting weight loss would be valuable. By using the
fundamental functional forms to weight trajectories that allow for considering inertia-prone
processes for irregularly spaced records, we could ensure the broad applicability of the
algorithm as a machine learning tool.

5. Conclusions

In summary, the weight trajectories and prediction charts provided in this study
indicate a way to support lifestyle interventions for weight loss by using weight data
during just the first 14 days to predict likely success. Sequential predictive modeling of
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weight change patterns can be expanded with additional datasets, where body weight
information is requested daily to help inform personalized weight management programs.
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